A novel hybrid model based on combined preprocessing method and advanced optimization algorithm for power load forecasting
Short-term power load forecasting occupies an important position in improving the operating efficiency and economic effects of power system. Aiming at improving forecast performance, a substantial number of load forecasting models are proposed. However, most of the previous studies ignored the limit...
Uložené v:
| Vydané v: | Applied soft computing Ročník 97; s. 106809 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.12.2020
|
| Predmet: | |
| ISSN: | 1568-4946, 1872-9681 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Short-term power load forecasting occupies an important position in improving the operating efficiency and economic effects of power system. Aiming at improving forecast performance, a substantial number of load forecasting models are proposed. However, most of the previous studies ignored the limitations of individual prediction models and the necessity of data preprocessing, resulting in low forecast accuracy. In this study, a novel hybrid model which combines data preprocessing technology, individual forecasting algorithm and weight determination theory is successfully presented for obtaining higher accuracy and better forecasting ability. Among this model, the data preprocessing stage first uses a novel combinationdata preprocessingmethod, which overcomes the shortcomings of single preprocessing methods. In addition, a combined forecasting mechanism composed of RBF, GRNN and ELM is proposed using the weight determination theory, which exceeds the limits of individual prediction models and improves prediction accuracy. For the sake of assessing the availability of the proposed hybrid model, three datasets of half-hour power load of Queensland, South Australia and Victoria in Australia are selected in this study. The final experimental results show that the proposed model not only can approximate the actual power load very well, but also can be used as a helpful tool for power grid planning and dispatching.
•Two preprocessing techniques, CEEMD and SSA, are used in two stages.•Multi-objective evolutionary algorithm MOGWO is used to decide the weighting factor of combined model.•Based on the three neural networks, the prediction accuracy of power load is improved.•A comprehensive assessment of the composite model is carried out to evaluate its forecasting performance.•The proposed new hybrid model provides powerful technical support for power network dispatch management. |
|---|---|
| AbstractList | Short-term power load forecasting occupies an important position in improving the operating efficiency and economic effects of power system. Aiming at improving forecast performance, a substantial number of load forecasting models are proposed. However, most of the previous studies ignored the limitations of individual prediction models and the necessity of data preprocessing, resulting in low forecast accuracy. In this study, a novel hybrid model which combines data preprocessing technology, individual forecasting algorithm and weight determination theory is successfully presented for obtaining higher accuracy and better forecasting ability. Among this model, the data preprocessing stage first uses a novel combinationdata preprocessingmethod, which overcomes the shortcomings of single preprocessing methods. In addition, a combined forecasting mechanism composed of RBF, GRNN and ELM is proposed using the weight determination theory, which exceeds the limits of individual prediction models and improves prediction accuracy. For the sake of assessing the availability of the proposed hybrid model, three datasets of half-hour power load of Queensland, South Australia and Victoria in Australia are selected in this study. The final experimental results show that the proposed model not only can approximate the actual power load very well, but also can be used as a helpful tool for power grid planning and dispatching.
•Two preprocessing techniques, CEEMD and SSA, are used in two stages.•Multi-objective evolutionary algorithm MOGWO is used to decide the weighting factor of combined model.•Based on the three neural networks, the prediction accuracy of power load is improved.•A comprehensive assessment of the composite model is carried out to evaluate its forecasting performance.•The proposed new hybrid model provides powerful technical support for power network dispatch management. |
| ArticleNumber | 106809 |
| Author | Zhang, Haipeng Nie, Ying Jiang, Ping |
| Author_xml | – sequence: 1 givenname: Ying surname: Nie fullname: Nie, Ying – sequence: 2 givenname: Ping surname: Jiang fullname: Jiang, Ping email: pjiang@dufe.edu.cn – sequence: 3 givenname: Haipeng surname: Zhang fullname: Zhang, Haipeng |
| BookMark | eNp9kMlqwzAQQEVJoUnaH-hJP-BUiy3b0EsI3SDQS3sWsjxKFGzLSCIl-frKTU899CBmQW-YeQs0G9wACN1TsqKEiofDSgWnV4ywqSEqUl-hOa1KltWiorOUF6LK8joXN2gRwoEkqGbVHJ3XeHBH6PD-1Hjb4t61qWhUgBa7AWvXN3ZI-ehh9E5DCHbY4R7i3rVYDem1RzXo6fcYbW_PKtrEqW7nvI37Hhvn8ei-wOPOqXYqQasQ05RbdG1UF-DuNy7R5_PTx-Y1276_vG3W20xzQmJWFxWnnLJCNcxoo0sqQImaFgw0L0ptcsp53nJVGmoUhQoK4MTQRgjFNBi-RNVlrvYuBA9Gaht_1oxe2U5SIieH8iAnh3JyKC8OE8r-oKO3vfKn_6HHCwTpqKMFL4O2MDmy6fYoW2f_w78B1PWQRw |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2021_107941 crossref_primary_10_32604_EE_2021_015602 crossref_primary_10_1016_j_eswa_2021_114974 crossref_primary_10_3389_fenrg_2024_1443814 crossref_primary_10_1016_j_energy_2024_132635 crossref_primary_10_1016_j_apm_2021_07_024 crossref_primary_10_1016_j_energy_2023_129938 crossref_primary_10_1016_j_engappai_2025_110980 crossref_primary_10_1016_j_asoc_2022_108560 crossref_primary_10_3390_math11122786 crossref_primary_10_1007_s11063_022_11046_7 crossref_primary_10_1002_for_2888 crossref_primary_10_1007_s11227_023_05793_0 crossref_primary_10_1051_e3sconf_202339401002 crossref_primary_10_1108_JM2_09_2022_0232 crossref_primary_10_2478_amns_2024_2745 crossref_primary_10_1016_j_engstruct_2024_118183 crossref_primary_10_1016_j_resourpol_2021_102234 crossref_primary_10_1016_j_asoc_2021_107438 crossref_primary_10_1016_j_renene_2021_07_113 crossref_primary_10_3390_machines9110248 crossref_primary_10_3390_s22124363 crossref_primary_10_1016_j_egyr_2021_09_115 crossref_primary_10_1093_tse_tdac055 crossref_primary_10_1007_s12652_022_04423_6 crossref_primary_10_1016_j_apm_2022_09_004 crossref_primary_10_1371_journal_pone_0306566 crossref_primary_10_1016_j_eswa_2022_117201 crossref_primary_10_1016_j_asoc_2024_111235 crossref_primary_10_1016_j_resourpol_2022_102780 crossref_primary_10_1016_j_eswa_2022_118419 crossref_primary_10_3390_modelling5030054 crossref_primary_10_1016_j_ijepes_2022_108243 crossref_primary_10_1016_j_eswa_2023_120354 crossref_primary_10_1016_j_geits_2023_100108 crossref_primary_10_1049_tje2_12409 crossref_primary_10_1016_j_epsr_2022_108186 crossref_primary_10_1016_j_apenergy_2021_117449 crossref_primary_10_1109_ACCESS_2021_3120731 crossref_primary_10_1002_ese3_1352 crossref_primary_10_1016_j_energy_2022_126130 crossref_primary_10_1007_s11042_023_16931_4 crossref_primary_10_1016_j_apr_2021_101144 crossref_primary_10_1016_j_energy_2022_124468 crossref_primary_10_1016_j_spc_2022_10_007 crossref_primary_10_1016_j_compeleceng_2022_108125 crossref_primary_10_3389_fenrg_2021_764635 crossref_primary_10_3390_su13041694 crossref_primary_10_1007_s11831_023_10058_3 crossref_primary_10_1016_j_asoc_2022_108544 crossref_primary_10_1016_j_asoc_2022_109632 crossref_primary_10_1016_j_ijepes_2023_109620 crossref_primary_10_1016_j_resourpol_2022_102734 crossref_primary_10_1016_j_ins_2025_122523 crossref_primary_10_1016_j_epsr_2021_107761 crossref_primary_10_1016_j_asoc_2022_108421 crossref_primary_10_1016_j_eswa_2024_125567 crossref_primary_10_1016_j_apenergy_2021_117911 crossref_primary_10_3390_sym17081335 crossref_primary_10_1049_tje2_12151 crossref_primary_10_62762_TETAI_2024_532253 crossref_primary_10_1007_s10462_022_10199_0 crossref_primary_10_1016_j_energy_2024_132929 crossref_primary_10_1177_10963480221142873 crossref_primary_10_1016_j_jenvman_2021_113951 crossref_primary_10_1016_j_resourpol_2021_102222 |
| Cites_doi | 10.1016/j.apenergy.2016.02.114 10.1016/j.energy.2017.02.150 10.1016/j.apenergy.2019.01.046 10.1016/j.apenergy.2016.01.050 10.1016/j.energy.2019.03.081 10.1109/72.97934 10.1016/j.egypro.2019.01.169 10.1016/j.enbuild.2019.109408 10.1016/j.apenergy.2019.03.097 10.1016/j.enpol.2009.06.046 10.3390/en10040490 10.3390/en9121050 10.1016/j.energy.2019.06.075 10.1109/ACCESS.2019.2957174 10.1016/j.energy.2015.08.045 10.1016/j.eswa.2010.11.033 10.1016/j.ijforecast.2015.03.001 10.1016/j.energy.2016.04.009 10.1016/j.apenergy.2012.04.037 10.2307/3001968 10.1016/j.ijepes.2010.08.008 10.1016/j.knosys.2012.10.017 10.1016/j.rser.2014.12.012 10.1109/MCI.2006.1597059 10.1016/j.ijforecast.2019.03.025 10.1016/j.apenergy.2016.07.113 10.1016/j.apenergy.2014.07.104 10.1016/j.apenergy.2014.03.001 10.1016/j.ejmech.2010.07.010 10.1016/j.asoc.2019.105548 10.1111/j.1468-0394.2010.00539.x 10.1016/j.enconman.2018.02.015 10.1016/j.enpol.2008.02.035 10.1016/j.epsr.2005.09.018 10.1016/j.ins.2015.11.039 10.1016/j.advengsoft.2013.12.007 10.1142/S1793536910000422 10.1016/j.energy.2016.03.070 10.1016/j.energy.2015.01.063 10.1016/j.asoc.2011.07.001 10.1016/0167-2789(86)90031-X 10.1057/jors.1969.103 10.1080/07350015.1995.10524599 10.1016/j.apenergy.2017.01.043 10.1016/j.enpol.2009.12.037 10.1142/S1793536909000047 10.1016/j.apm.2016.08.001 10.1016/j.energy.2016.06.090 10.1016/j.energy.2019.02.141 10.1016/j.knosys.2011.04.019 10.1109/TNNLS.2012.2198074 10.1016/j.energy.2010.05.013 10.1016/j.enconman.2017.07.065 10.1016/j.eswa.2015.10.039 10.1109/TCBB.2017.2705094 10.1016/j.apenergy.2019.113505 10.1016/j.atmosenv.2016.10.046 10.1109/59.76685 10.1016/j.ijepes.2019.06.010 10.1016/j.asoc.2016.07.011 10.1016/j.enconman.2005.11.017 10.1016/j.knosys.2012.08.015 10.1016/j.apenergy.2010.07.021 10.1016/j.renene.2014.11.084 10.1098/rspa.1998.0193 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2020.106809 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2020_106809 S156849462030747X |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-958313125ab2fcfc716ea69152ec357cf41334d3a7f1fa1e8e5e30f1b66a2cef3 |
| ISICitedReferencesCount | 70 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000603367700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Sat Nov 29 07:03:55 EST 2025 Tue Nov 18 22:33:17 EST 2025 Fri Feb 23 02:46:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hybrid model Combination data preprocessing method Power load forecasting Weight determination theory |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-958313125ab2fcfc716ea69152ec357cf41334d3a7f1fa1e8e5e30f1b66a2cef3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2020_106809 crossref_primary_10_1016_j_asoc_2020_106809 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106809 |
| PublicationCentury | 2000 |
| PublicationDate | December 2020 2020-12-00 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Coello (b70) 2006; 1 Dong, Ma, Ma, Wang (b4) 2016; 9 Zhu (b48) 2017 Gao, Song, Cheng (b71) 2018 Xie, Yi, Hu, Li, Fan (b32) 2019 Wang, Chi, Wu, Lu (b16) 2011; 38 Saxena, Aponte, McConky (b38) 2019; 35 Tsay (b73) 2002 Jiang, Ma (b5) 2016; 40 Singh, Dwivedi, Kant (b31) 2019 Ziel (b12) 2018 Yu, Xu (b26) 2014; 134 Xiao, Shao, Liang, Wang (b9) 2016; 167 Wang, Zhu, Zhang, Sun (b21) 2009; 37 Zhu (b62) 2017 Pandian, Duraiswamy, Rajan, Kanagaraj (b28) 2006; 76 Diebold, Mariano (b75) 1995; 13 Kavaklioglu (b20) 2011; 88 Specht (b63) 1991; 2 Zeng, Li (b19) 2016; 112 Wang, Wang, Wang (b11) 2019; 158 Zhang, Dong, Wang (b69) 2019; 7 Wilcoxon (b78) 1945; 1 Zhao, Guo (b18) 2016; 107 Sadaei, de Lima e Silva, Guimarães, Lee (b39) 2019 Mirjalili, Mirjalili, Lewis (b59) 2014; 69 Xiao, Wang, Dong, Wu (b35) 2015; 44 Shukur, Lee (b36) 2015; 76 Singh, Dwivedi (b37) 2019 Shahlaei, Sabet, Ziari (b65) 2010; 45 Dong, Wang, Wang, Guo (b1) 2017; 10 Huang, Shen, Long, Wu, Shih, Yen, Tung, Liu (b52) 1996; 454 Ghanbari, Kazami, Mehmanpazir, Nakhostin (b17) 2013; 39 Huang, Zhu, Siew (b68) 2004 Dagdougui, Bagheri, Le, Dessaint (b30) 2019 Wu, Huang (b53) 2009; 1 Yeh, Shieh, Huang (b54) 2010; 02 Lei, Peng, Zuojun (b64) 2015; 37 Bates, Granger (b34) 1969; 20 Iversen, Morales, M??ller, Madsen (b46) 2015; 32 Du, Wang, Guo (b51) 2017; 150 Azadeh, Ghaderi, Sohrabkhani (b14) 2008; 36 Xu, Yang, Wang (b74) 2017; 148 Ali, Adnan, Tariq (b24) 2019; 113 Wang, Hu (b72) 2015; 93 Liu, Zong, Zhao, Chen, Wang (b33) 2014; 124 Wang, Liu, Song, Zhao (b25) 2016; 48 Jiang, Ma, Liu (b2) 2015; 2015 Yan (b77) 2012; 23 Wang, Li, Bai (b49) 2018; 162 Mirjalili, Saremi, Mirjalili (b60) 2016; 47 Zhen, Jie, Lu (b66) 2011; 24 Li, Guo, Li (b67) 2013; 37 Niu, Shi, Wu (b40) 2012; 12 Pai (b29) 2006; 47 Wu, Wang, Chen, Du, Yang (b55) 2019 Imani, Ghassemian (b42) 2019; 253 Xiao, Shao, Wang, Zhang, Lu (b10) 2016; 180 Park, Sharkawi, Marks (b27) 1991; 6 Kucukali, Baris (b22) 2010; 38 Nguyen, Nabney (b23) 2010; 35 Xiao, Wang, Hou, Wu (b7) 2015; 82 Ren, Suganthan, Srikanth, Amaratunga (b8) 2016; 1 Broomhead, King (b56) 1986; 20 Lee, Ko (b13) 2011; 38 Wang, Wu, Niu (b61) 2019 Niu, Wang (b76) 2019; 241 Yang, Wang, Wang (b41) 2017 Wang, Wang, Xu (b43) 2019; 82 Takeda, Tamura, Sato (b6) 2016; 104 Li, Goel, Wang (b3) 2016; 170 Shahlaei, Sabet, Ziari (b50) 2010; 45 Chang, Fan, Lin (b15) 2011; 33 Wang, Heng, Xiao (b57) 2017; 125 Sen-Mao, Kai-Ping, Yi-Xuan (b58) 2016 Feng, Cui, Hodge, Zhang (b45) 2017; 190 Wu, Zhao, Ma (b44) 2019; 237 Marvuglia, Messineo (b47) 2012; 98 Kavaklioglu (10.1016/j.asoc.2020.106809_b20) 2011; 88 Zhang (10.1016/j.asoc.2020.106809_b69) 2019; 7 Gao (10.1016/j.asoc.2020.106809_b71) 2018 Li (10.1016/j.asoc.2020.106809_b67) 2013; 37 Wu (10.1016/j.asoc.2020.106809_b53) 2009; 1 Marvuglia (10.1016/j.asoc.2020.106809_b47) 2012; 98 Wang (10.1016/j.asoc.2020.106809_b16) 2011; 38 Feng (10.1016/j.asoc.2020.106809_b45) 2017; 190 Zhu (10.1016/j.asoc.2020.106809_b48) 2017 Shukur (10.1016/j.asoc.2020.106809_b36) 2015; 76 Wang (10.1016/j.asoc.2020.106809_b21) 2009; 37 Yan (10.1016/j.asoc.2020.106809_b77) 2012; 23 Jiang (10.1016/j.asoc.2020.106809_b2) 2015; 2015 Takeda (10.1016/j.asoc.2020.106809_b6) 2016; 104 Shahlaei (10.1016/j.asoc.2020.106809_b50) 2010; 45 Specht (10.1016/j.asoc.2020.106809_b63) 1991; 2 Nguyen (10.1016/j.asoc.2020.106809_b23) 2010; 35 Wu (10.1016/j.asoc.2020.106809_b55) 2019 Ghanbari (10.1016/j.asoc.2020.106809_b17) 2013; 39 Niu (10.1016/j.asoc.2020.106809_b76) 2019; 241 Xiao (10.1016/j.asoc.2020.106809_b7) 2015; 82 Broomhead (10.1016/j.asoc.2020.106809_b56) 1986; 20 Li (10.1016/j.asoc.2020.106809_b3) 2016; 170 Wang (10.1016/j.asoc.2020.106809_b43) 2019; 82 Huang (10.1016/j.asoc.2020.106809_b52) 1996; 454 Singh (10.1016/j.asoc.2020.106809_b31) 2019 Wang (10.1016/j.asoc.2020.106809_b25) 2016; 48 Ziel (10.1016/j.asoc.2020.106809_b12) 2018 Kucukali (10.1016/j.asoc.2020.106809_b22) 2010; 38 Park (10.1016/j.asoc.2020.106809_b27) 1991; 6 Wang (10.1016/j.asoc.2020.106809_b57) 2017; 125 Lee (10.1016/j.asoc.2020.106809_b13) 2011; 38 Diebold (10.1016/j.asoc.2020.106809_b75) 1995; 13 Pai (10.1016/j.asoc.2020.106809_b29) 2006; 47 Du (10.1016/j.asoc.2020.106809_b51) 2017; 150 Imani (10.1016/j.asoc.2020.106809_b42) 2019; 253 Wang (10.1016/j.asoc.2020.106809_b49) 2018; 162 Wilcoxon (10.1016/j.asoc.2020.106809_b78) 1945; 1 Xiao (10.1016/j.asoc.2020.106809_b10) 2016; 180 Xie (10.1016/j.asoc.2020.106809_b32) 2019 Chang (10.1016/j.asoc.2020.106809_b15) 2011; 33 Xu (10.1016/j.asoc.2020.106809_b74) 2017; 148 Wang (10.1016/j.asoc.2020.106809_b11) 2019; 158 Dong (10.1016/j.asoc.2020.106809_b1) 2017; 10 Dong (10.1016/j.asoc.2020.106809_b4) 2016; 9 Niu (10.1016/j.asoc.2020.106809_b40) 2012; 12 Zhao (10.1016/j.asoc.2020.106809_b18) 2016; 107 Singh (10.1016/j.asoc.2020.106809_b37) 2019 Yang (10.1016/j.asoc.2020.106809_b41) 2017 Mirjalili (10.1016/j.asoc.2020.106809_b60) 2016; 47 Pandian (10.1016/j.asoc.2020.106809_b28) 2006; 76 Zhu (10.1016/j.asoc.2020.106809_b62) 2017 Wang (10.1016/j.asoc.2020.106809_b61) 2019 Tsay (10.1016/j.asoc.2020.106809_b73) 2002 Ren (10.1016/j.asoc.2020.106809_b8) 2016; 1 Sadaei (10.1016/j.asoc.2020.106809_b39) 2019 Bates (10.1016/j.asoc.2020.106809_b34) 1969; 20 Coello (10.1016/j.asoc.2020.106809_b70) 2006; 1 Zhen (10.1016/j.asoc.2020.106809_b66) 2011; 24 Zeng (10.1016/j.asoc.2020.106809_b19) 2016; 112 Yu (10.1016/j.asoc.2020.106809_b26) 2014; 134 Mirjalili (10.1016/j.asoc.2020.106809_b59) 2014; 69 Sen-Mao (10.1016/j.asoc.2020.106809_b58) 2016 Shahlaei (10.1016/j.asoc.2020.106809_b65) 2010; 45 Wu (10.1016/j.asoc.2020.106809_b44) 2019; 237 Wang (10.1016/j.asoc.2020.106809_b72) 2015; 93 Dagdougui (10.1016/j.asoc.2020.106809_b30) 2019 Xiao (10.1016/j.asoc.2020.106809_b35) 2015; 44 Iversen (10.1016/j.asoc.2020.106809_b46) 2015; 32 Liu (10.1016/j.asoc.2020.106809_b33) 2014; 124 Xiao (10.1016/j.asoc.2020.106809_b9) 2016; 167 Lei (10.1016/j.asoc.2020.106809_b64) 2015; 37 Huang (10.1016/j.asoc.2020.106809_b68) 2004 Jiang (10.1016/j.asoc.2020.106809_b5) 2016; 40 Saxena (10.1016/j.asoc.2020.106809_b38) 2019; 35 Azadeh (10.1016/j.asoc.2020.106809_b14) 2008; 36 Yeh (10.1016/j.asoc.2020.106809_b54) 2010; 02 Ali (10.1016/j.asoc.2020.106809_b24) 2019; 113 |
| References_xml | – volume: 237 start-page: 896 year: 2019 end-page: 909 ident: b44 article-title: A hybrid model based on modified multi-objective cuckoo search algorithm for short-term load forecasting publication-title: Appl. Energy – volume: 112 start-page: 810 year: 2016 end-page: 825 ident: b19 article-title: Forecasting the natural gas demand in China using a self-adapting intelligent grey model publication-title: Energy – year: 2019 ident: b39 article-title: Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series publication-title: Energy – volume: 88 start-page: 68 year: 2011 end-page: 75 ident: b20 article-title: Modeling and prediction of Turkeys electricity consumption using Support Vector Regression publication-title: Appl. Energy – volume: 40 start-page: 10631 year: 2016 end-page: 10649 ident: b5 article-title: A hybrid forecasting approach applied in the electrical power system based on data preprocessing, optimization and artificial intelligence algorithms publication-title: Appl. Math. Model. – volume: 24 start-page: 1048 year: 2011 end-page: 1056 ident: b66 article-title: A case study on a hybrid wind speed forecasting method using BP neural network publication-title: Knowl.-Based Syst. – volume: 13 start-page: 253 year: 1995 end-page: 263 ident: b75 article-title: Comparing predictive accuracy publication-title: J. Bus. Econ. Stat. – volume: 38 start-page: 5902 year: 2011 end-page: 5911 ident: b13 article-title: Short-term load forecasting using lifting scheme and ARIMA models publication-title: Expert Syst. Appl. – volume: 35 start-page: 13 year: 2010 end-page: 21 ident: b23 article-title: Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models publication-title: Energy – volume: 32 start-page: 981 year: 2015 end-page: 990 ident: b46 article-title: Short-term probabilistic forecasting of wind speed using stochastic differential equations publication-title: Int. J. Forecast. – volume: 2015 start-page: 1 year: 2015 end-page: 17 ident: b2 article-title: A new hybrid model based on data preprocessing and an Intelligent Optimization Algorithm for Electrical Power System Forecasting publication-title: Math. Probl. Eng. – year: 2017 ident: b48 article-title: Research and application of PID self-turning control based on RBF neural network – volume: 02 start-page: 135 year: 2010 end-page: 156 ident: b54 article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method publication-title: Adv. Adapt. Data Anal. – volume: 104 start-page: 184 year: 2016 end-page: 198 ident: b6 article-title: Using the ensemble Kalman filter for electricity load forecasting and analysis publication-title: Energy – volume: 45 start-page: 4499 year: 2010 end-page: 4508 ident: b50 article-title: QSAR study of anthranilic acid sulfonamides as inhibitors of methionine aminopeptidase-2 using LS-SVM and GRNN based on principal components publication-title: Eur. J. Med. Chem. – volume: 148 start-page: 239 year: 2017 end-page: 257 ident: b74 article-title: Air quality early-warning system for cities in China publication-title: Atmos. Environ. – volume: 33 start-page: 17 year: 2011 end-page: 27 ident: b15 article-title: Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach publication-title: Electr. Power Syst. Res. – volume: 93 start-page: 41 year: 2015 end-page: 56 ident: b72 article-title: A robust combination approach for short-term wind speed forecasting and analysis-Combination of the ARIMA (autoregressive integrated moving average), ELM (extreme learning machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model publication-title: Energy – year: 2019 ident: b31 article-title: A hybrid method based on neural network and improved environmental adaptation method using Controlled Gaussian Mutation with real parameter for short-term load forecasting publication-title: Energy – year: 2019 ident: b30 article-title: Neural Network Model for Short-term and Very-short-term load forecasting in District Buildings publication-title: Energy Build. – volume: 82 start-page: 524 year: 2015 end-page: 549 ident: b7 article-title: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting publication-title: Energy – year: 2017 ident: b62 article-title: Research and application of PID self-turning control based on RBF neural network – volume: 37 start-page: 310 year: 2015 end-page: 317 ident: b64 article-title: Lower limb locomotion modes recognition based on multiple-source information and general regression neural network publication-title: Robot – start-page: 19 year: 2017 ident: b41 article-title: Research and application of a novel hybrid model based on data selection and artificial intelligence algorithm for short term load forecasting publication-title: Entropy – volume: 1 start-page: 28 year: 2006 end-page: 36 ident: b70 article-title: Evolutionary multi-objective optimization: a historical view of the field publication-title: IEEE Comput. Intell. Mag. – volume: 82 year: 2019 ident: b43 article-title: A novel combined model based on hybrid optimization algorithm for electrical load forecasting publication-title: Appl. Soft Comput. – volume: 190 start-page: 1245 year: 2017 end-page: 1257 ident: b45 article-title: A data-driven multi-model methodology with deep feature selection for short-term wind forecasting publication-title: Appl. Energy – volume: 167 start-page: 135 year: 2016 end-page: 153 ident: b9 article-title: A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting publication-title: Appl. Energy – year: 2019 ident: b32 article-title: Short-term power load forecasting based on elman neural network with Particle Swarm Optimization publication-title: Neurocomputing – volume: 47 start-page: 2283 year: 2006 end-page: 2289 ident: b29 article-title: Hybrid ellipsoidal fuzzy systems in forecasting regional electricity loads publication-title: Energy Convers. Manage. – volume: 253 year: 2019 ident: b42 article-title: Residential load forecasting using wavelet and collaborative representation transforms publication-title: Appl. Energy – volume: 76 start-page: 637 year: 2015 end-page: 647 ident: b36 article-title: Daily wind speed forecasting though hybrid KF-ANN model based on ARIMA publication-title: Renew. Energy – volume: 35 start-page: 1288 year: 2019 end-page: 1303 ident: b38 article-title: A hybrid machine learning model for forecasting a billing period’s peak electric load days publication-title: Int. J. Forecast. – volume: 7 start-page: 176000 year: 2019 end-page: 176023 ident: b69 article-title: Wind speed forecasting using a two-stage forecasting system with an error correcting and nonlinear ensemble strategy publication-title: IEEE Access – volume: 1 start-page: 80 year: 1945 end-page: 83 ident: b78 article-title: Individual comparisons by ranking methods publication-title: Biometrics – volume: 20 start-page: 451 year: 1969 end-page: 468 ident: b34 article-title: The combination of forecasts publication-title: Oper. Res. Q. – year: 2019 ident: b37 article-title: A novel hybrid model based on neural network and multi-objective optimization for effective load forecast publication-title: Energy – volume: 1 start-page: 1078 year: 2016 end-page: 1093 ident: b8 article-title: Random vector functional link network for short-term electricity load demand forecasting publication-title: Inform. Sci. – volume: 454 start-page: 903 year: 1996 end-page: 995 ident: b52 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. A – volume: 241 start-page: 519 year: 2019 end-page: 539 ident: b76 article-title: A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting publication-title: Appl. Energy – year: 2018 ident: b12 article-title: Quantile regression for the qualifying match of GEFCom2017 probabilistic load forecasting publication-title: Int. J. Forecast. – volume: 107 start-page: 272 year: 2016 end-page: 286 ident: b18 article-title: An optimized grey model for annual power load forecasting publication-title: Energy – year: 2016 ident: b58 article-title: Grey Wolf multi-objective optimizer for Optimal Carbon-energy Combined-flow publication-title: J. New Ind. – volume: 150 start-page: 90 year: 2017 end-page: 107 ident: b51 article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting publication-title: Energy Convers. Manage. – volume: 1 start-page: 1 year: 2009 end-page: 41 ident: b53 article-title: Ensemble Empirical Mode Decomposition publication-title: Adv. Adapt. Data Anal. – volume: 170 start-page: 22 year: 2016 end-page: 29 ident: b3 article-title: An ensemble approach for short-term load forecasting by extreme learning machine publication-title: Appl. Energy – volume: 44 start-page: 271 year: 2015 end-page: 288 ident: b35 article-title: Combined forecasting models for wind energy forecasting: A case stud in China publication-title: Renew. Sustain. Energy Rev. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b59 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. – volume: 162 start-page: 239 year: 2018 end-page: 250 ident: b49 article-title: Short-term wind speed prediction using an extreme learning machine model with error correction publication-title: Energy Convers. Manage. – year: 2019 ident: b61 article-title: A Novel System for Wind Speed Forecasting Based on Multi-Objective Optimization and Echo State Network – volume: 125 start-page: 591 year: 2017 end-page: 613 ident: b57 article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting publication-title: Energy – volume: 2 start-page: 568 year: 1991 end-page: 576 ident: b63 article-title: A general regression neural network publication-title: IEEE Trans. Neural Netw. – volume: 134 start-page: 102 year: 2014 end-page: 113 ident: b26 article-title: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network publication-title: Appl. Energy – volume: 9 start-page: 1050 year: 2016 ident: b4 article-title: Research and application of a hybrid forecasting model based on data decomposition for electrical load forecasting publication-title: Energies – volume: 47 start-page: 106 year: 2016 end-page: 119 ident: b60 article-title: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization publication-title: Expert Syst. Appl. – volume: 98 start-page: 574 year: 2012 end-page: 583 ident: b47 article-title: Monitoring of wind farms’ power curves using machine learning techniques publication-title: Appl. Energy – volume: 45 start-page: 4499 year: 2010 end-page: 4508 ident: b65 article-title: QSAR study of anthranilic acid sulfonamides as inhibitors of methionine aminopeptidase-2 using LS-SVM and GRNN based on principal components publication-title: Eur. J. Med. Chem. – volume: 113 start-page: 792 year: 2019 end-page: 806 ident: b24 article-title: Optimum control strategies for short term load forecasting in smart grids publication-title: Int. J. Electr. Power Energy Syst. – volume: 158 start-page: 6446 year: 2019 end-page: 6451 ident: b11 article-title: Combined probability density model for medium term load forecasting based on quantile regression and kernel density estimation publication-title: Energy Procedia – volume: 76 start-page: 541 year: 2006 end-page: 548 ident: b28 article-title: Fuzzy approach for short term load forecasting publication-title: Electr. Power Syst. Res. – volume: 124 start-page: 199 year: 2014 end-page: 212 ident: b33 article-title: Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development publication-title: Appl. Energy – volume: 38 start-page: 38 year: 2010 end-page: 45 ident: b22 article-title: Turkeys shorts-term gross annual electricity demand forecast by fuzzy logic approach publication-title: Energy Policy – volume: 20 start-page: 217 year: 1986 end-page: 236 ident: b56 article-title: Extracting qualitative dynamics from experimental data publication-title: Phys. D – year: 2018 ident: b71 article-title: Incorporation of solvent effect into multi-objective evolutionary algorithm for improved protein structure prediction publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) – year: 2019 ident: b55 article-title: A novel hybrid system based on multi-objective optimization for Wind Speed Forecasting publication-title: Renew. Energy – volume: 37 start-page: 378 year: 2013 end-page: 387 ident: b67 article-title: A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm publication-title: Knowl.-Based Syst. – volume: 38 start-page: 19 year: 2011 end-page: 29 ident: b16 article-title: Chaotic time serious method combined with particle swarm optimization and trend adjustment for electricity demand forecasting publication-title: Expert Syst. Appl. – volume: 23 start-page: 1028 year: 2012 end-page: 1039 ident: b77 article-title: Toward automatic Time-Series forecasting using neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 985 year: 2004 end-page: 990 ident: b68 article-title: Extreme learning machine: A new learning scheme of feedforward neural networks publication-title: Proc. IEEE Int. Joint Conf. Neural Netw. – volume: 48 start-page: 281 year: 2016 end-page: 297 ident: b25 article-title: A novel model: Dynamic choice artificial neural network (DCANN) for an electricity price forecasting system publication-title: Appl. Soft Comput. – volume: 180 start-page: 213 year: 2016 end-page: 233 ident: b10 article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting publication-title: Appl. Energy – volume: 36 start-page: 37 year: 2008 end-page: 44 ident: b14 article-title: A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran publication-title: Energy Policy – volume: 10 start-page: 490 year: 2017 ident: b1 article-title: Research and application of hybrid forecasting model based on an Optimal Feature Selection System—A case study on electrical load Forecasting publication-title: Energies – volume: 12 start-page: 1822 year: 2012 end-page: 1827 ident: b40 article-title: Short-term load forecasting using bayesian neural networks learned by hybrid Monte Carlo algorithm publication-title: Appl. Soft Comput. – volume: 39 start-page: 194 year: 2013 end-page: 206 ident: b17 article-title: A cooperative ant colony optimization-genetic algorithm approach for construction of energy demand forecasting knowledge-based expert systems publication-title: Knowl. Based Syst. – start-page: 5880 year: 2002 end-page: 5885 ident: b73 publication-title: Analysis of Financial Time Series – volume: 37 start-page: 1 year: 2009 end-page: 9 ident: b21 article-title: A trend fixed on firstly and seasonal adjustment model combined with the SVR for short-term forecasting of electricity demand publication-title: Energy Policy – volume: 6 start-page: 442 year: 1991 end-page: 449 ident: b27 article-title: Electric load forecasting using a neural network publication-title: IEEE Trans. Power Syst. – volume: 170 start-page: 22 year: 2016 ident: 10.1016/j.asoc.2020.106809_b3 article-title: An ensemble approach for short-term load forecasting by extreme learning machine publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.02.114 – volume: 125 start-page: 591 year: 2017 ident: 10.1016/j.asoc.2020.106809_b57 article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting publication-title: Energy doi: 10.1016/j.energy.2017.02.150 – volume: 237 start-page: 896 year: 2019 ident: 10.1016/j.asoc.2020.106809_b44 article-title: A hybrid model based on modified multi-objective cuckoo search algorithm for short-term load forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.046 – volume: 167 start-page: 135 year: 2016 ident: 10.1016/j.asoc.2020.106809_b9 article-title: A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.01.050 – year: 2019 ident: 10.1016/j.asoc.2020.106809_b39 article-title: Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series publication-title: Energy doi: 10.1016/j.energy.2019.03.081 – volume: 2 start-page: 568 issue: 11 year: 1991 ident: 10.1016/j.asoc.2020.106809_b63 article-title: A general regression neural network publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.97934 – volume: 158 start-page: 6446 year: 2019 ident: 10.1016/j.asoc.2020.106809_b11 article-title: Combined probability density model for medium term load forecasting based on quantile regression and kernel density estimation publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.01.169 – year: 2019 ident: 10.1016/j.asoc.2020.106809_b30 article-title: Neural Network Model for Short-term and Very-short-term load forecasting in District Buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.109408 – year: 2018 ident: 10.1016/j.asoc.2020.106809_b12 article-title: Quantile regression for the qualifying match of GEFCom2017 probabilistic load forecasting publication-title: Int. J. Forecast. – volume: 241 start-page: 519 year: 2019 ident: 10.1016/j.asoc.2020.106809_b76 article-title: A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.03.097 – volume: 37 start-page: 1 year: 2009 ident: 10.1016/j.asoc.2020.106809_b21 article-title: A trend fixed on firstly and seasonal adjustment model combined with the SVR for short-term forecasting of electricity demand publication-title: Energy Policy doi: 10.1016/j.enpol.2009.06.046 – volume: 37 start-page: 310 issue: 3 year: 2015 ident: 10.1016/j.asoc.2020.106809_b64 article-title: Lower limb locomotion modes recognition based on multiple-source information and general regression neural network publication-title: Robot – volume: 10 start-page: 490 issue: 4 year: 2017 ident: 10.1016/j.asoc.2020.106809_b1 article-title: Research and application of hybrid forecasting model based on an Optimal Feature Selection System—A case study on electrical load Forecasting publication-title: Energies doi: 10.3390/en10040490 – volume: 9 start-page: 1050 issue: 12 year: 2016 ident: 10.1016/j.asoc.2020.106809_b4 article-title: Research and application of a hybrid forecasting model based on data decomposition for electrical load forecasting publication-title: Energies doi: 10.3390/en9121050 – year: 2019 ident: 10.1016/j.asoc.2020.106809_b37 article-title: A novel hybrid model based on neural network and multi-objective optimization for effective load forecast publication-title: Energy doi: 10.1016/j.energy.2019.06.075 – volume: 7 start-page: 176000 year: 2019 ident: 10.1016/j.asoc.2020.106809_b69 article-title: Wind speed forecasting using a two-stage forecasting system with an error correcting and nonlinear ensemble strategy publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2957174 – volume: 93 start-page: 41 year: 2015 ident: 10.1016/j.asoc.2020.106809_b72 publication-title: Energy doi: 10.1016/j.energy.2015.08.045 – volume: 38 start-page: 5902 issue: 5 year: 2011 ident: 10.1016/j.asoc.2020.106809_b13 article-title: Short-term load forecasting using lifting scheme and ARIMA models publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.11.033 – volume: 32 start-page: 981 year: 2015 ident: 10.1016/j.asoc.2020.106809_b46 article-title: Short-term probabilistic forecasting of wind speed using stochastic differential equations publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2015.03.001 – volume: 107 start-page: 272 year: 2016 ident: 10.1016/j.asoc.2020.106809_b18 article-title: An optimized grey model for annual power load forecasting publication-title: Energy doi: 10.1016/j.energy.2016.04.009 – volume: 98 start-page: 574 year: 2012 ident: 10.1016/j.asoc.2020.106809_b47 article-title: Monitoring of wind farms’ power curves using machine learning techniques publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.04.037 – volume: 1 start-page: 80 issue: 6 year: 1945 ident: 10.1016/j.asoc.2020.106809_b78 article-title: Individual comparisons by ranking methods publication-title: Biometrics doi: 10.2307/3001968 – volume: 33 start-page: 17 year: 2011 ident: 10.1016/j.asoc.2020.106809_b15 article-title: Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach publication-title: Electr. Power Syst. Res. doi: 10.1016/j.ijepes.2010.08.008 – volume: 39 start-page: 194 year: 2013 ident: 10.1016/j.asoc.2020.106809_b17 article-title: A cooperative ant colony optimization-genetic algorithm approach for construction of energy demand forecasting knowledge-based expert systems publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2012.10.017 – volume: 44 start-page: 271 year: 2015 ident: 10.1016/j.asoc.2020.106809_b35 article-title: Combined forecasting models for wind energy forecasting: A case stud in China publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.12.012 – volume: 1 start-page: 28 issue: 1 year: 2006 ident: 10.1016/j.asoc.2020.106809_b70 article-title: Evolutionary multi-objective optimization: a historical view of the field publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2006.1597059 – volume: 35 start-page: 1288 issue: 4 year: 2019 ident: 10.1016/j.asoc.2020.106809_b38 article-title: A hybrid machine learning model for forecasting a billing period’s peak electric load days publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2019.03.025 – volume: 180 start-page: 213 year: 2016 ident: 10.1016/j.asoc.2020.106809_b10 article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.07.113 – volume: 134 start-page: 102 year: 2014 ident: 10.1016/j.asoc.2020.106809_b26 article-title: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.07.104 – volume: 124 start-page: 199 year: 2014 ident: 10.1016/j.asoc.2020.106809_b33 article-title: Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.03.001 – volume: 45 start-page: 4499 issue: 10 year: 2010 ident: 10.1016/j.asoc.2020.106809_b65 article-title: QSAR study of anthranilic acid sulfonamides as inhibitors of methionine aminopeptidase-2 using LS-SVM and GRNN based on principal components publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2010.07.010 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.asoc.2020.106809_b2 article-title: A new hybrid model based on data preprocessing and an Intelligent Optimization Algorithm for Electrical Power System Forecasting publication-title: Math. Probl. Eng. – volume: 82 year: 2019 ident: 10.1016/j.asoc.2020.106809_b43 article-title: A novel combined model based on hybrid optimization algorithm for electrical load forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105548 – volume: 45 start-page: 4499 issue: 10 year: 2010 ident: 10.1016/j.asoc.2020.106809_b50 article-title: QSAR study of anthranilic acid sulfonamides as inhibitors of methionine aminopeptidase-2 using LS-SVM and GRNN based on principal components publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2010.07.010 – volume: 38 start-page: 19 year: 2011 ident: 10.1016/j.asoc.2020.106809_b16 article-title: Chaotic time serious method combined with particle swarm optimization and trend adjustment for electricity demand forecasting publication-title: Expert Syst. Appl. doi: 10.1111/j.1468-0394.2010.00539.x – volume: 162 start-page: 239 year: 2018 ident: 10.1016/j.asoc.2020.106809_b49 article-title: Short-term wind speed prediction using an extreme learning machine model with error correction publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.02.015 – volume: 36 start-page: 37 year: 2008 ident: 10.1016/j.asoc.2020.106809_b14 article-title: A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran publication-title: Energy Policy doi: 10.1016/j.enpol.2008.02.035 – volume: 76 start-page: 541 year: 2006 ident: 10.1016/j.asoc.2020.106809_b28 article-title: Fuzzy approach for short term load forecasting publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2005.09.018 – volume: 1 start-page: 1078 year: 2016 ident: 10.1016/j.asoc.2020.106809_b8 article-title: Random vector functional link network for short-term electricity load demand forecasting publication-title: Inform. Sci. doi: 10.1016/j.ins.2015.11.039 – volume: 69 start-page: 46 issue: 3 year: 2014 ident: 10.1016/j.asoc.2020.106809_b59 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – year: 2019 ident: 10.1016/j.asoc.2020.106809_b61 – start-page: 5880 year: 2002 ident: 10.1016/j.asoc.2020.106809_b73 – volume: 02 start-page: 135 year: 2010 ident: 10.1016/j.asoc.2020.106809_b54 article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536910000422 – volume: 104 start-page: 184 year: 2016 ident: 10.1016/j.asoc.2020.106809_b6 article-title: Using the ensemble Kalman filter for electricity load forecasting and analysis publication-title: Energy doi: 10.1016/j.energy.2016.03.070 – volume: 82 start-page: 524 year: 2015 ident: 10.1016/j.asoc.2020.106809_b7 article-title: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting publication-title: Energy doi: 10.1016/j.energy.2015.01.063 – volume: 12 start-page: 1822 year: 2012 ident: 10.1016/j.asoc.2020.106809_b40 article-title: Short-term load forecasting using bayesian neural networks learned by hybrid Monte Carlo algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.07.001 – volume: 20 start-page: 217 year: 1986 ident: 10.1016/j.asoc.2020.106809_b56 article-title: Extracting qualitative dynamics from experimental data publication-title: Phys. D doi: 10.1016/0167-2789(86)90031-X – volume: 20 start-page: 451 issue: 4 year: 1969 ident: 10.1016/j.asoc.2020.106809_b34 article-title: The combination of forecasts publication-title: Oper. Res. Q. doi: 10.1057/jors.1969.103 – volume: 13 start-page: 253 year: 1995 ident: 10.1016/j.asoc.2020.106809_b75 article-title: Comparing predictive accuracy publication-title: J. Bus. Econ. Stat. doi: 10.1080/07350015.1995.10524599 – volume: 190 start-page: 1245 year: 2017 ident: 10.1016/j.asoc.2020.106809_b45 article-title: A data-driven multi-model methodology with deep feature selection for short-term wind forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.01.043 – volume: 38 start-page: 38 year: 2010 ident: 10.1016/j.asoc.2020.106809_b22 article-title: Turkeys shorts-term gross annual electricity demand forecast by fuzzy logic approach publication-title: Energy Policy doi: 10.1016/j.enpol.2009.12.037 – volume: 1 start-page: 1 year: 2009 ident: 10.1016/j.asoc.2020.106809_b53 article-title: Ensemble Empirical Mode Decomposition publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000047 – volume: 40 start-page: 10631 year: 2016 ident: 10.1016/j.asoc.2020.106809_b5 article-title: A hybrid forecasting approach applied in the electrical power system based on data preprocessing, optimization and artificial intelligence algorithms publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2016.08.001 – volume: 112 start-page: 810 year: 2016 ident: 10.1016/j.asoc.2020.106809_b19 article-title: Forecasting the natural gas demand in China using a self-adapting intelligent grey model publication-title: Energy doi: 10.1016/j.energy.2016.06.090 – year: 2019 ident: 10.1016/j.asoc.2020.106809_b31 article-title: A hybrid method based on neural network and improved environmental adaptation method using Controlled Gaussian Mutation with real parameter for short-term load forecasting publication-title: Energy doi: 10.1016/j.energy.2019.02.141 – volume: 24 start-page: 1048 issue: 7 year: 2011 ident: 10.1016/j.asoc.2020.106809_b66 article-title: A case study on a hybrid wind speed forecasting method using BP neural network publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2011.04.019 – volume: 23 start-page: 1028 issue: 7 year: 2012 ident: 10.1016/j.asoc.2020.106809_b77 article-title: Toward automatic Time-Series forecasting using neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2012.2198074 – start-page: 19 year: 2017 ident: 10.1016/j.asoc.2020.106809_b41 article-title: Research and application of a novel hybrid model based on data selection and artificial intelligence algorithm for short term load forecasting publication-title: Entropy – volume: 35 start-page: 13 year: 2010 ident: 10.1016/j.asoc.2020.106809_b23 article-title: Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models publication-title: Energy doi: 10.1016/j.energy.2010.05.013 – volume: 150 start-page: 90 year: 2017 ident: 10.1016/j.asoc.2020.106809_b51 article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.07.065 – volume: 47 start-page: 106 year: 2016 ident: 10.1016/j.asoc.2020.106809_b60 article-title: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.10.039 – year: 2017 ident: 10.1016/j.asoc.2020.106809_b62 – year: 2016 ident: 10.1016/j.asoc.2020.106809_b58 article-title: Grey Wolf multi-objective optimizer for Optimal Carbon-energy Combined-flow publication-title: J. New Ind. – year: 2018 ident: 10.1016/j.asoc.2020.106809_b71 article-title: Incorporation of solvent effect into multi-objective evolutionary algorithm for improved protein structure prediction publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) doi: 10.1109/TCBB.2017.2705094 – volume: 253 year: 2019 ident: 10.1016/j.asoc.2020.106809_b42 article-title: Residential load forecasting using wavelet and collaborative representation transforms publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113505 – year: 2019 ident: 10.1016/j.asoc.2020.106809_b55 article-title: A novel hybrid system based on multi-objective optimization for Wind Speed Forecasting publication-title: Renew. Energy – start-page: 985 year: 2004 ident: 10.1016/j.asoc.2020.106809_b68 article-title: Extreme learning machine: A new learning scheme of feedforward neural networks – volume: 148 start-page: 239 year: 2017 ident: 10.1016/j.asoc.2020.106809_b74 article-title: Air quality early-warning system for cities in China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.10.046 – volume: 6 start-page: 442 year: 1991 ident: 10.1016/j.asoc.2020.106809_b27 article-title: Electric load forecasting using a neural network publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.76685 – volume: 113 start-page: 792 year: 2019 ident: 10.1016/j.asoc.2020.106809_b24 article-title: Optimum control strategies for short term load forecasting in smart grids publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2019.06.010 – volume: 48 start-page: 281 year: 2016 ident: 10.1016/j.asoc.2020.106809_b25 article-title: A novel model: Dynamic choice artificial neural network (DCANN) for an electricity price forecasting system publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.07.011 – volume: 47 start-page: 2283 year: 2006 ident: 10.1016/j.asoc.2020.106809_b29 article-title: Hybrid ellipsoidal fuzzy systems in forecasting regional electricity loads publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2005.11.017 – year: 2019 ident: 10.1016/j.asoc.2020.106809_b32 article-title: Short-term power load forecasting based on elman neural network with Particle Swarm Optimization publication-title: Neurocomputing – volume: 37 start-page: 378 issue: none year: 2013 ident: 10.1016/j.asoc.2020.106809_b67 article-title: A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2012.08.015 – year: 2017 ident: 10.1016/j.asoc.2020.106809_b48 – volume: 88 start-page: 68 year: 2011 ident: 10.1016/j.asoc.2020.106809_b20 article-title: Modeling and prediction of Turkeys electricity consumption using Support Vector Regression publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.07.021 – volume: 76 start-page: 637 year: 2015 ident: 10.1016/j.asoc.2020.106809_b36 article-title: Daily wind speed forecasting though hybrid KF-ANN model based on ARIMA publication-title: Renew. Energy doi: 10.1016/j.renene.2014.11.084 – volume: 454 start-page: 903 year: 1996 ident: 10.1016/j.asoc.2020.106809_b52 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. A doi: 10.1098/rspa.1998.0193 |
| SSID | ssj0016928 |
| Score | 2.5406792 |
| Snippet | Short-term power load forecasting occupies an important position in improving the operating efficiency and economic effects of power system. Aiming at... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106809 |
| SubjectTerms | Combination data preprocessing method Hybrid model Power load forecasting Weight determination theory |
| Title | A novel hybrid model based on combined preprocessing method and advanced optimization algorithm for power load forecasting |
| URI | https://dx.doi.org/10.1016/j.asoc.2020.106809 |
| Volume | 97 |
| WOSCitedRecordID | wos000603367700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbtpodemj5p2rTo0JtxsK21ZB2XkpCEEgJNYXsysiw1Gza22XVCml-f0ctxkxLaQi_GO1g7RvN5NBrNA6FPgJIclr1prBiDDQoXJOZSk5gKKoUWsC2StmT-F3Z0VMzn_NiHDq1tOwHWNMXVFe_-q6iBBsI2qbN_Ie7hT4EA9yB0uILY4fpHgp9FTXupltHpT5OM5VrdRGaxqs3BAHCEvbCyxQE6lyRgnAWukbSr3BqiAlrQJuc-TTMSyx_tatGfntu4xM70VouWrajNTyXFug9LYKho663bNah5G7d-MTxhT0GsH_X7iHS48J7r4xFxcGfvi0WnPN37KLK78R73k2ecrqUFoMN7IJWjFSyLOXVdXIKCdgG893S9czuc7QiA8Y7hCiRaJPx2ZRviDb8aXoZVZnTalM0fo42M5byYoI3Zwe78cDh4oty24x3ezedZuZDAu5x-b8uM7JOT5-iZ31jgmQPEC_RINS_RZmjagb0Of4WuZ9jiAzt8YIsPbPGB2wYHfOBf8IEdPjDgAwd84DE-8IAPDIDAFh_Y4AOP8PEafdvbPfm8H_sGHLEkSdLHPC9ISsAEFlWmpZawt1aCcjD5lCQ5kxosIDKtiWA61SJVhcoVSXRaUSoyqTR5gyZN26i3CGtRp5TVVc7BAs9ZwrOqonWSJrUmvJ6qLZSGqSylr05vmqQsyxCGeFaa6S_N9Jdu-rdQNIzpXG2WB5_Og4RKb106q7EEQD0w7t0_jnuPnt5-Ctto0q8u1Af0RF72i_Xqo8fdDfteoz4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hybrid+model+based+on+combined+preprocessing+method+and+advanced+optimization+algorithm+for+power+load+forecasting&rft.jtitle=Applied+soft+computing&rft.au=Nie%2C+Ying&rft.au=Jiang%2C+Ping&rft.au=Zhang%2C+Haipeng&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=97&rft_id=info:doi/10.1016%2Fj.asoc.2020.106809&rft.externalDocID=S156849462030747X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |