A novel hybrid model based on combined preprocessing method and advanced optimization algorithm for power load forecasting

Short-term power load forecasting occupies an important position in improving the operating efficiency and economic effects of power system. Aiming at improving forecast performance, a substantial number of load forecasting models are proposed. However, most of the previous studies ignored the limit...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied soft computing Ročník 97; s. 106809
Hlavní autori: Nie, Ying, Jiang, Ping, Zhang, Haipeng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.12.2020
Predmet:
ISSN:1568-4946, 1872-9681
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Short-term power load forecasting occupies an important position in improving the operating efficiency and economic effects of power system. Aiming at improving forecast performance, a substantial number of load forecasting models are proposed. However, most of the previous studies ignored the limitations of individual prediction models and the necessity of data preprocessing, resulting in low forecast accuracy. In this study, a novel hybrid model which combines data preprocessing technology, individual forecasting algorithm and weight determination theory is successfully presented for obtaining higher accuracy and better forecasting ability. Among this model, the data preprocessing stage first uses a novel combinationdata preprocessingmethod, which overcomes the shortcomings of single preprocessing methods. In addition, a combined forecasting mechanism composed of RBF, GRNN and ELM is proposed using the weight determination theory, which exceeds the limits of individual prediction models and improves prediction accuracy. For the sake of assessing the availability of the proposed hybrid model, three datasets of half-hour power load of Queensland, South Australia and Victoria in Australia are selected in this study. The final experimental results show that the proposed model not only can approximate the actual power load very well, but also can be used as a helpful tool for power grid planning and dispatching. •Two preprocessing techniques, CEEMD and SSA, are used in two stages.•Multi-objective evolutionary algorithm MOGWO is used to decide the weighting factor of combined model.•Based on the three neural networks, the prediction accuracy of power load is improved.•A comprehensive assessment of the composite model is carried out to evaluate its forecasting performance.•The proposed new hybrid model provides powerful technical support for power network dispatch management.
AbstractList Short-term power load forecasting occupies an important position in improving the operating efficiency and economic effects of power system. Aiming at improving forecast performance, a substantial number of load forecasting models are proposed. However, most of the previous studies ignored the limitations of individual prediction models and the necessity of data preprocessing, resulting in low forecast accuracy. In this study, a novel hybrid model which combines data preprocessing technology, individual forecasting algorithm and weight determination theory is successfully presented for obtaining higher accuracy and better forecasting ability. Among this model, the data preprocessing stage first uses a novel combinationdata preprocessingmethod, which overcomes the shortcomings of single preprocessing methods. In addition, a combined forecasting mechanism composed of RBF, GRNN and ELM is proposed using the weight determination theory, which exceeds the limits of individual prediction models and improves prediction accuracy. For the sake of assessing the availability of the proposed hybrid model, three datasets of half-hour power load of Queensland, South Australia and Victoria in Australia are selected in this study. The final experimental results show that the proposed model not only can approximate the actual power load very well, but also can be used as a helpful tool for power grid planning and dispatching. •Two preprocessing techniques, CEEMD and SSA, are used in two stages.•Multi-objective evolutionary algorithm MOGWO is used to decide the weighting factor of combined model.•Based on the three neural networks, the prediction accuracy of power load is improved.•A comprehensive assessment of the composite model is carried out to evaluate its forecasting performance.•The proposed new hybrid model provides powerful technical support for power network dispatch management.
ArticleNumber 106809
Author Zhang, Haipeng
Nie, Ying
Jiang, Ping
Author_xml – sequence: 1
  givenname: Ying
  surname: Nie
  fullname: Nie, Ying
– sequence: 2
  givenname: Ping
  surname: Jiang
  fullname: Jiang, Ping
  email: pjiang@dufe.edu.cn
– sequence: 3
  givenname: Haipeng
  surname: Zhang
  fullname: Zhang, Haipeng
BookMark eNp9kMlqwzAQQEVJoUnaH-hJP-BUiy3b0EsI3SDQS3sWsjxKFGzLSCIl-frKTU899CBmQW-YeQs0G9wACN1TsqKEiofDSgWnV4ywqSEqUl-hOa1KltWiorOUF6LK8joXN2gRwoEkqGbVHJ3XeHBH6PD-1Hjb4t61qWhUgBa7AWvXN3ZI-ehh9E5DCHbY4R7i3rVYDem1RzXo6fcYbW_PKtrEqW7nvI37Hhvn8ei-wOPOqXYqQasQ05RbdG1UF-DuNy7R5_PTx-Y1276_vG3W20xzQmJWFxWnnLJCNcxoo0sqQImaFgw0L0ptcsp53nJVGmoUhQoK4MTQRgjFNBi-RNVlrvYuBA9Gaht_1oxe2U5SIieH8iAnh3JyKC8OE8r-oKO3vfKn_6HHCwTpqKMFL4O2MDmy6fYoW2f_w78B1PWQRw
CitedBy_id crossref_primary_10_1016_j_asoc_2021_107941
crossref_primary_10_32604_EE_2021_015602
crossref_primary_10_1016_j_eswa_2021_114974
crossref_primary_10_3389_fenrg_2024_1443814
crossref_primary_10_1016_j_energy_2024_132635
crossref_primary_10_1016_j_apm_2021_07_024
crossref_primary_10_1016_j_energy_2023_129938
crossref_primary_10_1016_j_engappai_2025_110980
crossref_primary_10_1016_j_asoc_2022_108560
crossref_primary_10_3390_math11122786
crossref_primary_10_1007_s11063_022_11046_7
crossref_primary_10_1002_for_2888
crossref_primary_10_1007_s11227_023_05793_0
crossref_primary_10_1051_e3sconf_202339401002
crossref_primary_10_1108_JM2_09_2022_0232
crossref_primary_10_2478_amns_2024_2745
crossref_primary_10_1016_j_engstruct_2024_118183
crossref_primary_10_1016_j_resourpol_2021_102234
crossref_primary_10_1016_j_asoc_2021_107438
crossref_primary_10_1016_j_renene_2021_07_113
crossref_primary_10_3390_machines9110248
crossref_primary_10_3390_s22124363
crossref_primary_10_1016_j_egyr_2021_09_115
crossref_primary_10_1093_tse_tdac055
crossref_primary_10_1007_s12652_022_04423_6
crossref_primary_10_1016_j_apm_2022_09_004
crossref_primary_10_1371_journal_pone_0306566
crossref_primary_10_1016_j_eswa_2022_117201
crossref_primary_10_1016_j_asoc_2024_111235
crossref_primary_10_1016_j_resourpol_2022_102780
crossref_primary_10_1016_j_eswa_2022_118419
crossref_primary_10_3390_modelling5030054
crossref_primary_10_1016_j_ijepes_2022_108243
crossref_primary_10_1016_j_eswa_2023_120354
crossref_primary_10_1016_j_geits_2023_100108
crossref_primary_10_1049_tje2_12409
crossref_primary_10_1016_j_epsr_2022_108186
crossref_primary_10_1016_j_apenergy_2021_117449
crossref_primary_10_1109_ACCESS_2021_3120731
crossref_primary_10_1002_ese3_1352
crossref_primary_10_1016_j_energy_2022_126130
crossref_primary_10_1007_s11042_023_16931_4
crossref_primary_10_1016_j_apr_2021_101144
crossref_primary_10_1016_j_energy_2022_124468
crossref_primary_10_1016_j_spc_2022_10_007
crossref_primary_10_1016_j_compeleceng_2022_108125
crossref_primary_10_3389_fenrg_2021_764635
crossref_primary_10_3390_su13041694
crossref_primary_10_1007_s11831_023_10058_3
crossref_primary_10_1016_j_asoc_2022_108544
crossref_primary_10_1016_j_asoc_2022_109632
crossref_primary_10_1016_j_ijepes_2023_109620
crossref_primary_10_1016_j_resourpol_2022_102734
crossref_primary_10_1016_j_ins_2025_122523
crossref_primary_10_1016_j_epsr_2021_107761
crossref_primary_10_1016_j_asoc_2022_108421
crossref_primary_10_1016_j_eswa_2024_125567
crossref_primary_10_1016_j_apenergy_2021_117911
crossref_primary_10_3390_sym17081335
crossref_primary_10_1049_tje2_12151
crossref_primary_10_62762_TETAI_2024_532253
crossref_primary_10_1007_s10462_022_10199_0
crossref_primary_10_1016_j_energy_2024_132929
crossref_primary_10_1177_10963480221142873
crossref_primary_10_1016_j_jenvman_2021_113951
crossref_primary_10_1016_j_resourpol_2021_102222
Cites_doi 10.1016/j.apenergy.2016.02.114
10.1016/j.energy.2017.02.150
10.1016/j.apenergy.2019.01.046
10.1016/j.apenergy.2016.01.050
10.1016/j.energy.2019.03.081
10.1109/72.97934
10.1016/j.egypro.2019.01.169
10.1016/j.enbuild.2019.109408
10.1016/j.apenergy.2019.03.097
10.1016/j.enpol.2009.06.046
10.3390/en10040490
10.3390/en9121050
10.1016/j.energy.2019.06.075
10.1109/ACCESS.2019.2957174
10.1016/j.energy.2015.08.045
10.1016/j.eswa.2010.11.033
10.1016/j.ijforecast.2015.03.001
10.1016/j.energy.2016.04.009
10.1016/j.apenergy.2012.04.037
10.2307/3001968
10.1016/j.ijepes.2010.08.008
10.1016/j.knosys.2012.10.017
10.1016/j.rser.2014.12.012
10.1109/MCI.2006.1597059
10.1016/j.ijforecast.2019.03.025
10.1016/j.apenergy.2016.07.113
10.1016/j.apenergy.2014.07.104
10.1016/j.apenergy.2014.03.001
10.1016/j.ejmech.2010.07.010
10.1016/j.asoc.2019.105548
10.1111/j.1468-0394.2010.00539.x
10.1016/j.enconman.2018.02.015
10.1016/j.enpol.2008.02.035
10.1016/j.epsr.2005.09.018
10.1016/j.ins.2015.11.039
10.1016/j.advengsoft.2013.12.007
10.1142/S1793536910000422
10.1016/j.energy.2016.03.070
10.1016/j.energy.2015.01.063
10.1016/j.asoc.2011.07.001
10.1016/0167-2789(86)90031-X
10.1057/jors.1969.103
10.1080/07350015.1995.10524599
10.1016/j.apenergy.2017.01.043
10.1016/j.enpol.2009.12.037
10.1142/S1793536909000047
10.1016/j.apm.2016.08.001
10.1016/j.energy.2016.06.090
10.1016/j.energy.2019.02.141
10.1016/j.knosys.2011.04.019
10.1109/TNNLS.2012.2198074
10.1016/j.energy.2010.05.013
10.1016/j.enconman.2017.07.065
10.1016/j.eswa.2015.10.039
10.1109/TCBB.2017.2705094
10.1016/j.apenergy.2019.113505
10.1016/j.atmosenv.2016.10.046
10.1109/59.76685
10.1016/j.ijepes.2019.06.010
10.1016/j.asoc.2016.07.011
10.1016/j.enconman.2005.11.017
10.1016/j.knosys.2012.08.015
10.1016/j.apenergy.2010.07.021
10.1016/j.renene.2014.11.084
10.1098/rspa.1998.0193
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106809
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106809
S156849462030747X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-958313125ab2fcfc716ea69152ec357cf41334d3a7f1fa1e8e5e30f1b66a2cef3
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000603367700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:03:55 EST 2025
Tue Nov 18 22:33:17 EST 2025
Fri Feb 23 02:46:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hybrid model
Combination data preprocessing method
Power load forecasting
Weight determination theory
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-958313125ab2fcfc716ea69152ec357cf41334d3a7f1fa1e8e5e30f1b66a2cef3
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2020_106809
crossref_primary_10_1016_j_asoc_2020_106809
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106809
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Coello (b70) 2006; 1
Dong, Ma, Ma, Wang (b4) 2016; 9
Zhu (b48) 2017
Gao, Song, Cheng (b71) 2018
Xie, Yi, Hu, Li, Fan (b32) 2019
Wang, Chi, Wu, Lu (b16) 2011; 38
Saxena, Aponte, McConky (b38) 2019; 35
Tsay (b73) 2002
Jiang, Ma (b5) 2016; 40
Singh, Dwivedi, Kant (b31) 2019
Ziel (b12) 2018
Yu, Xu (b26) 2014; 134
Xiao, Shao, Liang, Wang (b9) 2016; 167
Wang, Zhu, Zhang, Sun (b21) 2009; 37
Zhu (b62) 2017
Pandian, Duraiswamy, Rajan, Kanagaraj (b28) 2006; 76
Diebold, Mariano (b75) 1995; 13
Kavaklioglu (b20) 2011; 88
Specht (b63) 1991; 2
Zeng, Li (b19) 2016; 112
Wang, Wang, Wang (b11) 2019; 158
Zhang, Dong, Wang (b69) 2019; 7
Wilcoxon (b78) 1945; 1
Zhao, Guo (b18) 2016; 107
Sadaei, de Lima e Silva, Guimarães, Lee (b39) 2019
Mirjalili, Mirjalili, Lewis (b59) 2014; 69
Xiao, Wang, Dong, Wu (b35) 2015; 44
Shukur, Lee (b36) 2015; 76
Singh, Dwivedi (b37) 2019
Shahlaei, Sabet, Ziari (b65) 2010; 45
Dong, Wang, Wang, Guo (b1) 2017; 10
Huang, Shen, Long, Wu, Shih, Yen, Tung, Liu (b52) 1996; 454
Ghanbari, Kazami, Mehmanpazir, Nakhostin (b17) 2013; 39
Huang, Zhu, Siew (b68) 2004
Dagdougui, Bagheri, Le, Dessaint (b30) 2019
Wu, Huang (b53) 2009; 1
Yeh, Shieh, Huang (b54) 2010; 02
Lei, Peng, Zuojun (b64) 2015; 37
Bates, Granger (b34) 1969; 20
Iversen, Morales, M??ller, Madsen (b46) 2015; 32
Du, Wang, Guo (b51) 2017; 150
Azadeh, Ghaderi, Sohrabkhani (b14) 2008; 36
Xu, Yang, Wang (b74) 2017; 148
Ali, Adnan, Tariq (b24) 2019; 113
Wang, Hu (b72) 2015; 93
Liu, Zong, Zhao, Chen, Wang (b33) 2014; 124
Wang, Liu, Song, Zhao (b25) 2016; 48
Jiang, Ma, Liu (b2) 2015; 2015
Yan (b77) 2012; 23
Wang, Li, Bai (b49) 2018; 162
Mirjalili, Saremi, Mirjalili (b60) 2016; 47
Zhen, Jie, Lu (b66) 2011; 24
Li, Guo, Li (b67) 2013; 37
Niu, Shi, Wu (b40) 2012; 12
Pai (b29) 2006; 47
Wu, Wang, Chen, Du, Yang (b55) 2019
Imani, Ghassemian (b42) 2019; 253
Xiao, Shao, Wang, Zhang, Lu (b10) 2016; 180
Park, Sharkawi, Marks (b27) 1991; 6
Kucukali, Baris (b22) 2010; 38
Nguyen, Nabney (b23) 2010; 35
Xiao, Wang, Hou, Wu (b7) 2015; 82
Ren, Suganthan, Srikanth, Amaratunga (b8) 2016; 1
Broomhead, King (b56) 1986; 20
Lee, Ko (b13) 2011; 38
Wang, Wu, Niu (b61) 2019
Niu, Wang (b76) 2019; 241
Yang, Wang, Wang (b41) 2017
Wang, Wang, Xu (b43) 2019; 82
Takeda, Tamura, Sato (b6) 2016; 104
Li, Goel, Wang (b3) 2016; 170
Shahlaei, Sabet, Ziari (b50) 2010; 45
Chang, Fan, Lin (b15) 2011; 33
Wang, Heng, Xiao (b57) 2017; 125
Sen-Mao, Kai-Ping, Yi-Xuan (b58) 2016
Feng, Cui, Hodge, Zhang (b45) 2017; 190
Wu, Zhao, Ma (b44) 2019; 237
Marvuglia, Messineo (b47) 2012; 98
Kavaklioglu (10.1016/j.asoc.2020.106809_b20) 2011; 88
Zhang (10.1016/j.asoc.2020.106809_b69) 2019; 7
Gao (10.1016/j.asoc.2020.106809_b71) 2018
Li (10.1016/j.asoc.2020.106809_b67) 2013; 37
Wu (10.1016/j.asoc.2020.106809_b53) 2009; 1
Marvuglia (10.1016/j.asoc.2020.106809_b47) 2012; 98
Wang (10.1016/j.asoc.2020.106809_b16) 2011; 38
Feng (10.1016/j.asoc.2020.106809_b45) 2017; 190
Zhu (10.1016/j.asoc.2020.106809_b48) 2017
Shukur (10.1016/j.asoc.2020.106809_b36) 2015; 76
Wang (10.1016/j.asoc.2020.106809_b21) 2009; 37
Yan (10.1016/j.asoc.2020.106809_b77) 2012; 23
Jiang (10.1016/j.asoc.2020.106809_b2) 2015; 2015
Takeda (10.1016/j.asoc.2020.106809_b6) 2016; 104
Shahlaei (10.1016/j.asoc.2020.106809_b50) 2010; 45
Specht (10.1016/j.asoc.2020.106809_b63) 1991; 2
Nguyen (10.1016/j.asoc.2020.106809_b23) 2010; 35
Wu (10.1016/j.asoc.2020.106809_b55) 2019
Ghanbari (10.1016/j.asoc.2020.106809_b17) 2013; 39
Niu (10.1016/j.asoc.2020.106809_b76) 2019; 241
Xiao (10.1016/j.asoc.2020.106809_b7) 2015; 82
Broomhead (10.1016/j.asoc.2020.106809_b56) 1986; 20
Li (10.1016/j.asoc.2020.106809_b3) 2016; 170
Wang (10.1016/j.asoc.2020.106809_b43) 2019; 82
Huang (10.1016/j.asoc.2020.106809_b52) 1996; 454
Singh (10.1016/j.asoc.2020.106809_b31) 2019
Wang (10.1016/j.asoc.2020.106809_b25) 2016; 48
Ziel (10.1016/j.asoc.2020.106809_b12) 2018
Kucukali (10.1016/j.asoc.2020.106809_b22) 2010; 38
Park (10.1016/j.asoc.2020.106809_b27) 1991; 6
Wang (10.1016/j.asoc.2020.106809_b57) 2017; 125
Lee (10.1016/j.asoc.2020.106809_b13) 2011; 38
Diebold (10.1016/j.asoc.2020.106809_b75) 1995; 13
Pai (10.1016/j.asoc.2020.106809_b29) 2006; 47
Du (10.1016/j.asoc.2020.106809_b51) 2017; 150
Imani (10.1016/j.asoc.2020.106809_b42) 2019; 253
Wang (10.1016/j.asoc.2020.106809_b49) 2018; 162
Wilcoxon (10.1016/j.asoc.2020.106809_b78) 1945; 1
Xiao (10.1016/j.asoc.2020.106809_b10) 2016; 180
Xie (10.1016/j.asoc.2020.106809_b32) 2019
Chang (10.1016/j.asoc.2020.106809_b15) 2011; 33
Xu (10.1016/j.asoc.2020.106809_b74) 2017; 148
Wang (10.1016/j.asoc.2020.106809_b11) 2019; 158
Dong (10.1016/j.asoc.2020.106809_b1) 2017; 10
Dong (10.1016/j.asoc.2020.106809_b4) 2016; 9
Niu (10.1016/j.asoc.2020.106809_b40) 2012; 12
Zhao (10.1016/j.asoc.2020.106809_b18) 2016; 107
Singh (10.1016/j.asoc.2020.106809_b37) 2019
Yang (10.1016/j.asoc.2020.106809_b41) 2017
Mirjalili (10.1016/j.asoc.2020.106809_b60) 2016; 47
Pandian (10.1016/j.asoc.2020.106809_b28) 2006; 76
Zhu (10.1016/j.asoc.2020.106809_b62) 2017
Wang (10.1016/j.asoc.2020.106809_b61) 2019
Tsay (10.1016/j.asoc.2020.106809_b73) 2002
Ren (10.1016/j.asoc.2020.106809_b8) 2016; 1
Sadaei (10.1016/j.asoc.2020.106809_b39) 2019
Bates (10.1016/j.asoc.2020.106809_b34) 1969; 20
Coello (10.1016/j.asoc.2020.106809_b70) 2006; 1
Zhen (10.1016/j.asoc.2020.106809_b66) 2011; 24
Zeng (10.1016/j.asoc.2020.106809_b19) 2016; 112
Yu (10.1016/j.asoc.2020.106809_b26) 2014; 134
Mirjalili (10.1016/j.asoc.2020.106809_b59) 2014; 69
Sen-Mao (10.1016/j.asoc.2020.106809_b58) 2016
Shahlaei (10.1016/j.asoc.2020.106809_b65) 2010; 45
Wu (10.1016/j.asoc.2020.106809_b44) 2019; 237
Wang (10.1016/j.asoc.2020.106809_b72) 2015; 93
Dagdougui (10.1016/j.asoc.2020.106809_b30) 2019
Xiao (10.1016/j.asoc.2020.106809_b35) 2015; 44
Iversen (10.1016/j.asoc.2020.106809_b46) 2015; 32
Liu (10.1016/j.asoc.2020.106809_b33) 2014; 124
Xiao (10.1016/j.asoc.2020.106809_b9) 2016; 167
Lei (10.1016/j.asoc.2020.106809_b64) 2015; 37
Huang (10.1016/j.asoc.2020.106809_b68) 2004
Jiang (10.1016/j.asoc.2020.106809_b5) 2016; 40
Saxena (10.1016/j.asoc.2020.106809_b38) 2019; 35
Azadeh (10.1016/j.asoc.2020.106809_b14) 2008; 36
Yeh (10.1016/j.asoc.2020.106809_b54) 2010; 02
Ali (10.1016/j.asoc.2020.106809_b24) 2019; 113
References_xml – volume: 237
  start-page: 896
  year: 2019
  end-page: 909
  ident: b44
  article-title: A hybrid model based on modified multi-objective cuckoo search algorithm for short-term load forecasting
  publication-title: Appl. Energy
– volume: 112
  start-page: 810
  year: 2016
  end-page: 825
  ident: b19
  article-title: Forecasting the natural gas demand in China using a self-adapting intelligent grey model
  publication-title: Energy
– year: 2019
  ident: b39
  article-title: Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series
  publication-title: Energy
– volume: 88
  start-page: 68
  year: 2011
  end-page: 75
  ident: b20
  article-title: Modeling and prediction of Turkeys electricity consumption using Support Vector Regression
  publication-title: Appl. Energy
– volume: 40
  start-page: 10631
  year: 2016
  end-page: 10649
  ident: b5
  article-title: A hybrid forecasting approach applied in the electrical power system based on data preprocessing, optimization and artificial intelligence algorithms
  publication-title: Appl. Math. Model.
– volume: 24
  start-page: 1048
  year: 2011
  end-page: 1056
  ident: b66
  article-title: A case study on a hybrid wind speed forecasting method using BP neural network
  publication-title: Knowl.-Based Syst.
– volume: 13
  start-page: 253
  year: 1995
  end-page: 263
  ident: b75
  article-title: Comparing predictive accuracy
  publication-title: J. Bus. Econ. Stat.
– volume: 38
  start-page: 5902
  year: 2011
  end-page: 5911
  ident: b13
  article-title: Short-term load forecasting using lifting scheme and ARIMA models
  publication-title: Expert Syst. Appl.
– volume: 35
  start-page: 13
  year: 2010
  end-page: 21
  ident: b23
  article-title: Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models
  publication-title: Energy
– volume: 32
  start-page: 981
  year: 2015
  end-page: 990
  ident: b46
  article-title: Short-term probabilistic forecasting of wind speed using stochastic differential equations
  publication-title: Int. J. Forecast.
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 17
  ident: b2
  article-title: A new hybrid model based on data preprocessing and an Intelligent Optimization Algorithm for Electrical Power System Forecasting
  publication-title: Math. Probl. Eng.
– year: 2017
  ident: b48
  article-title: Research and application of PID self-turning control based on RBF neural network
– volume: 02
  start-page: 135
  year: 2010
  end-page: 156
  ident: b54
  article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method
  publication-title: Adv. Adapt. Data Anal.
– volume: 104
  start-page: 184
  year: 2016
  end-page: 198
  ident: b6
  article-title: Using the ensemble Kalman filter for electricity load forecasting and analysis
  publication-title: Energy
– volume: 45
  start-page: 4499
  year: 2010
  end-page: 4508
  ident: b50
  article-title: QSAR study of anthranilic acid sulfonamides as inhibitors of methionine aminopeptidase-2 using LS-SVM and GRNN based on principal components
  publication-title: Eur. J. Med. Chem.
– volume: 148
  start-page: 239
  year: 2017
  end-page: 257
  ident: b74
  article-title: Air quality early-warning system for cities in China
  publication-title: Atmos. Environ.
– volume: 33
  start-page: 17
  year: 2011
  end-page: 27
  ident: b15
  article-title: Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach
  publication-title: Electr. Power Syst. Res.
– volume: 93
  start-page: 41
  year: 2015
  end-page: 56
  ident: b72
  article-title: A robust combination approach for short-term wind speed forecasting and analysis-Combination of the ARIMA (autoregressive integrated moving average), ELM (extreme learning machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model
  publication-title: Energy
– year: 2019
  ident: b31
  article-title: A hybrid method based on neural network and improved environmental adaptation method using Controlled Gaussian Mutation with real parameter for short-term load forecasting
  publication-title: Energy
– year: 2019
  ident: b30
  article-title: Neural Network Model for Short-term and Very-short-term load forecasting in District Buildings
  publication-title: Energy Build.
– volume: 82
  start-page: 524
  year: 2015
  end-page: 549
  ident: b7
  article-title: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting
  publication-title: Energy
– year: 2017
  ident: b62
  article-title: Research and application of PID self-turning control based on RBF neural network
– volume: 37
  start-page: 310
  year: 2015
  end-page: 317
  ident: b64
  article-title: Lower limb locomotion modes recognition based on multiple-source information and general regression neural network
  publication-title: Robot
– start-page: 19
  year: 2017
  ident: b41
  article-title: Research and application of a novel hybrid model based on data selection and artificial intelligence algorithm for short term load forecasting
  publication-title: Entropy
– volume: 1
  start-page: 28
  year: 2006
  end-page: 36
  ident: b70
  article-title: Evolutionary multi-objective optimization: a historical view of the field
  publication-title: IEEE Comput. Intell. Mag.
– volume: 82
  year: 2019
  ident: b43
  article-title: A novel combined model based on hybrid optimization algorithm for electrical load forecasting
  publication-title: Appl. Soft Comput.
– volume: 190
  start-page: 1245
  year: 2017
  end-page: 1257
  ident: b45
  article-title: A data-driven multi-model methodology with deep feature selection for short-term wind forecasting
  publication-title: Appl. Energy
– volume: 167
  start-page: 135
  year: 2016
  end-page: 153
  ident: b9
  article-title: A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting
  publication-title: Appl. Energy
– year: 2019
  ident: b32
  article-title: Short-term power load forecasting based on elman neural network with Particle Swarm Optimization
  publication-title: Neurocomputing
– volume: 47
  start-page: 2283
  year: 2006
  end-page: 2289
  ident: b29
  article-title: Hybrid ellipsoidal fuzzy systems in forecasting regional electricity loads
  publication-title: Energy Convers. Manage.
– volume: 253
  year: 2019
  ident: b42
  article-title: Residential load forecasting using wavelet and collaborative representation transforms
  publication-title: Appl. Energy
– volume: 76
  start-page: 637
  year: 2015
  end-page: 647
  ident: b36
  article-title: Daily wind speed forecasting though hybrid KF-ANN model based on ARIMA
  publication-title: Renew. Energy
– volume: 35
  start-page: 1288
  year: 2019
  end-page: 1303
  ident: b38
  article-title: A hybrid machine learning model for forecasting a billing period’s peak electric load days
  publication-title: Int. J. Forecast.
– volume: 7
  start-page: 176000
  year: 2019
  end-page: 176023
  ident: b69
  article-title: Wind speed forecasting using a two-stage forecasting system with an error correcting and nonlinear ensemble strategy
  publication-title: IEEE Access
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: b78
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics
– volume: 20
  start-page: 451
  year: 1969
  end-page: 468
  ident: b34
  article-title: The combination of forecasts
  publication-title: Oper. Res. Q.
– year: 2019
  ident: b37
  article-title: A novel hybrid model based on neural network and multi-objective optimization for effective load forecast
  publication-title: Energy
– volume: 1
  start-page: 1078
  year: 2016
  end-page: 1093
  ident: b8
  article-title: Random vector functional link network for short-term electricity load demand forecasting
  publication-title: Inform. Sci.
– volume: 454
  start-page: 903
  year: 1996
  end-page: 995
  ident: b52
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. A
– volume: 241
  start-page: 519
  year: 2019
  end-page: 539
  ident: b76
  article-title: A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting
  publication-title: Appl. Energy
– year: 2018
  ident: b12
  article-title: Quantile regression for the qualifying match of GEFCom2017 probabilistic load forecasting
  publication-title: Int. J. Forecast.
– volume: 107
  start-page: 272
  year: 2016
  end-page: 286
  ident: b18
  article-title: An optimized grey model for annual power load forecasting
  publication-title: Energy
– year: 2016
  ident: b58
  article-title: Grey Wolf multi-objective optimizer for Optimal Carbon-energy Combined-flow
  publication-title: J. New Ind.
– volume: 150
  start-page: 90
  year: 2017
  end-page: 107
  ident: b51
  article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting
  publication-title: Energy Convers. Manage.
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: b53
  article-title: Ensemble Empirical Mode Decomposition
  publication-title: Adv. Adapt. Data Anal.
– volume: 170
  start-page: 22
  year: 2016
  end-page: 29
  ident: b3
  article-title: An ensemble approach for short-term load forecasting by extreme learning machine
  publication-title: Appl. Energy
– volume: 44
  start-page: 271
  year: 2015
  end-page: 288
  ident: b35
  article-title: Combined forecasting models for wind energy forecasting: A case stud in China
  publication-title: Renew. Sustain. Energy Rev.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b59
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
– volume: 162
  start-page: 239
  year: 2018
  end-page: 250
  ident: b49
  article-title: Short-term wind speed prediction using an extreme learning machine model with error correction
  publication-title: Energy Convers. Manage.
– year: 2019
  ident: b61
  article-title: A Novel System for Wind Speed Forecasting Based on Multi-Objective Optimization and Echo State Network
– volume: 125
  start-page: 591
  year: 2017
  end-page: 613
  ident: b57
  article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting
  publication-title: Energy
– volume: 2
  start-page: 568
  year: 1991
  end-page: 576
  ident: b63
  article-title: A general regression neural network
  publication-title: IEEE Trans. Neural Netw.
– volume: 134
  start-page: 102
  year: 2014
  end-page: 113
  ident: b26
  article-title: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network
  publication-title: Appl. Energy
– volume: 9
  start-page: 1050
  year: 2016
  ident: b4
  article-title: Research and application of a hybrid forecasting model based on data decomposition for electrical load forecasting
  publication-title: Energies
– volume: 47
  start-page: 106
  year: 2016
  end-page: 119
  ident: b60
  article-title: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization
  publication-title: Expert Syst. Appl.
– volume: 98
  start-page: 574
  year: 2012
  end-page: 583
  ident: b47
  article-title: Monitoring of wind farms’ power curves using machine learning techniques
  publication-title: Appl. Energy
– volume: 45
  start-page: 4499
  year: 2010
  end-page: 4508
  ident: b65
  article-title: QSAR study of anthranilic acid sulfonamides as inhibitors of methionine aminopeptidase-2 using LS-SVM and GRNN based on principal components
  publication-title: Eur. J. Med. Chem.
– volume: 113
  start-page: 792
  year: 2019
  end-page: 806
  ident: b24
  article-title: Optimum control strategies for short term load forecasting in smart grids
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 158
  start-page: 6446
  year: 2019
  end-page: 6451
  ident: b11
  article-title: Combined probability density model for medium term load forecasting based on quantile regression and kernel density estimation
  publication-title: Energy Procedia
– volume: 76
  start-page: 541
  year: 2006
  end-page: 548
  ident: b28
  article-title: Fuzzy approach for short term load forecasting
  publication-title: Electr. Power Syst. Res.
– volume: 124
  start-page: 199
  year: 2014
  end-page: 212
  ident: b33
  article-title: Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development
  publication-title: Appl. Energy
– volume: 38
  start-page: 38
  year: 2010
  end-page: 45
  ident: b22
  article-title: Turkeys shorts-term gross annual electricity demand forecast by fuzzy logic approach
  publication-title: Energy Policy
– volume: 20
  start-page: 217
  year: 1986
  end-page: 236
  ident: b56
  article-title: Extracting qualitative dynamics from experimental data
  publication-title: Phys. D
– year: 2018
  ident: b71
  article-title: Incorporation of solvent effect into multi-objective evolutionary algorithm for improved protein structure prediction
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB)
– year: 2019
  ident: b55
  article-title: A novel hybrid system based on multi-objective optimization for Wind Speed Forecasting
  publication-title: Renew. Energy
– volume: 37
  start-page: 378
  year: 2013
  end-page: 387
  ident: b67
  article-title: A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm
  publication-title: Knowl.-Based Syst.
– volume: 38
  start-page: 19
  year: 2011
  end-page: 29
  ident: b16
  article-title: Chaotic time serious method combined with particle swarm optimization and trend adjustment for electricity demand forecasting
  publication-title: Expert Syst. Appl.
– volume: 23
  start-page: 1028
  year: 2012
  end-page: 1039
  ident: b77
  article-title: Toward automatic Time-Series forecasting using neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 985
  year: 2004
  end-page: 990
  ident: b68
  article-title: Extreme learning machine: A new learning scheme of feedforward neural networks
  publication-title: Proc. IEEE Int. Joint Conf. Neural Netw.
– volume: 48
  start-page: 281
  year: 2016
  end-page: 297
  ident: b25
  article-title: A novel model: Dynamic choice artificial neural network (DCANN) for an electricity price forecasting system
  publication-title: Appl. Soft Comput.
– volume: 180
  start-page: 213
  year: 2016
  end-page: 233
  ident: b10
  article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting
  publication-title: Appl. Energy
– volume: 36
  start-page: 37
  year: 2008
  end-page: 44
  ident: b14
  article-title: A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran
  publication-title: Energy Policy
– volume: 10
  start-page: 490
  year: 2017
  ident: b1
  article-title: Research and application of hybrid forecasting model based on an Optimal Feature Selection System—A case study on electrical load Forecasting
  publication-title: Energies
– volume: 12
  start-page: 1822
  year: 2012
  end-page: 1827
  ident: b40
  article-title: Short-term load forecasting using bayesian neural networks learned by hybrid Monte Carlo algorithm
  publication-title: Appl. Soft Comput.
– volume: 39
  start-page: 194
  year: 2013
  end-page: 206
  ident: b17
  article-title: A cooperative ant colony optimization-genetic algorithm approach for construction of energy demand forecasting knowledge-based expert systems
  publication-title: Knowl. Based Syst.
– start-page: 5880
  year: 2002
  end-page: 5885
  ident: b73
  publication-title: Analysis of Financial Time Series
– volume: 37
  start-page: 1
  year: 2009
  end-page: 9
  ident: b21
  article-title: A trend fixed on firstly and seasonal adjustment model combined with the SVR for short-term forecasting of electricity demand
  publication-title: Energy Policy
– volume: 6
  start-page: 442
  year: 1991
  end-page: 449
  ident: b27
  article-title: Electric load forecasting using a neural network
  publication-title: IEEE Trans. Power Syst.
– volume: 170
  start-page: 22
  year: 2016
  ident: 10.1016/j.asoc.2020.106809_b3
  article-title: An ensemble approach for short-term load forecasting by extreme learning machine
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.02.114
– volume: 125
  start-page: 591
  year: 2017
  ident: 10.1016/j.asoc.2020.106809_b57
  article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.150
– volume: 237
  start-page: 896
  year: 2019
  ident: 10.1016/j.asoc.2020.106809_b44
  article-title: A hybrid model based on modified multi-objective cuckoo search algorithm for short-term load forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.046
– volume: 167
  start-page: 135
  year: 2016
  ident: 10.1016/j.asoc.2020.106809_b9
  article-title: A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.01.050
– year: 2019
  ident: 10.1016/j.asoc.2020.106809_b39
  article-title: Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.081
– volume: 2
  start-page: 568
  issue: 11
  year: 1991
  ident: 10.1016/j.asoc.2020.106809_b63
  article-title: A general regression neural network
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.97934
– volume: 158
  start-page: 6446
  year: 2019
  ident: 10.1016/j.asoc.2020.106809_b11
  article-title: Combined probability density model for medium term load forecasting based on quantile regression and kernel density estimation
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.01.169
– year: 2019
  ident: 10.1016/j.asoc.2020.106809_b30
  article-title: Neural Network Model for Short-term and Very-short-term load forecasting in District Buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.109408
– year: 2018
  ident: 10.1016/j.asoc.2020.106809_b12
  article-title: Quantile regression for the qualifying match of GEFCom2017 probabilistic load forecasting
  publication-title: Int. J. Forecast.
– volume: 241
  start-page: 519
  year: 2019
  ident: 10.1016/j.asoc.2020.106809_b76
  article-title: A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.03.097
– volume: 37
  start-page: 1
  year: 2009
  ident: 10.1016/j.asoc.2020.106809_b21
  article-title: A trend fixed on firstly and seasonal adjustment model combined with the SVR for short-term forecasting of electricity demand
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.06.046
– volume: 37
  start-page: 310
  issue: 3
  year: 2015
  ident: 10.1016/j.asoc.2020.106809_b64
  article-title: Lower limb locomotion modes recognition based on multiple-source information and general regression neural network
  publication-title: Robot
– volume: 10
  start-page: 490
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2020.106809_b1
  article-title: Research and application of hybrid forecasting model based on an Optimal Feature Selection System—A case study on electrical load Forecasting
  publication-title: Energies
  doi: 10.3390/en10040490
– volume: 9
  start-page: 1050
  issue: 12
  year: 2016
  ident: 10.1016/j.asoc.2020.106809_b4
  article-title: Research and application of a hybrid forecasting model based on data decomposition for electrical load forecasting
  publication-title: Energies
  doi: 10.3390/en9121050
– year: 2019
  ident: 10.1016/j.asoc.2020.106809_b37
  article-title: A novel hybrid model based on neural network and multi-objective optimization for effective load forecast
  publication-title: Energy
  doi: 10.1016/j.energy.2019.06.075
– volume: 7
  start-page: 176000
  year: 2019
  ident: 10.1016/j.asoc.2020.106809_b69
  article-title: Wind speed forecasting using a two-stage forecasting system with an error correcting and nonlinear ensemble strategy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2957174
– volume: 93
  start-page: 41
  year: 2015
  ident: 10.1016/j.asoc.2020.106809_b72
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.045
– volume: 38
  start-page: 5902
  issue: 5
  year: 2011
  ident: 10.1016/j.asoc.2020.106809_b13
  article-title: Short-term load forecasting using lifting scheme and ARIMA models
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.11.033
– volume: 32
  start-page: 981
  year: 2015
  ident: 10.1016/j.asoc.2020.106809_b46
  article-title: Short-term probabilistic forecasting of wind speed using stochastic differential equations
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2015.03.001
– volume: 107
  start-page: 272
  year: 2016
  ident: 10.1016/j.asoc.2020.106809_b18
  article-title: An optimized grey model for annual power load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2016.04.009
– volume: 98
  start-page: 574
  year: 2012
  ident: 10.1016/j.asoc.2020.106809_b47
  article-title: Monitoring of wind farms’ power curves using machine learning techniques
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.04.037
– volume: 1
  start-page: 80
  issue: 6
  year: 1945
  ident: 10.1016/j.asoc.2020.106809_b78
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics
  doi: 10.2307/3001968
– volume: 33
  start-page: 17
  year: 2011
  ident: 10.1016/j.asoc.2020.106809_b15
  article-title: Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.ijepes.2010.08.008
– volume: 39
  start-page: 194
  year: 2013
  ident: 10.1016/j.asoc.2020.106809_b17
  article-title: A cooperative ant colony optimization-genetic algorithm approach for construction of energy demand forecasting knowledge-based expert systems
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2012.10.017
– volume: 44
  start-page: 271
  year: 2015
  ident: 10.1016/j.asoc.2020.106809_b35
  article-title: Combined forecasting models for wind energy forecasting: A case stud in China
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.12.012
– volume: 1
  start-page: 28
  issue: 1
  year: 2006
  ident: 10.1016/j.asoc.2020.106809_b70
  article-title: Evolutionary multi-objective optimization: a historical view of the field
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2006.1597059
– volume: 35
  start-page: 1288
  issue: 4
  year: 2019
  ident: 10.1016/j.asoc.2020.106809_b38
  article-title: A hybrid machine learning model for forecasting a billing period’s peak electric load days
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2019.03.025
– volume: 180
  start-page: 213
  year: 2016
  ident: 10.1016/j.asoc.2020.106809_b10
  article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.07.113
– volume: 134
  start-page: 102
  year: 2014
  ident: 10.1016/j.asoc.2020.106809_b26
  article-title: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.07.104
– volume: 124
  start-page: 199
  year: 2014
  ident: 10.1016/j.asoc.2020.106809_b33
  article-title: Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.03.001
– volume: 45
  start-page: 4499
  issue: 10
  year: 2010
  ident: 10.1016/j.asoc.2020.106809_b65
  article-title: QSAR study of anthranilic acid sulfonamides as inhibitors of methionine aminopeptidase-2 using LS-SVM and GRNN based on principal components
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2010.07.010
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.asoc.2020.106809_b2
  article-title: A new hybrid model based on data preprocessing and an Intelligent Optimization Algorithm for Electrical Power System Forecasting
  publication-title: Math. Probl. Eng.
– volume: 82
  year: 2019
  ident: 10.1016/j.asoc.2020.106809_b43
  article-title: A novel combined model based on hybrid optimization algorithm for electrical load forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105548
– volume: 45
  start-page: 4499
  issue: 10
  year: 2010
  ident: 10.1016/j.asoc.2020.106809_b50
  article-title: QSAR study of anthranilic acid sulfonamides as inhibitors of methionine aminopeptidase-2 using LS-SVM and GRNN based on principal components
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2010.07.010
– volume: 38
  start-page: 19
  year: 2011
  ident: 10.1016/j.asoc.2020.106809_b16
  article-title: Chaotic time serious method combined with particle swarm optimization and trend adjustment for electricity demand forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1111/j.1468-0394.2010.00539.x
– volume: 162
  start-page: 239
  year: 2018
  ident: 10.1016/j.asoc.2020.106809_b49
  article-title: Short-term wind speed prediction using an extreme learning machine model with error correction
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.02.015
– volume: 36
  start-page: 37
  year: 2008
  ident: 10.1016/j.asoc.2020.106809_b14
  article-title: A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.02.035
– volume: 76
  start-page: 541
  year: 2006
  ident: 10.1016/j.asoc.2020.106809_b28
  article-title: Fuzzy approach for short term load forecasting
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2005.09.018
– volume: 1
  start-page: 1078
  year: 2016
  ident: 10.1016/j.asoc.2020.106809_b8
  article-title: Random vector functional link network for short-term electricity load demand forecasting
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2015.11.039
– volume: 69
  start-page: 46
  issue: 3
  year: 2014
  ident: 10.1016/j.asoc.2020.106809_b59
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– year: 2019
  ident: 10.1016/j.asoc.2020.106809_b61
– start-page: 5880
  year: 2002
  ident: 10.1016/j.asoc.2020.106809_b73
– volume: 02
  start-page: 135
  year: 2010
  ident: 10.1016/j.asoc.2020.106809_b54
  article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536910000422
– volume: 104
  start-page: 184
  year: 2016
  ident: 10.1016/j.asoc.2020.106809_b6
  article-title: Using the ensemble Kalman filter for electricity load forecasting and analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2016.03.070
– volume: 82
  start-page: 524
  year: 2015
  ident: 10.1016/j.asoc.2020.106809_b7
  article-title: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2015.01.063
– volume: 12
  start-page: 1822
  year: 2012
  ident: 10.1016/j.asoc.2020.106809_b40
  article-title: Short-term load forecasting using bayesian neural networks learned by hybrid Monte Carlo algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.07.001
– volume: 20
  start-page: 217
  year: 1986
  ident: 10.1016/j.asoc.2020.106809_b56
  article-title: Extracting qualitative dynamics from experimental data
  publication-title: Phys. D
  doi: 10.1016/0167-2789(86)90031-X
– volume: 20
  start-page: 451
  issue: 4
  year: 1969
  ident: 10.1016/j.asoc.2020.106809_b34
  article-title: The combination of forecasts
  publication-title: Oper. Res. Q.
  doi: 10.1057/jors.1969.103
– volume: 13
  start-page: 253
  year: 1995
  ident: 10.1016/j.asoc.2020.106809_b75
  article-title: Comparing predictive accuracy
  publication-title: J. Bus. Econ. Stat.
  doi: 10.1080/07350015.1995.10524599
– volume: 190
  start-page: 1245
  year: 2017
  ident: 10.1016/j.asoc.2020.106809_b45
  article-title: A data-driven multi-model methodology with deep feature selection for short-term wind forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.01.043
– volume: 38
  start-page: 38
  year: 2010
  ident: 10.1016/j.asoc.2020.106809_b22
  article-title: Turkeys shorts-term gross annual electricity demand forecast by fuzzy logic approach
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.12.037
– volume: 1
  start-page: 1
  year: 2009
  ident: 10.1016/j.asoc.2020.106809_b53
  article-title: Ensemble Empirical Mode Decomposition
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 40
  start-page: 10631
  year: 2016
  ident: 10.1016/j.asoc.2020.106809_b5
  article-title: A hybrid forecasting approach applied in the electrical power system based on data preprocessing, optimization and artificial intelligence algorithms
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2016.08.001
– volume: 112
  start-page: 810
  year: 2016
  ident: 10.1016/j.asoc.2020.106809_b19
  article-title: Forecasting the natural gas demand in China using a self-adapting intelligent grey model
  publication-title: Energy
  doi: 10.1016/j.energy.2016.06.090
– year: 2019
  ident: 10.1016/j.asoc.2020.106809_b31
  article-title: A hybrid method based on neural network and improved environmental adaptation method using Controlled Gaussian Mutation with real parameter for short-term load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.141
– volume: 24
  start-page: 1048
  issue: 7
  year: 2011
  ident: 10.1016/j.asoc.2020.106809_b66
  article-title: A case study on a hybrid wind speed forecasting method using BP neural network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.04.019
– volume: 23
  start-page: 1028
  issue: 7
  year: 2012
  ident: 10.1016/j.asoc.2020.106809_b77
  article-title: Toward automatic Time-Series forecasting using neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2198074
– start-page: 19
  year: 2017
  ident: 10.1016/j.asoc.2020.106809_b41
  article-title: Research and application of a novel hybrid model based on data selection and artificial intelligence algorithm for short term load forecasting
  publication-title: Entropy
– volume: 35
  start-page: 13
  year: 2010
  ident: 10.1016/j.asoc.2020.106809_b23
  article-title: Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models
  publication-title: Energy
  doi: 10.1016/j.energy.2010.05.013
– volume: 150
  start-page: 90
  year: 2017
  ident: 10.1016/j.asoc.2020.106809_b51
  article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.07.065
– volume: 47
  start-page: 106
  year: 2016
  ident: 10.1016/j.asoc.2020.106809_b60
  article-title: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.10.039
– year: 2017
  ident: 10.1016/j.asoc.2020.106809_b62
– year: 2016
  ident: 10.1016/j.asoc.2020.106809_b58
  article-title: Grey Wolf multi-objective optimizer for Optimal Carbon-energy Combined-flow
  publication-title: J. New Ind.
– year: 2018
  ident: 10.1016/j.asoc.2020.106809_b71
  article-title: Incorporation of solvent effect into multi-objective evolutionary algorithm for improved protein structure prediction
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB)
  doi: 10.1109/TCBB.2017.2705094
– volume: 253
  year: 2019
  ident: 10.1016/j.asoc.2020.106809_b42
  article-title: Residential load forecasting using wavelet and collaborative representation transforms
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113505
– year: 2019
  ident: 10.1016/j.asoc.2020.106809_b55
  article-title: A novel hybrid system based on multi-objective optimization for Wind Speed Forecasting
  publication-title: Renew. Energy
– start-page: 985
  year: 2004
  ident: 10.1016/j.asoc.2020.106809_b68
  article-title: Extreme learning machine: A new learning scheme of feedforward neural networks
– volume: 148
  start-page: 239
  year: 2017
  ident: 10.1016/j.asoc.2020.106809_b74
  article-title: Air quality early-warning system for cities in China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.10.046
– volume: 6
  start-page: 442
  year: 1991
  ident: 10.1016/j.asoc.2020.106809_b27
  article-title: Electric load forecasting using a neural network
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.76685
– volume: 113
  start-page: 792
  year: 2019
  ident: 10.1016/j.asoc.2020.106809_b24
  article-title: Optimum control strategies for short term load forecasting in smart grids
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2019.06.010
– volume: 48
  start-page: 281
  year: 2016
  ident: 10.1016/j.asoc.2020.106809_b25
  article-title: A novel model: Dynamic choice artificial neural network (DCANN) for an electricity price forecasting system
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.07.011
– volume: 47
  start-page: 2283
  year: 2006
  ident: 10.1016/j.asoc.2020.106809_b29
  article-title: Hybrid ellipsoidal fuzzy systems in forecasting regional electricity loads
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2005.11.017
– year: 2019
  ident: 10.1016/j.asoc.2020.106809_b32
  article-title: Short-term power load forecasting based on elman neural network with Particle Swarm Optimization
  publication-title: Neurocomputing
– volume: 37
  start-page: 378
  issue: none
  year: 2013
  ident: 10.1016/j.asoc.2020.106809_b67
  article-title: A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2012.08.015
– year: 2017
  ident: 10.1016/j.asoc.2020.106809_b48
– volume: 88
  start-page: 68
  year: 2011
  ident: 10.1016/j.asoc.2020.106809_b20
  article-title: Modeling and prediction of Turkeys electricity consumption using Support Vector Regression
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.07.021
– volume: 76
  start-page: 637
  year: 2015
  ident: 10.1016/j.asoc.2020.106809_b36
  article-title: Daily wind speed forecasting though hybrid KF-ANN model based on ARIMA
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.11.084
– volume: 454
  start-page: 903
  year: 1996
  ident: 10.1016/j.asoc.2020.106809_b52
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.1998.0193
SSID ssj0016928
Score 2.5406792
Snippet Short-term power load forecasting occupies an important position in improving the operating efficiency and economic effects of power system. Aiming at...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106809
SubjectTerms Combination data preprocessing method
Hybrid model
Power load forecasting
Weight determination theory
Title A novel hybrid model based on combined preprocessing method and advanced optimization algorithm for power load forecasting
URI https://dx.doi.org/10.1016/j.asoc.2020.106809
Volume 97
WOSCitedRecordID wos000603367700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbtpodemj5p2rTo0JtxsK21ZB2XkpCEEgJNYXsysiw1Gza22XVCml-f0ctxkxLaQi_GO1g7RvN5NBrNA6FPgJIclr1prBiDDQoXJOZSk5gKKoUWsC2StmT-F3Z0VMzn_NiHDq1tOwHWNMXVFe_-q6iBBsI2qbN_Ie7hT4EA9yB0uILY4fpHgp9FTXupltHpT5OM5VrdRGaxqs3BAHCEvbCyxQE6lyRgnAWukbSr3BqiAlrQJuc-TTMSyx_tatGfntu4xM70VouWrajNTyXFug9LYKho663bNah5G7d-MTxhT0GsH_X7iHS48J7r4xFxcGfvi0WnPN37KLK78R73k2ecrqUFoMN7IJWjFSyLOXVdXIKCdgG893S9czuc7QiA8Y7hCiRaJPx2ZRviDb8aXoZVZnTalM0fo42M5byYoI3Zwe78cDh4oty24x3ezedZuZDAu5x-b8uM7JOT5-iZ31jgmQPEC_RINS_RZmjagb0Of4WuZ9jiAzt8YIsPbPGB2wYHfOBf8IEdPjDgAwd84DE-8IAPDIDAFh_Y4AOP8PEafdvbPfm8H_sGHLEkSdLHPC9ISsAEFlWmpZawt1aCcjD5lCQ5kxosIDKtiWA61SJVhcoVSXRaUSoyqTR5gyZN26i3CGtRp5TVVc7BAs9ZwrOqonWSJrUmvJ6qLZSGqSylr05vmqQsyxCGeFaa6S_N9Jdu-rdQNIzpXG2WB5_Og4RKb106q7EEQD0w7t0_jnuPnt5-Ctto0q8u1Af0RF72i_Xqo8fdDfteoz4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hybrid+model+based+on+combined+preprocessing+method+and+advanced+optimization+algorithm+for+power+load+forecasting&rft.jtitle=Applied+soft+computing&rft.au=Nie%2C+Ying&rft.au=Jiang%2C+Ping&rft.au=Zhang%2C+Haipeng&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=97&rft_id=info:doi/10.1016%2Fj.asoc.2020.106809&rft.externalDocID=S156849462030747X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon