Explaining anomalies through semi-supervised Autoencoders

This work tackles the problem of designing explainable by design anomaly detectors, which provide intelligible explanations to abnormal behaviors in input data observations. In particular, we adopt heatmaps as explanations, where a heatmap can be regarded as a collection of per-feature scores. To ex...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Array (New York) Ročník 28; s. 100537
Hlavní autoři: Angiulli, Fabrizio, Fassetti, Fabio, Ferragina, Luca, Nisticò, Simona
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.12.2025
Témata:
ISSN:2590-0056, 2590-0056
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This work tackles the problem of designing explainable by design anomaly detectors, which provide intelligible explanations to abnormal behaviors in input data observations. In particular, we adopt heatmaps as explanations, where a heatmap can be regarded as a collection of per-feature scores. To explain anomalies, our approach, called AE–XAD11The code of AE–XAD is available at https://github.com/AIDALab-DIMES/AE-XAD. (for AutoEncoder-based eXplainable Anomaly Detection), extends a recently introduced semi-supervised variant of the Autoencoder architecture. The main idea of our proposal is to exploit a reconstruction error strategy for detecting deviating features. Unlike standard Autoencoders, it leverages a semi-supervised loss designed to maximize the distance between the reconstruction and the original value assumed by anomalous features. By means of this strategy, our approach learns to isolate anomalous portions of the input observations using only a few anomalous examples during training. Experimental results highlight that AE–XAD delivers high-level performance in explaining anomalies in different scenarios while maintaining a minimal CO2 footprint, showcasing a design that is not only highly effective but also environmentally conscious.
AbstractList This work tackles the problem of designing explainable by design anomaly detectors, which provide intelligible explanations to abnormal behaviors in input data observations. In particular, we adopt heatmaps as explanations, where a heatmap can be regarded as a collection of per-feature scores. To explain anomalies, our approach, called AE–XAD11The code of AE–XAD is available at https://github.com/AIDALab-DIMES/AE-XAD. (for AutoEncoder-based eXplainable Anomaly Detection), extends a recently introduced semi-supervised variant of the Autoencoder architecture. The main idea of our proposal is to exploit a reconstruction error strategy for detecting deviating features. Unlike standard Autoencoders, it leverages a semi-supervised loss designed to maximize the distance between the reconstruction and the original value assumed by anomalous features. By means of this strategy, our approach learns to isolate anomalous portions of the input observations using only a few anomalous examples during training. Experimental results highlight that AE–XAD delivers high-level performance in explaining anomalies in different scenarios while maintaining a minimal CO2 footprint, showcasing a design that is not only highly effective but also environmentally conscious.
ArticleNumber 100537
Author Angiulli, Fabrizio
Nisticò, Simona
Fassetti, Fabio
Ferragina, Luca
Author_xml – sequence: 1
  givenname: Fabrizio
  orcidid: 0000-0002-9860-7569
  surname: Angiulli
  fullname: Angiulli, Fabrizio
  email: fabrizio.angiulli@unical.it
– sequence: 2
  givenname: Fabio
  orcidid: 0000-0002-8416-906X
  surname: Fassetti
  fullname: Fassetti, Fabio
  email: fabio.fassetti@unical.it
– sequence: 3
  givenname: Luca
  orcidid: 0000-0003-3184-4639
  surname: Ferragina
  fullname: Ferragina, Luca
  email: luca.ferragina@unical.it
– sequence: 4
  givenname: Simona
  orcidid: 0000-0002-7386-2512
  surname: Nisticò
  fullname: Nisticò, Simona
  email: simona.nistico@unical.it
BookMark eNp9j79uwjAQh62KSqWUJ-iSFwg923FChg4I0VIJqQu75ThncERiZCeovH1N06FTp_uj-52-75FMOtchIc8UFhRo_tIslPfqumDARNyA4MUdmTJRQhqHfPKnfyDzEBqAeEkpFcspKTdf55Oyne0Oiepcq04WQ9IfvRsOxyRga9MwnNFfbMA6WQ29w067Gn14IvdGnQLOf-uM7N82-_U23X2-f6xXu1RzgD4tBXAGaLIiK3Oz1IXheWa0qJCxiK8LhqZQzLCqKFWmueEZXaKo87oyJVR8Rvj4VnsXgkcjz962yl8lBXnzl4388Zc3fzn6x9TrmMJIdrHoZdA2kmNtPepe1s7-m_8GQMdm4g
Cites_doi 10.1007/s10994-025-06779-0
10.1145/3412815.3416893
10.1007/s10618-018-0585-7
10.1109/CVPR.2018.00920
10.1109/TCSS.2022.3164993
10.1109/TVCG.2018.2864812
10.1109/CVPR.2019.00638
10.1109/CVPR.2019.00982
10.3390/s20051459
10.1007/978-3-030-61527-7_39
10.1002/aic.690370209
10.1371/journal.pone.0130140
10.1007/s10994-023-06415-9
10.1145/3219819.3220072
10.1038/s42256-020-00265-z
10.1007/978-3-031-15740-0_28
10.1109/JPROC.2021.3052449
10.1109/TKDE.2023.3328882
10.1109/TCE.2024.3424189
10.1109/TKDE.2024.3404027
10.1007/978-3-031-18840-4_23
10.1145/3531146.3533112
10.1145/3236009
10.1007/s10994-024-06618-8
10.1109/ICCV.2017.74
10.1109/ICCV48922.2021.00822
10.1109/CVPR52688.2022.01392
10.1109/CVPR.2016.90
10.1109/JPROC.2021.3060483
10.1016/j.patrec.2020.04.004
10.1007/978-3-030-88942-5_31
10.1007/3-540-46145-0_17
10.1145/3653677
10.1109/TKDE.2023.3332784
10.1145/2939672.2939778
10.1109/CVPR52729.2023.02346
10.1145/3297280.3297443
10.1126/science.269.5232.1860
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.array.2025.100537
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2590-0056
ExternalDocumentID 10_1016_j_array_2025_100537
S259000562500164X
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
AAYXX
CITATION
ID FETCH-LOGICAL-c300t-950320ef47496f8c7f364fc5be22101c72ef7a2f2b79a4c3f3418e5d6dbf90b3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001604479800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2590-0056
IngestDate Thu Nov 27 01:04:35 EST 2025
Sat Nov 22 16:52:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Explainable Artificial Intelligence
Green-aware AI
Explainability by design
Anomaly detection
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-950320ef47496f8c7f364fc5be22101c72ef7a2f2b79a4c3f3418e5d6dbf90b3
ORCID 0000-0002-8416-906X
0000-0003-3184-4639
0000-0002-7386-2512
0000-0002-9860-7569
OpenAccessLink http://dx.doi.org/10.1016/j.array.2025.100537
ParticipantIDs crossref_primary_10_1016_j_array_2025_100537
elsevier_sciencedirect_doi_10_1016_j_array_2025_100537
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Array (New York)
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Su, Tian, Wan, Yin (b59) 2024; 36
Hojjati, Armanfard (b63) 2023; 36
Tripathy, Guduri, Chakraborty, Bebortta, Pani, Mukhopadhyay (b8) 2024; 71
Chowdhury T, Rahimi R, Allan J. Equi-explanation maps: Concise and informative global summary explanations. In: Proceedings of the 2022 ACM conference on fairness, accountability, and transparency. 2022, p. 464–72.
Shrikumar, Greenside, Kundaje (b24) 2017
2Struct: Privacy, accountability, interpretability, robustness, reasoning on structured data.
Liu, Ting, Zhou (b36) 2008
Zhang Q, Wu YN, Zhu S-C. Interpretable convolutional neural networks. In: IEEE conference on computer vision and pattern recognition. 2018, p. 8827–36.
Ruff, Görnitz, Deecke, Siddiqui, Vandermeulen, Binder (b60) 2018; 80
Ming, Qu, Bertini (b18) 2018; 25
Ribeiro MT, Singh S, Guestrin C. “Why should i trust you?” Explaining the predictions of any classifier. In: Int. conf. ACM SIGKDD. 2016, p. 1135–44.
Rafiei, Breckon, Iosifidis (b75) 2023
Li X, Song X, Wu T. Aognets: Compositional grammatical architectures for deep learning. In: IEEE/CVF conference on computer vision and pattern recognition. 2019, p. 6220–30.
Peake G, Wang J. Explanation mining: Post hoc interpretability of latent factor models for recommendation systems. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. 2018, p. 2060–9.
Kingma, Ba (b74) 2014
Angiulli, De Luca, Fassetti, Nisticó (b25) 2024
Courty (b77) 2024
Schlegl, Seeböck, Waldstein, Schmidt-Erfurth, Langs (b55) 2017; 10265
Czimmermann, Ciuti, Milazzo, Chiurazzi, Roccella, Oddo (b6) 2020; 20
Macha, Akoglu (b34) 2018; 32
Li, Li, Yang, Zhou, Li, Wu (b53) 2024; 18
Zavrtanik V, Kristan M, Skočaj D. Draem-a discriminatively trained reconstruction embedding for surface anomaly detection. In: Proceedings of the IEEE/CVF international conference on computer vision. 2021, p. 8330–9.
Samariya, Aryal, Ting, Ma (b37) 2020
Tan S, Soloviev M, Hooker G, Wells MT. Tree space prototypes: Another look at making tree ensembles interpretable. In: Proceedings of the 2020 ACM-iMS on foundations of data science conference. 2020, p. 23–34.
Guidotti, Monreale, Spinnato, Pedreschi, Giannotti (b23) 2020
Nóbrega C, Marinho L. Towards explaining recommendations through local surrogate models. In: Proceedings of the 34th ACM/SIGAPP symposium on applied computing. 2019, p. 1671–8.
Roth K, Pemula L, Zepeda J, Schölkopf B, Brox T, Gehler P. Towards total recall in industrial anomaly detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, p. 14318–28.
Liu, Shin, Hu (b31) 2017
Pevnỳ T, Kopp M. Explaining anomalies with sapling random forests. In: Information technologies-applications and theory workshops, posters, and tutorials. 2014, p. 7.
Angiulli F, Fassetti F, Ferragina L, Spada R. Cooperative Deep Unsupervised Anomaly Detection. In: Int. conf. on discovery science. 2022, p. 318–28.
Angiulli F, Fassetti F, Ferragina L. Improving Deep Unsupervised Anomaly Detection by Exploiting VAE Latent Space Distribution. In: Int. conf. on discovery science. 2020, p. 596–611.
Bougaham, El Adoui, Linden, Frénay (b58) 2024; 113
Angiulli, Fassetti, Nisticò, Palopoli (b35) 2024; 113
Guidotti, Monreale, Ruggieri, Turini, Giannotti, Pedreschi (b1) 2019; 51
Angiulli F, Fassetti F, Nisticò S, Palopoli L. Outlier Explanation Through Masking Models. In: Advances in databases and information systems: European conference. 2022, p. 392–406.
Angiulli, Fassetti, Ferragina (b5) 2023
Liznerski P, Ruff L, Vandermeulen RA, Franks BJ, Kloft M, Müller K. Explainable Deep One-Class Classification. In: Int. conf. on learn. repr.. 2021.
Pang, Shen, van den Hengel (b65) 2019
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 770–8.
Li, Zhu, van Leeuwen (b3) 2022
Chen, Li, Tao, Barnett, Rudin, Su (b15) 2019; 32
Angiulli, Fassetti, Ferragina (b51) 2022
Hecht-Nielsen (b47) 1995; 269
Liu, Li, Zhou, Jiang, Sun, Wang (b57) 2020; 32
Alvarez-Melis D, Jaakkola TS. Towards Robust Interpretability with Self-Explaining Neural Networks. In: Advances in neural information processing systems. 2018, p. 7786–95.
Defard, Setkov, Loesch, Audigier (b67) 2021
Rio-Torto, Fernandes, Teixeira (b43) 2020; 133
Ley D, Mishra S, Magazzeni D. Global counterfactual explanations: Investigations, implementations and improvements. In: ICLR 2022 workshop on PAIR
Kopp, Pevnỳ, Holena (b33) 2014
Pang, Ding, Shen, Hengel (b71) 2021
Das, Islam, Jayakodi, Doppa (b30) 2018
Pang, Shen, Cao, van den Hengel (b45) 2020
Barr, Fatsi, Hancox-Li, Richter, Proano, Mok (b27) 2023
Ruff, Kauffmann, Vandermeulen, Montavon, Samek, Kloft (b7) 2021; 109
Wang, Nie, Wang, Wang, Li (b54) 2025; 19
Li, Xie, Wang, Xie, Li, Cao (b52) 2023; 36
Verma S, Beniwal A, Sadagopan N, Seshadri A. RecXplainer: Post-Hoc Attribute-Based Explanations for Recommender Systems. In: Progress and challenges in building trustworthy embodied AI.
Mnih, Heess, Graves (b38) 2014; 27
Parekh, Mozharovskyi, d’Alché Buc (b44) 2021; 34
Samek, Montavon, Lapuschkin, Anders, Müller (b2) 2021; 109
Meire, Van Baelen, Ooijevaar, Karsmakers (b64) 2025; 114
Bach, Binder, Montavon, Klauschen, Müller, Samek (b22) 2015; 10
Ruff L, Vandermeulen RA, Görnitz N, Binder A, Müller E, Müller K-R, et al. Deep Semi-Supervised Anomaly Detection. In: Int. conf. on learn. repr.. 2020.
Chen, Bei, Rudin (b41) 2020; 2
Lundberg, Lee (b11) 2017; 30
Akcay, Atapour-Abarghouei, Breckon (b56) 2018
Li, Li, Zhang, Zhao, Jiang, Yang (b28) 2023; 36
Angiulli F, Fassetti F, Nisticò S. Local Interpretable Classifier Explanations with Self-generated Semantic Features. In: Int. conf. on discovery science. 2021, p. 401–10.
Enouen, Nakhost, Ebrahimi, Arik, Liu, Pfister (b26) 2024
An, Cho (b49) 2015
Bergmann P, Fauser M, Sattlegger D, Steger C. MVTec AD — A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection. In: IEEE/CVF conference on computer vision and pattern recognition. 2019, p. 9584–92.
Kramer (b46) 1991; 37
Deng, Dong, Socher, Li, Li, Fei-Fei (b73) 2009
Kong, Huet, Rossi, Sozio (b29) 2023
Hawkins S, He H, Williams G, Baxter R. Outlier Detection Using Replicator Neural Networks. In: Int. conf.. DAWAK, 2002, p. 170–80.
Bhuyan, Chakraborty (b9) 2022; 11
Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE iCCV. 2017, p. 618–26.
Yao X, Li R, Zhang J, Sun J, Zhang C. Explicit boundary guided semi-push-pull contrastive learning for supervised anomaly detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023, p. 24490–9.
Ming (10.1016/j.array.2025.100537_b18) 2018; 25
Pang (10.1016/j.array.2025.100537_b71) 2021
Liu (10.1016/j.array.2025.100537_b31) 2017
Barr (10.1016/j.array.2025.100537_b27) 2023
Ruff (10.1016/j.array.2025.100537_b60) 2018; 80
Guidotti (10.1016/j.array.2025.100537_b1) 2019; 51
10.1016/j.array.2025.100537_b40
Li (10.1016/j.array.2025.100537_b53) 2024; 18
Czimmermann (10.1016/j.array.2025.100537_b6) 2020; 20
Meire (10.1016/j.array.2025.100537_b64) 2025; 114
Bach (10.1016/j.array.2025.100537_b22) 2015; 10
Pang (10.1016/j.array.2025.100537_b45) 2020
Kramer (10.1016/j.array.2025.100537_b46) 1991; 37
Angiulli (10.1016/j.array.2025.100537_b5) 2023
10.1016/j.array.2025.100537_b32
10.1016/j.array.2025.100537_b76
Kong (10.1016/j.array.2025.100537_b29) 2023
Rafiei (10.1016/j.array.2025.100537_b75) 2023
Mnih (10.1016/j.array.2025.100537_b38) 2014; 27
10.1016/j.array.2025.100537_b39
Bhuyan (10.1016/j.array.2025.100537_b9) 2022; 11
Samek (10.1016/j.array.2025.100537_b2) 2021; 109
Liu (10.1016/j.array.2025.100537_b57) 2020; 32
Angiulli (10.1016/j.array.2025.100537_b51) 2022
Samariya (10.1016/j.array.2025.100537_b37) 2020
Schlegl (10.1016/j.array.2025.100537_b55) 2017; 10265
10.1016/j.array.2025.100537_b72
10.1016/j.array.2025.100537_b70
10.1016/j.array.2025.100537_b4
10.1016/j.array.2025.100537_b69
10.1016/j.array.2025.100537_b68
10.1016/j.array.2025.100537_b66
Deng (10.1016/j.array.2025.100537_b73) 2009
10.1016/j.array.2025.100537_b21
10.1016/j.array.2025.100537_b20
Su (10.1016/j.array.2025.100537_b59) 2024; 36
Kopp (10.1016/j.array.2025.100537_b33) 2014
Li (10.1016/j.array.2025.100537_b52) 2023; 36
Kingma (10.1016/j.array.2025.100537_b74) 2014
An (10.1016/j.array.2025.100537_b49) 2015
Wang (10.1016/j.array.2025.100537_b54) 2025; 19
Lundberg (10.1016/j.array.2025.100537_b11) 2017; 30
10.1016/j.array.2025.100537_b62
10.1016/j.array.2025.100537_b61
Das (10.1016/j.array.2025.100537_b30) 2018
Tripathy (10.1016/j.array.2025.100537_b8) 2024; 71
10.1016/j.array.2025.100537_b14
Chen (10.1016/j.array.2025.100537_b41) 2020; 2
10.1016/j.array.2025.100537_b13
10.1016/j.array.2025.100537_b12
Guidotti (10.1016/j.array.2025.100537_b23) 2020
10.1016/j.array.2025.100537_b10
Chen (10.1016/j.array.2025.100537_b15) 2019; 32
Angiulli (10.1016/j.array.2025.100537_b25) 2024
Macha (10.1016/j.array.2025.100537_b34) 2018; 32
Enouen (10.1016/j.array.2025.100537_b26) 2024
10.1016/j.array.2025.100537_b19
10.1016/j.array.2025.100537_b17
10.1016/j.array.2025.100537_b16
Liu (10.1016/j.array.2025.100537_b36) 2008
Ruff (10.1016/j.array.2025.100537_b7) 2021; 109
Defard (10.1016/j.array.2025.100537_b67) 2021
Shrikumar (10.1016/j.array.2025.100537_b24) 2017
Courty (10.1016/j.array.2025.100537_b77) 2024
10.1016/j.array.2025.100537_b50
Akcay (10.1016/j.array.2025.100537_b56) 2018
Li (10.1016/j.array.2025.100537_b28) 2023; 36
Li (10.1016/j.array.2025.100537_b3) 2022
Hecht-Nielsen (10.1016/j.array.2025.100537_b47) 1995; 269
10.1016/j.array.2025.100537_b48
Bougaham (10.1016/j.array.2025.100537_b58) 2024; 113
Parekh (10.1016/j.array.2025.100537_b44) 2021; 34
10.1016/j.array.2025.100537_b42
Hojjati (10.1016/j.array.2025.100537_b63) 2023; 36
Pang (10.1016/j.array.2025.100537_b65) 2019
Angiulli (10.1016/j.array.2025.100537_b35) 2024; 113
Rio-Torto (10.1016/j.array.2025.100537_b43) 2020; 133
References_xml – start-page: 353
  year: 2019
  end-page: 362
  ident: b65
  article-title: Deep anomaly detection with deviation networks
  publication-title: Int. conf. ACM SIGKDD
– volume: 20
  start-page: 1459
  year: 2020
  ident: b6
  article-title: Visual-based defect detection and classification approaches for industrial applications—a survey
  publication-title: Sensors
– start-page: 413
  year: 2008
  end-page: 422
  ident: b36
  article-title: Isolation forest
  publication-title: 2008 eighth ieee international conference on data mining
– reference: Zhang Q, Wu YN, Zhu S-C. Interpretable convolutional neural networks. In: IEEE conference on computer vision and pattern recognition. 2018, p. 8827–36.
– reference: Bergmann P, Fauser M, Sattlegger D, Steger C. MVTec AD — A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection. In: IEEE/CVF conference on computer vision and pattern recognition. 2019, p. 9584–92.
– year: 2024
  ident: b77
  article-title: mlco2/codecarbon: v2.4.1
– year: 2014
  ident: b33
  article-title: Interpreting and clustering outliers with sapling random forests
  publication-title: Inf Technol Appl Theory
– volume: 113
  start-page: 4381
  year: 2024
  end-page: 4406
  ident: b58
  article-title: Composite score for anomaly detection in imbalanced real-world industrial dataset
  publication-title: Mach Learn
– reference: Peake G, Wang J. Explanation mining: Post hoc interpretability of latent factor models for recommendation systems. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. 2018, p. 2060–9.
– reference: Ribeiro MT, Singh S, Guestrin C. “Why should i trust you?” Explaining the predictions of any classifier. In: Int. conf. ACM SIGKDD. 2016, p. 1135–44.
– year: 2021
  ident: b71
  article-title: Explainable deep few-shot anomaly detection with deviation networks
– year: 2014
  ident: b74
  article-title: Adam: A method for stochastic optimization
– volume: 80
  start-page: 4390
  year: 2018
  end-page: 4399
  ident: b60
  article-title: Deep one-class classification
  publication-title: Int. conf. on machine learning, ICML
– volume: 2
  start-page: 772
  year: 2020
  end-page: 782
  ident: b41
  article-title: Concept whitening for interpretable image recognition
  publication-title: Nat Mach Intell
– volume: 71
  start-page: 1889
  year: 2024
  end-page: 1896
  ident: b8
  article-title: An adaptive explainable AI framework for securing consumer electronics-based IoT applications in fog-cloud infrastructure
  publication-title: IEEE Trans Consum Electron
– reference: Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE iCCV. 2017, p. 618–26.
– start-page: 1073
  year: 2023
  end-page: 1078
  ident: b29
  article-title: Tree-based Kendall’s
  publication-title: ICDM
– start-page: 463
  year: 2020
  end-page: 474
  ident: b37
  article-title: A new effective and efficient measure for outlying aspect mining
  publication-title: International conference on web information systems engineering
– start-page: 248
  year: 2009
  end-page: 255
  ident: b73
  article-title: Imagenet: A large-scale hierarchical image database
  publication-title: 2009 IEEE conference on computer vision and pattern recognition
– reference: Tan S, Soloviev M, Hooker G, Wells MT. Tree space prototypes: Another look at making tree ensembles interpretable. In: Proceedings of the 2020 ACM-iMS on foundations of data science conference. 2020, p. 23–34.
– reference: Ley D, Mishra S, Magazzeni D. Global counterfactual explanations: Investigations, implementations and improvements. In: ICLR 2022 workshop on PAIR
– year: 2020
  ident: b45
  article-title: Deep learning for anomaly detection: A review
– volume: 113
  start-page: 7565
  year: 2024
  end-page: 7589
  ident: b35
  article-title: Explaining outliers and anomalous groups via subspace density contrastive loss
  publication-title: Mach Learn
– volume: 30
  year: 2017
  ident: b11
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv Neural Inf Process Syst
– reference: 2Struct: Privacy, accountability, interpretability, robustness, reasoning on structured data.
– volume: 10
  year: 2015
  ident: b22
  article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
  publication-title: PLoS One
– reference: Pevnỳ T, Kopp M. Explaining anomalies with sapling random forests. In: Information technologies-applications and theory workshops, posters, and tutorials. 2014, p. 7.
– volume: 10265
  start-page: 146
  year: 2017
  end-page: 157
  ident: b55
  article-title: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery
  publication-title: Int. conf. IPMI
– reference: Angiulli F, Fassetti F, Ferragina L. Improving Deep Unsupervised Anomaly Detection by Exploiting VAE Latent Space Distribution. In: Int. conf. on discovery science. 2020, p. 596–611.
– reference: He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 770–8.
– reference: Angiulli F, Fassetti F, Nisticò S. Local Interpretable Classifier Explanations with Self-generated Semantic Features. In: Int. conf. on discovery science. 2021, p. 401–10.
– start-page: 167
  year: 2020
  end-page: 176
  ident: b23
  article-title: Explaining any time series classifier
  publication-title: 2020 IEEE second international conference on cognitive machine intelligence
– volume: 36
  start-page: 4346
  year: 2023
  end-page: 4360
  ident: b52
  article-title: A light-weight and robust tensor convolutional autoencoder for anomaly detection
  publication-title: IEEE Trans Knowl Data Eng
– year: 2018
  ident: b30
  article-title: Active anomaly detection via ensembles
– volume: 34
  year: 2021
  ident: b44
  article-title: A framework to learn with interpretation
  publication-title: Adv Neural Inf Process Syst
– start-page: 1
  year: 2022
  end-page: 27
  ident: b51
  article-title: : An unsupervised deep anomaly detection approach exploiting latent space distribution
  publication-title: Mac Lear
– reference: Nóbrega C, Marinho L. Towards explaining recommendations through local surrogate models. In: Proceedings of the 34th ACM/SIGAPP symposium on applied computing. 2019, p. 1671–8.
– volume: 32
  start-page: 1517
  year: 2020
  end-page: 1528
  ident: b57
  article-title: Generative adversarial active learning for unsupervised outlier detection
  publication-title: IEEE Trans Knowl Data Eng
– volume: 109
  start-page: 756
  year: 2021
  end-page: 795
  ident: b7
  article-title: A unifying review of deep and shallow anomaly detection
  publication-title: Proc IEEE
– reference: Ruff L, Vandermeulen RA, Görnitz N, Binder A, Müller E, Müller K-R, et al. Deep Semi-Supervised Anomaly Detection. In: Int. conf. on learn. repr.. 2020.
– reference: Yao X, Li R, Zhang J, Sun J, Zhang C. Explicit boundary guided semi-push-pull contrastive learning for supervised anomaly detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023, p. 24490–9.
– year: 2015
  ident: b49
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
– year: 2022
  ident: b3
  article-title: A survey on explainable anomaly detection
– reference: Angiulli F, Fassetti F, Nisticò S, Palopoli L. Outlier Explanation Through Masking Models. In: Advances in databases and information systems: European conference. 2022, p. 392–406.
– volume: 25
  start-page: 342
  year: 2018
  end-page: 352
  ident: b18
  article-title: Rulematrix: Visualizing and understanding classifiers with rules
  publication-title: IEEE Trans Vis Comput Graphics
– reference: Roth K, Pemula L, Zepeda J, Schölkopf B, Brox T, Gehler P. Towards total recall in industrial anomaly detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, p. 14318–28.
– reference: Alvarez-Melis D, Jaakkola TS. Towards Robust Interpretability with Self-Explaining Neural Networks. In: Advances in neural information processing systems. 2018, p. 7786–95.
– volume: 133
  start-page: 373
  year: 2020
  end-page: 380
  ident: b43
  article-title: Understanding the decisions of CNNs: An in-model approach
  publication-title: Pattern Recognit Lett
– start-page: 3145
  year: 2017
  end-page: 3153
  ident: b24
  article-title: Learning important features through propagating activation differences
  publication-title: International conference on machine learning
– volume: 32
  year: 2019
  ident: b15
  article-title: This looks like that: Deep learning for interpretable image recognition
  publication-title: Adv Neural Inf Process Syst
– volume: 36
  start-page: 3739
  year: 2023
  end-page: 3750
  ident: b63
  article-title: Dasvdd: Deep autoencoding support vector data descriptor for anomaly detection
  publication-title: IEEE Trans Knowl Data Eng
– year: 2023
  ident: b75
  article-title: On pixel-level performance assessment in anomaly detection
– volume: 37
  start-page: 233
  year: 1991
  end-page: 243
  ident: b46
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AIChE J
– start-page: 19
  year: 2024
  end-page: 35
  ident: b25
  article-title: Large language models-based local explanations of text classifiers
  publication-title: International conference on discovery science
– year: 2017
  ident: b31
  article-title: Contextual outlier interpretation
– volume: 114
  start-page: 153
  year: 2025
  ident: b64
  article-title: Constraint guided autoencoders for joint optimization of condition indicator estimation and anomaly detection in machine condition monitoring
  publication-title: Mach Learn
– year: 2023
  ident: b27
  article-title: The disagreement problem in faithfulness metrics
– reference: Hawkins S, He H, Williams G, Baxter R. Outlier Detection Using Replicator Neural Networks. In: Int. conf.. DAWAK, 2002, p. 170–80.
– volume: 32
  start-page: 1444
  year: 2018
  end-page: 1480
  ident: b34
  article-title: Explaining anomalies in groups with characterizing subspace rules
  publication-title: Data Min Knowl Discov
– reference: Angiulli F, Fassetti F, Ferragina L, Spada R. Cooperative Deep Unsupervised Anomaly Detection. In: Int. conf. on discovery science. 2022, p. 318–28.
– year: 2023
  ident: b5
  article-title: Reconstruction error-based anomaly detection with few outlying examples
– volume: 269
  start-page: 1860
  year: 1995
  end-page: -1863
  ident: b47
  article-title: Replicator neural networks for universal optimal source coding
  publication-title: Science
– reference: Liznerski P, Ruff L, Vandermeulen RA, Franks BJ, Kloft M, Müller K. Explainable Deep One-Class Classification. In: Int. conf. on learn. repr.. 2021.
– volume: 109
  start-page: 247
  year: 2021
  end-page: 278
  ident: b2
  article-title: Explaining deep neural networks and beyond: A review of methods and applications
  publication-title: Proc IEEE
– start-page: 13984
  year: 2024
  end-page: 14011
  ident: b26
  article-title: TextGenSHAP: Scalable post-hoc explanations in text generation with long documents
  publication-title: Findings of the association for computational linguistics: ACL 2024
– reference: Zavrtanik V, Kristan M, Skočaj D. Draem-a discriminatively trained reconstruction embedding for surface anomaly detection. In: Proceedings of the IEEE/CVF international conference on computer vision. 2021, p. 8330–9.
– volume: 51
  start-page: 93:1
  year: 2019
  end-page: 93:42
  ident: b1
  article-title: A survey of methods for explaining black box models
  publication-title: ACM Comput Surv
– volume: 11
  start-page: 3131
  year: 2022
  end-page: 3145
  ident: b9
  article-title: Explainable machine learning for data extraction across computational social system
  publication-title: IEEE Trans Comput Soc Syst
– reference: Li X, Song X, Wu T. Aognets: Compositional grammatical architectures for deep learning. In: IEEE/CVF conference on computer vision and pattern recognition. 2019, p. 6220–30.
– volume: 19
  start-page: 1
  year: 2025
  end-page: 22
  ident: b54
  article-title: Fuzzy weighted principal component analysis for anomaly detection
  publication-title: ACM Trans Knowl Discov from Data
– start-page: 475
  year: 2021
  end-page: 489
  ident: b67
  article-title: Padim: A patch distribution modeling framework for anomaly detection and localization
  publication-title: International conference on pattern recognition
– volume: 36
  start-page: 62224
  year: 2023
  end-page: 62243
  ident: b28
  article-title: Interpreting unsupervised anomaly detection in security via rule extraction
  publication-title: Adv Neural Inf Process Syst
– volume: 18
  start-page: 1
  year: 2024
  end-page: 15
  ident: b53
  article-title: SA2E-AD: A stacked attention autoencoder for anomaly detection in multivariate time series
  publication-title: ACM Trans Knowl Discov Data
– reference: Chowdhury T, Rahimi R, Allan J. Equi-explanation maps: Concise and informative global summary explanations. In: Proceedings of the 2022 ACM conference on fairness, accountability, and transparency. 2022, p. 464–72.
– year: 2018
  ident: b56
  article-title: GANomaly: Semi-supervised anomaly detection via adversarial training
– reference: Verma S, Beniwal A, Sadagopan N, Seshadri A. RecXplainer: Post-Hoc Attribute-Based Explanations for Recommender Systems. In: Progress and challenges in building trustworthy embodied AI.
– volume: 36
  start-page: 5605
  year: 2024
  end-page: 5620
  ident: b59
  article-title: Anomaly detection under contaminated data with contamination-immune bidirectional gans
  publication-title: IEEE Trans Knowl Data Eng
– volume: 27
  year: 2014
  ident: b38
  article-title: Recurrent models of visual attention
  publication-title: Adv Neural Inf Process Syst
– volume: 114
  start-page: 153
  issue: 7
  year: 2025
  ident: 10.1016/j.array.2025.100537_b64
  article-title: Constraint guided autoencoders for joint optimization of condition indicator estimation and anomaly detection in machine condition monitoring
  publication-title: Mach Learn
  doi: 10.1007/s10994-025-06779-0
– ident: 10.1016/j.array.2025.100537_b20
  doi: 10.1145/3412815.3416893
– volume: 32
  start-page: 1444
  issue: 5
  year: 2018
  ident: 10.1016/j.array.2025.100537_b34
  article-title: Explaining anomalies in groups with characterizing subspace rules
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-018-0585-7
– ident: 10.1016/j.array.2025.100537_b40
  doi: 10.1109/CVPR.2018.00920
– start-page: 1
  year: 2022
  ident: 10.1016/j.array.2025.100537_b51
  article-title: LatentOut: An unsupervised deep anomaly detection approach exploiting latent space distribution
  publication-title: Mac Lear
– year: 2018
  ident: 10.1016/j.array.2025.100537_b30
– year: 2023
  ident: 10.1016/j.array.2025.100537_b5
– start-page: 19
  year: 2024
  ident: 10.1016/j.array.2025.100537_b25
  article-title: Large language models-based local explanations of text classifiers
– year: 2014
  ident: 10.1016/j.array.2025.100537_b74
– volume: 34
  year: 2021
  ident: 10.1016/j.array.2025.100537_b44
  article-title: A framework to learn with interpretation
  publication-title: Adv Neural Inf Process Syst
– volume: 11
  start-page: 3131
  issue: 3
  year: 2022
  ident: 10.1016/j.array.2025.100537_b9
  article-title: Explainable machine learning for data extraction across computational social system
  publication-title: IEEE Trans Comput Soc Syst
  doi: 10.1109/TCSS.2022.3164993
– volume: 25
  start-page: 342
  issue: 1
  year: 2018
  ident: 10.1016/j.array.2025.100537_b18
  article-title: Rulematrix: Visualizing and understanding classifiers with rules
  publication-title: IEEE Trans Vis Comput Graphics
  doi: 10.1109/TVCG.2018.2864812
– ident: 10.1016/j.array.2025.100537_b39
  doi: 10.1109/CVPR.2019.00638
– volume: 32
  start-page: 1517
  issue: 8
  year: 2020
  ident: 10.1016/j.array.2025.100537_b57
  article-title: Generative adversarial active learning for unsupervised outlier detection
  publication-title: IEEE Trans Knowl Data Eng
– start-page: 463
  year: 2020
  ident: 10.1016/j.array.2025.100537_b37
  article-title: A new effective and efficient measure for outlying aspect mining
– year: 2018
  ident: 10.1016/j.array.2025.100537_b56
– start-page: 3145
  year: 2017
  ident: 10.1016/j.array.2025.100537_b24
  article-title: Learning important features through propagating activation differences
– ident: 10.1016/j.array.2025.100537_b76
  doi: 10.1109/CVPR.2019.00982
– year: 2024
  ident: 10.1016/j.array.2025.100537_b77
– start-page: 248
  year: 2009
  ident: 10.1016/j.array.2025.100537_b73
  article-title: Imagenet: A large-scale hierarchical image database
– volume: 20
  start-page: 1459
  issue: 5
  year: 2020
  ident: 10.1016/j.array.2025.100537_b6
  article-title: Visual-based defect detection and classification approaches for industrial applications—a survey
  publication-title: Sensors
  doi: 10.3390/s20051459
– ident: 10.1016/j.array.2025.100537_b50
  doi: 10.1007/978-3-030-61527-7_39
– ident: 10.1016/j.array.2025.100537_b19
– ident: 10.1016/j.array.2025.100537_b42
– year: 2022
  ident: 10.1016/j.array.2025.100537_b3
– volume: 37
  start-page: 233
  issue: 2
  year: 1991
  ident: 10.1016/j.array.2025.100537_b46
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AIChE J
  doi: 10.1002/aic.690370209
– volume: 30
  year: 2017
  ident: 10.1016/j.array.2025.100537_b11
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv Neural Inf Process Syst
– start-page: 413
  year: 2008
  ident: 10.1016/j.array.2025.100537_b36
  article-title: Isolation forest
– volume: 10
  issue: 7
  year: 2015
  ident: 10.1016/j.array.2025.100537_b22
  article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0130140
– start-page: 1073
  year: 2023
  ident: 10.1016/j.array.2025.100537_b29
  article-title: Tree-based Kendall’s τ maximization for explainable unsupervised anomaly detection
– volume: 113
  start-page: 4381
  issue: 7
  year: 2024
  ident: 10.1016/j.array.2025.100537_b58
  article-title: Composite score for anomaly detection in imbalanced real-world industrial dataset
  publication-title: Mach Learn
  doi: 10.1007/s10994-023-06415-9
– year: 2021
  ident: 10.1016/j.array.2025.100537_b71
– ident: 10.1016/j.array.2025.100537_b32
– ident: 10.1016/j.array.2025.100537_b14
  doi: 10.1145/3219819.3220072
– volume: 2
  start-page: 772
  issue: 12
  year: 2020
  ident: 10.1016/j.array.2025.100537_b41
  article-title: Concept whitening for interpretable image recognition
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-020-00265-z
– ident: 10.1016/j.array.2025.100537_b4
  doi: 10.1007/978-3-031-15740-0_28
– volume: 109
  start-page: 756
  issue: 5
  year: 2021
  ident: 10.1016/j.array.2025.100537_b7
  article-title: A unifying review of deep and shallow anomaly detection
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2021.3052449
– volume: 36
  start-page: 3739
  issue: 8
  year: 2023
  ident: 10.1016/j.array.2025.100537_b63
  article-title: Dasvdd: Deep autoencoding support vector data descriptor for anomaly detection
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2023.3328882
– volume: 71
  start-page: 1889
  issue: 1
  year: 2024
  ident: 10.1016/j.array.2025.100537_b8
  article-title: An adaptive explainable AI framework for securing consumer electronics-based IoT applications in fog-cloud infrastructure
  publication-title: IEEE Trans Consum Electron
  doi: 10.1109/TCE.2024.3424189
– volume: 36
  start-page: 5605
  issue: 11
  year: 2024
  ident: 10.1016/j.array.2025.100537_b59
  article-title: Anomaly detection under contaminated data with contamination-immune bidirectional gans
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2024.3404027
– volume: 10265
  start-page: 146
  year: 2017
  ident: 10.1016/j.array.2025.100537_b55
  article-title: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery
– ident: 10.1016/j.array.2025.100537_b62
  doi: 10.1007/978-3-031-18840-4_23
– ident: 10.1016/j.array.2025.100537_b17
  doi: 10.1145/3531146.3533112
– start-page: 13984
  year: 2024
  ident: 10.1016/j.array.2025.100537_b26
  article-title: TextGenSHAP: Scalable post-hoc explanations in text generation with long documents
– year: 2014
  ident: 10.1016/j.array.2025.100537_b33
  article-title: Interpreting and clustering outliers with sapling random forests
  publication-title: Inf Technol Appl Theory
– year: 2020
  ident: 10.1016/j.array.2025.100537_b45
– volume: 32
  year: 2019
  ident: 10.1016/j.array.2025.100537_b15
  article-title: This looks like that: Deep learning for interpretable image recognition
  publication-title: Adv Neural Inf Process Syst
– volume: 51
  start-page: 93:1
  issue: 5
  year: 2019
  ident: 10.1016/j.array.2025.100537_b1
  article-title: A survey of methods for explaining black box models
  publication-title: ACM Comput Surv
  doi: 10.1145/3236009
– volume: 113
  start-page: 7565
  issue: 10
  year: 2024
  ident: 10.1016/j.array.2025.100537_b35
  article-title: Explaining outliers and anomalous groups via subspace density contrastive loss
  publication-title: Mach Learn
  doi: 10.1007/s10994-024-06618-8
– ident: 10.1016/j.array.2025.100537_b21
  doi: 10.1109/ICCV.2017.74
– ident: 10.1016/j.array.2025.100537_b68
  doi: 10.1109/ICCV48922.2021.00822
– ident: 10.1016/j.array.2025.100537_b66
  doi: 10.1109/CVPR52688.2022.01392
– volume: 36
  start-page: 62224
  year: 2023
  ident: 10.1016/j.array.2025.100537_b28
  article-title: Interpreting unsupervised anomaly detection in security via rule extraction
  publication-title: Adv Neural Inf Process Syst
– ident: 10.1016/j.array.2025.100537_b72
  doi: 10.1109/CVPR.2016.90
– ident: 10.1016/j.array.2025.100537_b69
– year: 2023
  ident: 10.1016/j.array.2025.100537_b27
– volume: 109
  start-page: 247
  issue: 3
  year: 2021
  ident: 10.1016/j.array.2025.100537_b2
  article-title: Explaining deep neural networks and beyond: A review of methods and applications
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2021.3060483
– volume: 133
  start-page: 373
  year: 2020
  ident: 10.1016/j.array.2025.100537_b43
  article-title: Understanding the decisions of CNNs: An in-model approach
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2020.04.004
– start-page: 167
  year: 2020
  ident: 10.1016/j.array.2025.100537_b23
  article-title: Explaining any time series classifier
– year: 2017
  ident: 10.1016/j.array.2025.100537_b31
– ident: 10.1016/j.array.2025.100537_b12
  doi: 10.1007/978-3-030-88942-5_31
– ident: 10.1016/j.array.2025.100537_b48
  doi: 10.1007/3-540-46145-0_17
– volume: 19
  start-page: 1
  issue: 3
  year: 2025
  ident: 10.1016/j.array.2025.100537_b54
  article-title: Fuzzy weighted principal component analysis for anomaly detection
  publication-title: ACM Trans Knowl Discov from Data
– volume: 18
  start-page: 1
  issue: 7
  year: 2024
  ident: 10.1016/j.array.2025.100537_b53
  article-title: SA2E-AD: A stacked attention autoencoder for anomaly detection in multivariate time series
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/3653677
– year: 2015
  ident: 10.1016/j.array.2025.100537_b49
– volume: 36
  start-page: 4346
  issue: 9
  year: 2023
  ident: 10.1016/j.array.2025.100537_b52
  article-title: A light-weight and robust tensor convolutional autoencoder for anomaly detection
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2023.3332784
– start-page: 475
  year: 2021
  ident: 10.1016/j.array.2025.100537_b67
  article-title: Padim: A patch distribution modeling framework for anomaly detection and localization
– ident: 10.1016/j.array.2025.100537_b10
  doi: 10.1145/2939672.2939778
– ident: 10.1016/j.array.2025.100537_b70
  doi: 10.1109/CVPR52729.2023.02346
– ident: 10.1016/j.array.2025.100537_b13
– start-page: 353
  year: 2019
  ident: 10.1016/j.array.2025.100537_b65
  article-title: Deep anomaly detection with deviation networks
– year: 2023
  ident: 10.1016/j.array.2025.100537_b75
– ident: 10.1016/j.array.2025.100537_b16
  doi: 10.1145/3297280.3297443
– volume: 27
  year: 2014
  ident: 10.1016/j.array.2025.100537_b38
  article-title: Recurrent models of visual attention
  publication-title: Adv Neural Inf Process Syst
– volume: 80
  start-page: 4390
  year: 2018
  ident: 10.1016/j.array.2025.100537_b60
  article-title: Deep one-class classification
– ident: 10.1016/j.array.2025.100537_b61
– volume: 269
  start-page: 1860
  issue: 5232
  year: 1995
  ident: 10.1016/j.array.2025.100537_b47
  article-title: Replicator neural networks for universal optimal source coding
  publication-title: Science
  doi: 10.1126/science.269.5232.1860
SSID ssj0002511158
Score 2.310182
Snippet This work tackles the problem of designing explainable by design anomaly detectors, which provide intelligible explanations to abnormal behaviors in input data...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 100537
SubjectTerms Anomaly detection
Explainability by design
Explainable Artificial Intelligence
Green-aware AI
Title Explaining anomalies through semi-supervised Autoencoders
URI https://dx.doi.org/10.1016/j.array.2025.100537
Volume 28
WOSCitedRecordID wos001604479800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2590-0056
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511158
  issn: 2590-0056
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2590-0056
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511158
  issn: 2590-0056
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKwoELb8TyWOXADVIljhPbxwWBuFBx6GFvke2OUVdsWjVptXDgtzN-pMku1Yo9cIkqp52knq_T8WT8fYS8pcByCgX-0halTJmBRaqZhjQHRY0UholKe7EJPpuJszP5bTLZ9Xthdj9404jLS7n-r67GMXS22zp7C3fvjeIAvkan4xHdjsd_crzrqguyD-9Us7rAPNuxOEQ5nhYulmm7XbsI0WKuebrtVo7KchEb4QdC2o36eVWpZ1Qx-L50j5B83qv0Zvkr9HIFTse2ha7rz41OAFp0GhC-ELAdGoRmninaPa__QH0pFsETFL37YgQtR40dPmbhYsptVC8ju_WBsRh0447wEDVzzypzMKCH2sL5VLmvPXWXnA7vvkqffe1vbd9s2PexndfeSO2M1MHIHXKX8lK6VsCvv4fanFt25V7adX_vPWGVbw3862YOJzWjRGX-iDyIK4zkNCDjMZlA84Q87NU7khjMnxI5ACXZAyWJQEmuASUZA-UZmX_-NP_4JY1CGqkpsqxLZZkVNAPLOJOVFYbbomLWlBoorvhzwylYrqilmkvFTGExtRFQOq0xKzNdPCdHzaqBFyTBycqkMYWwKme20loWwMQit5aLTEk4Ju_7iajXgS6lvmH-j0nVT1YdM76QydXo_5s--PJ213lF7g9ofU2Ous0W3pB7Ztct282Jr8OceAj8AUBid6s
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explaining+anomalies+through+semi-supervised+Autoencoders&rft.jtitle=Array+%28New+York%29&rft.au=Angiulli%2C+Fabrizio&rft.au=Fassetti%2C+Fabio&rft.au=Ferragina%2C+Luca&rft.au=Nistic%C3%B2%2C+Simona&rft.date=2025-12-01&rft.issn=2590-0056&rft.eissn=2590-0056&rft.volume=28&rft.spage=100537&rft_id=info:doi/10.1016%2Fj.array.2025.100537&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_array_2025_100537
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0056&client=summon