Self-Adaptive Population-Based Iterated Greedy Algorithm for Distributed Permutation Flowshop Scheduling Problem with Part of Jobs Subject to a Common Deadline Constraint

Although the distributed permutation flowshop scheduling problem (DPFSP) has recently received extensive research attention, most studies assume that either all jobs have due date constraints or none of them do. Nevertheless, in practice, it is very common to schedule jobs with due dates alongside j...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 248; s. 123278
Hlavní autori: Li, Qiu-Ying, Pan, Quan-Ke, Sang, Hong-Yan, Jing, Xue-Lei, Framiñán, Jose M., Li, Wei-Min
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 15.08.2024
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Although the distributed permutation flowshop scheduling problem (DPFSP) has recently received extensive research attention, most studies assume that either all jobs have due date constraints or none of them do. Nevertheless, in practice, it is very common to schedule jobs with due dates alongside jobs without a due date. This paper addresses a DPFSP with part of jobs subject to a common deadline (DPFSP-PJCD). The objective is to minimize the total completion time. We establish a mathematical model and propose a Self-adaptive Population-based Iterated Greedy (SPIG) algorithm that is specifically tailored to the characteristics of the problem. We design a hybrid constructive heuristic to generate a population of potentially high-quality solutions. We introduce an insertion-based acceleration method that combines three distinct accelerations to improve operational efficiency. We propose some effective operators to carry out the selection, destruction, and construction of solutions, as well as a local search mechanism, to balance the exploitation and exploration of the algorithm. Additionally, we employ a self-adaptive method to determine a key algorithmic parameter depending on the search phase and search space. We also utilize a self-adjustment insertion procedure to handle infeasible solutions. Through comprehensive experimental evaluations, we demonstrate that the proposed SPIG outperforms five state-of-the-art metaheuristics from the closely related literature, providing effective solutions for the DPFSP-PJCD considered.
AbstractList Although the distributed permutation flowshop scheduling problem (DPFSP) has recently received extensive research attention, most studies assume that either all jobs have due date constraints or none of them do. Nevertheless, in practice, it is very common to schedule jobs with due dates alongside jobs without a due date. This paper addresses a DPFSP with part of jobs subject to a common deadline (DPFSP-PJCD). The objective is to minimize the total completion time. We establish a mathematical model and propose a Self-adaptive Population-based Iterated Greedy (SPIG) algorithm that is specifically tailored to the characteristics of the problem. We design a hybrid constructive heuristic to generate a population of potentially high-quality solutions. We introduce an insertion-based acceleration method that combines three distinct accelerations to improve operational efficiency. We propose some effective operators to carry out the selection, destruction, and construction of solutions, as well as a local search mechanism, to balance the exploitation and exploration of the algorithm. Additionally, we employ a self-adaptive method to determine a key algorithmic parameter depending on the search phase and search space. We also utilize a self-adjustment insertion procedure to handle infeasible solutions. Through comprehensive experimental evaluations, we demonstrate that the proposed SPIG outperforms five state-of-the-art metaheuristics from the closely related literature, providing effective solutions for the DPFSP-PJCD considered.
ArticleNumber 123278
Author Pan, Quan-Ke
Jing, Xue-Lei
Li, Qiu-Ying
Li, Wei-Min
Sang, Hong-Yan
Framiñán, Jose M.
Author_xml – sequence: 1
  givenname: Qiu-Ying
  surname: Li
  fullname: Li, Qiu-Ying
  email: liqiuying@shu.edu.cn
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, PR China
– sequence: 2
  givenname: Quan-Ke
  orcidid: 0000-0002-5022-7946
  surname: Pan
  fullname: Pan, Quan-Ke
  email: panquanke@shu.edu.cn
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, PR China
– sequence: 3
  givenname: Hong-Yan
  surname: Sang
  fullname: Sang, Hong-Yan
  email: sanghongyan@lcu-cs.com
  organization: School of Computer Science and Technology, Liaocheng University, Liaocheng 252000, PR China
– sequence: 4
  givenname: Xue-Lei
  orcidid: 0000-0002-6181-6551
  surname: Jing
  fullname: Jing, Xue-Lei
  email: jingxuelei@lcu.edu.cn
  organization: Network Information Center, Liaocheng University, Liaocheng 252000, PR China
– sequence: 5
  givenname: Jose M.
  surname: Framiñán
  fullname: Framiñán, Jose M.
  email: framinan@us.es
  organization: Industrial Management, School of Engineering, University of Seville. Camino de los Descubrimientos s/n, 41092 Seville, Spain
– sequence: 6
  givenname: Wei-Min
  surname: Li
  fullname: Li, Wei-Min
  email: wmli@shu.edu.cn
  organization: School of Computer Engineering and Science, Shanghai University, Shanghai 200000, PR China
BookMark eNp9kM1O4zAQgC3ESltgX2BPfoEU_6RxIu2lW_6FRKXuni3HHlNXSVzZDhWvxFPiUE4cOM2MNN_8fGfodPADIPSbkjkltLrczSEe1JwRVs4p40zUJ2hGa8GLSjT8FM1IsxBFSUX5E53FuCOECkLEDL1toLPF0qh9ci-A134_dio5PxR_VQSD7xMElXJyGwDMK152zz64tO2x9QFfuZiCa8epYQ2hH9MHi286f4hbv8cbvQUzdm54xuvg2w56fMg0XquQsLf4wbcRb8Z2Bzrh5LHCK9_3ecIVKJMxyPWQdyg3pAv0w6ouwq_PeI7-31z_W90Vj0-396vlY6E5IaloSsaMpVAb2gorykaAhnrB6tIuyopXFHi2JDSriLKcKEUasTAVQFNz3oLh54gd5-rgYwxg5T64XoVXSYmcbMudnGzLybY82s5Q_QXS7ihjOr77Hv1zRCE_9eIgyKgdDBqMC1mLNN59h78DxySgrQ
CitedBy_id crossref_primary_10_1016_j_cie_2025_110949
crossref_primary_10_1016_j_ejor_2025_02_009
crossref_primary_10_1109_TCYB_2025_3538007
crossref_primary_10_1109_TEVC_2024_3443874
crossref_primary_10_3390_app15126560
crossref_primary_10_1016_j_eswa_2025_129512
crossref_primary_10_1016_j_jmsy_2024_10_014
crossref_primary_10_3390_math13162640
crossref_primary_10_1016_j_asoc_2024_112461
crossref_primary_10_1016_j_swevo_2024_101696
Cites_doi 10.1016/j.cie.2022.107961
10.1002/nav.22076
10.1016/j.cor.2014.02.005
10.1016/j.knosys.2022.108471
10.1016/j.omega.2018.03.004
10.1016/j.asoc.2020.106629
10.1016/j.ejor.2022.02.019
10.1080/00207543.2022.2047238
10.1049/cim2.12060
10.1016/j.knosys.2019.104894
10.1016/j.cie.2021.107843
10.1080/00207543.2014.948578
10.1016/j.eswa.2023.121790
10.1016/j.swevo.2021.100874
10.1007/s12597-020-00484-3
10.1080/00207543.2020.1837982
10.1016/0377-2217(90)90090-X
10.22219/JTIUMM.Vol19.No1.11-20
10.1016/j.knosys.2021.106959
10.1080/00207543.2020.1757174
10.1016/j.ejor.2005.12.009
10.1145/3561613.3561642
10.1016/j.engappai.2022.105418
10.1016/j.eswa.2019.01.062
10.1016/j.cie.2018.09.007
10.1016/j.asoc.2021.108371
10.1051/ro/2018103
10.1016/j.swevo.2022.101143
10.1016/j.swevo.2022.101179
10.1016/j.swevo.2020.100742
10.1016/j.eswa.2022.118068
10.1016/j.ins.2009.12.025
10.1016/j.cor.2021.105691
10.1016/j.knosys.2021.108036
10.1016/j.cie.2020.107021
10.1016/j.jmsy.2023.07.004
10.1109/TCYB.2021.3069184
10.1016/j.eswa.2023.120909
10.1016/j.cor.2020.105204
10.1016/j.cie.2018.03.014
10.1016/j.cor.2009.06.019
10.1016/j.knosys.2022.108413
10.1016/j.eswa.2022.117256
10.1016/j.engappai.2021.104375
10.1016/j.eswa.2022.119359
10.1016/j.ijpe.2019.05.017
10.1016/j.aei.2022.101776
10.3390/sym14020204
10.1016/j.swevo.2018.12.001
10.1016/j.omega.2013.10.002
10.1016/j.cor.2006.08.016
10.1109/TCYB.2020.3041494
10.1002/nav.22097
10.1016/j.eswa.2017.10.050
10.1016/j.eswa.2023.120830
10.1016/j.eswa.2022.116921
10.1287/moor.1.2.117
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2024.123278
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2024_123278
S095741742400143X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY1
LY7
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-9422df1e8d1b7f7497ece85284f546361e30247c260af30aa0975d6ee9833bed3
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001181324600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Nov 18 22:23:53 EST 2025
Sat Nov 29 07:09:33 EST 2025
Sat Apr 27 15:44:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Distributed permutation flowshop
Scheduling
Iterated greedy
Total completion time
Deadline
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-9422df1e8d1b7f7497ece85284f546361e30247c260af30aa0975d6ee9833bed3
ORCID 0000-0002-5022-7946
0000-0002-6181-6551
ParticipantIDs crossref_primary_10_1016_j_eswa_2024_123278
crossref_citationtrail_10_1016_j_eswa_2024_123278
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_123278
PublicationCentury 2000
PublicationDate 2024-08-15
PublicationDateYYYYMMDD 2024-08-15
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fernandez-Viagas, Framinan (b0030) 2015; 53
Xiong, Chu, Li, Du, Wang (b0265) 2021; 129
Khare, Agrawal (b0080) 2021; 59
Li, Pan, Ruiz, Sang (b0100) 2022; 239
Huang, Pan, Gao (b0060) 2020; 59
Yu, Zhang, Yang, Wang, Huang, Han (b0285) 2022; 75
Zhu, Zhao, Wang, Ding, Xu, Jonrinaldi. (b0315) 2022; 198
Ruiz, Pan, Naderi (b0195) 2019; 83
Ali, Gajpal, Elmekkawy (b0005) 2021; 58
Qin, Han, Liu, Li, Pan, Xue-Han. (b0190) 2022; 201
Yang, Xu (b0280) 2021; 59
Chen, Pan, Gao, Sang (b0015) 2021; 104
Missaoui, Ruiz (b0140) 2022; 303
Li, He, Cao (b0085) 2022; 52
Vallada, Ruiz, Minella (b0240) 2008; 35
Perez-Gonzalez, Framinan (b0180) 2023; S0377221723001170
Huang, Pan, Huang, Suganthan, Gao (b0070) 2021; 152
Liu, Wang, Li, Gao (b0110) 2023; 70
Sang, Pan, Li, Wang, Han, Gao, Duan (b0205) 2019; 44
Taillard (b0235) 1990; 47
Zhao, Shao, Wang, Xu, Zhu, Jonrinaldi. (b0300) 2022; 243
Wang, Pan, Gao, Jing, Sun (b0255) 2023; 101320
Mohammadi, Al-e-Hashem, Rekik (b0145) 2020; 219
Pan, Gao, Wang, Liang, Li (b0165) 2019; 124
Li, Pan, He, Sang, Gao, Jing (b0090) 2022; 165
He, Pan, Gao, Neufeld (b0055) 2023; S0377221723002655
Pan (b0155) 2011
Naderi, Ruiz (b0150) 2010; 37
Pan, Gao, Wang (b0160) 2022; 52
Wang, Pan, Gao, Wang (b0260) 2022; 74
Xiong, Xing, Wang, Lei, Han (b0270) 2014; 47
Framinan, Leisten, Ruiz García (b0045) 2014
Pan, Ruiz (b0170) 2014; 44
Ruiz, Stützle (b0200) 2007; 177
187–192. https://doi.org/10.1145/3561613.3561642.
Huang, Pan, Gao (b0065) 2023; 61
Zheng, Yuan, Zheng, Lei (b0310) 2022; 14
Pan, Tasgetiren, Liang (b0175) 2008
Meng, Pan, Wang (b0135) 2019; 184
Qiao, Wu, He, Li, Chen (b0185) 2022; 208
Feng, Zhao, Jiang, Tao, Mei (b0025) 2024; 238
Yang, Wang, Xu (b0275) 2022; 54
Fernandez-Viagas, Perez-Gonzalez, Framinan (b0035) 2018; 118
Masudin, Kamara (b0130) 2018; 19
Dolgui, Kovalyov, Lin (b0020) 2022; 69
Shabtay (b0210) 2023; 70
Zhao, Di, Wang, Xu, Zhu, Jonrinaldi. (b0295) 2022; 116
Brum, Ruiz, Ritt (b0010) 2022; 163
Sun, Vogel-Heuser, Bi, Shen (b0230) 2022; 4
Garey, Johnson, Sethi (b0050) 1976; 1
Wang (b0250) 2023
Mao, Pan, Miao, Gao, Chen (b0125) 2022; 242
Mao, F., Liu, X., & Zhao, H. (2022). An Adaptive Population-based Iterative Greedy Algorithm for Optimizing the Maximum Completion Time of Hybrid Flow Shop.
Maghsoudlou, Afshar-Nadjafi, Niaki (b0115) 2019; 53
Shao, Shao, Pi (b0215) 2021; 221
Jing, Pan, Gao, Wang (b0075) 2020; 96
Zhao, Xu, Wang, Zhu, Xu, Jonrinaldi. (b0305) 2022; 1–12
Fernandez-Viagas, Valente, Framinan (b0040) 2018; 94
Li, Pan, Li, Gao, Tasgetiren (b0095) 2021; 63
Silva, Valente, Schaller (b0220) 2022; 140
Zhang, Xing (b0290) 2018; 125
Lin, Jing, Jia (b0105) 2023; 233
Sun, Zheng, Song, Cheng, Lang, Yuan, Wang (b0225) 2023; 215
Wang, Lei, Cai (b0245) 2022; 117
Huang (10.1016/j.eswa.2024.123278_b0060) 2020; 59
Missaoui (10.1016/j.eswa.2024.123278_b0140) 2022; 303
Pan (10.1016/j.eswa.2024.123278_b0165) 2019; 124
Vallada (10.1016/j.eswa.2024.123278_b0240) 2008; 35
Yang (10.1016/j.eswa.2024.123278_b0275) 2022; 54
Liu (10.1016/j.eswa.2024.123278_b0110) 2023; 70
Zheng (10.1016/j.eswa.2024.123278_b0310) 2022; 14
Yu (10.1016/j.eswa.2024.123278_b0285) 2022; 75
Li (10.1016/j.eswa.2024.123278_b0100) 2022; 239
Perez-Gonzalez (10.1016/j.eswa.2024.123278_b0180) 2023; S0377221723001170
Framinan (10.1016/j.eswa.2024.123278_b0045) 2014
Masudin (10.1016/j.eswa.2024.123278_b0130) 2018; 19
Mohammadi (10.1016/j.eswa.2024.123278_b0145) 2020; 219
Wang (10.1016/j.eswa.2024.123278_b0245) 2022; 117
He (10.1016/j.eswa.2024.123278_b0055) 2023; S0377221723002655
Pan (10.1016/j.eswa.2024.123278_b0175) 2008
Khare (10.1016/j.eswa.2024.123278_b0080) 2021; 59
Wang (10.1016/j.eswa.2024.123278_b0255) 2023; 101320
Shabtay (10.1016/j.eswa.2024.123278_b0210) 2023; 70
Maghsoudlou (10.1016/j.eswa.2024.123278_b0115) 2019; 53
Zhao (10.1016/j.eswa.2024.123278_b0295) 2022; 116
Mao (10.1016/j.eswa.2024.123278_b0125) 2022; 242
Qiao (10.1016/j.eswa.2024.123278_b0185) 2022; 208
Silva (10.1016/j.eswa.2024.123278_b0220) 2022; 140
Xiong (10.1016/j.eswa.2024.123278_b0265) 2021; 129
Wang (10.1016/j.eswa.2024.123278_b0260) 2022; 74
Ruiz (10.1016/j.eswa.2024.123278_b0195) 2019; 83
Fernandez-Viagas (10.1016/j.eswa.2024.123278_b0030) 2015; 53
Zhang (10.1016/j.eswa.2024.123278_b0290) 2018; 125
Fernandez-Viagas (10.1016/j.eswa.2024.123278_b0035) 2018; 118
Sang (10.1016/j.eswa.2024.123278_b0205) 2019; 44
Zhao (10.1016/j.eswa.2024.123278_b0305) 2022; 1–12
Chen (10.1016/j.eswa.2024.123278_b0015) 2021; 104
Li (10.1016/j.eswa.2024.123278_b0095) 2021; 63
10.1016/j.eswa.2024.123278_b0120
Pan (10.1016/j.eswa.2024.123278_b0155) 2011
Pan (10.1016/j.eswa.2024.123278_b0160) 2022; 52
Sun (10.1016/j.eswa.2024.123278_b0225) 2023; 215
Feng (10.1016/j.eswa.2024.123278_b0025) 2024; 238
Huang (10.1016/j.eswa.2024.123278_b0065) 2023; 61
Brum (10.1016/j.eswa.2024.123278_b0010) 2022; 163
Li (10.1016/j.eswa.2024.123278_b0085) 2022; 52
Li (10.1016/j.eswa.2024.123278_b0090) 2022; 165
Huang (10.1016/j.eswa.2024.123278_b0070) 2021; 152
Zhu (10.1016/j.eswa.2024.123278_b0315) 2022; 198
Naderi (10.1016/j.eswa.2024.123278_b0150) 2010; 37
Xiong (10.1016/j.eswa.2024.123278_b0270) 2014; 47
Ali (10.1016/j.eswa.2024.123278_b0005) 2021; 58
Ruiz (10.1016/j.eswa.2024.123278_b0200) 2007; 177
Sun (10.1016/j.eswa.2024.123278_b0230) 2022; 4
Jing (10.1016/j.eswa.2024.123278_b0075) 2020; 96
Lin (10.1016/j.eswa.2024.123278_b0105) 2023; 233
Meng (10.1016/j.eswa.2024.123278_b0135) 2019; 184
Fernandez-Viagas (10.1016/j.eswa.2024.123278_b0040) 2018; 94
Qin (10.1016/j.eswa.2024.123278_b0190) 2022; 201
Garey (10.1016/j.eswa.2024.123278_b0050) 1976; 1
Taillard (10.1016/j.eswa.2024.123278_b0235) 1990; 47
Wang (10.1016/j.eswa.2024.123278_b0250) 2023
Zhao (10.1016/j.eswa.2024.123278_b0300) 2022; 243
Yang (10.1016/j.eswa.2024.123278_b0280) 2021; 59
Pan (10.1016/j.eswa.2024.123278_b0170) 2014; 44
Shao (10.1016/j.eswa.2024.123278_b0215) 2021; 221
Dolgui (10.1016/j.eswa.2024.123278_b0020) 2022; 69
References_xml – volume: 117
  year: 2022
  ident: b0245
  article-title: An adaptive artificial bee colony with reinforcement learning for distributed three-stage assembly scheduling with maintenance
  publication-title: Applied Soft Computing
– volume: 53
  start-page: 1111
  year: 2015
  end-page: 1123
  ident: b0030
  article-title: A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem
  publication-title: International Journal of Production Research
– volume: 125
  start-page: 423
  year: 2018
  end-page: 433
  ident: b0290
  article-title: Memetic social spider optimization algorithm for scheduling two-stage assembly flowshop in a distributed environment
  publication-title: Computers & Industrial Engineering
– volume: 96
  year: 2020
  ident: b0075
  article-title: An effective Iterated Greedy algorithm for the distributed permutation flowshop scheduling with due windows
  publication-title: Applied Soft Computing
– volume: 4
  start-page: 166
  year: 2022
  end-page: 180
  ident: b0230
  article-title: A deep reinforcement learning based approach for dynamic distributed blocking flowshop scheduling with job insertions
  publication-title: IET Collaborative Intelligent Manufacturing
– volume: 303
  start-page: 99
  year: 2022
  end-page: 113
  ident: b0140
  article-title: A parameter-Less iterated greedy method for the hybrid flowshop scheduling problem with setup times and due date windows
  publication-title: European Journal of Operational Research
– volume: 70
  start-page: 127
  year: 2023
  end-page: 136
  ident: b0110
  article-title: An improved genetic algorithm with modified critical path-based searching for integrated process planning and scheduling problem considering automated guided vehicle transportation task
  publication-title: Journal of Manufacturing Systems
– volume: 63
  year: 2021
  ident: b0095
  article-title: An Adaptive Iterated Greedy algorithm for distributed mixed no-idle permutation flowshop scheduling problems
  publication-title: Swarm and Evolutionary Computation
– volume: 69
  start-page: 1124
  year: 2022
  end-page: 1137
  ident: b0020
  article-title: Maximizing total early work in a distributed two-machine flow-shop
  publication-title: Naval Research Logistics (NRL)
– volume: 44
  start-page: 64
  year: 2019
  end-page: 73
  ident: b0205
  article-title: Effective invasive weed optimization algorithms for distributed assembly permutation flowshop problem with total flowtime criterion
  publication-title: Swarm and Evolutionary Computation
– start-page: 45
  year: 2014
  end-page: 74
  ident: b0045
  article-title: Overview of Scheduling Models
  publication-title: Manufacturing Scheduling Systems: An Integrated View on Models, Methods and Tools
– volume: 53
  start-page: 1877
  year: 2019
  end-page: 1898
  ident: b0115
  article-title: Preemptive multi-skilled resource constrained project scheduling problem with hard/soft interval due dates
  publication-title: RAIRO - Operations Research
– volume: 61
  start-page: 1755
  year: 2023
  end-page: 1770
  ident: b0065
  article-title: An effective memetic algorithm for the distributed flowshop scheduling problem with an assemble machine
  publication-title: International Journal of Production Research
– volume: 59
  start-page: 4053
  year: 2021
  end-page: 4071
  ident: b0280
  article-title: The distributed assembly permutation flowshop scheduling problem with flexible assembly and batch delivery
  publication-title: International Journal of Production Research
– year: 2008
  ident: b0175
  article-title: A discrete differential evolution algorithm for the permutation flowshop scheduling problem
  publication-title: Industrial Engineering
– volume: 215
  year: 2023
  ident: b0225
  article-title: Hybrid genetic algorithm with variable neighborhood search for flexible job shop scheduling problem in a machining system
  publication-title: Expert Systems with Applications
– volume: 233
  year: 2023
  ident: b0105
  article-title: An iterated greedy algorithm for distributed flowshops with tardiness and rejection costs to maximize total profit
  publication-title: Expert Systems with Applications
– volume: 198
  year: 2022
  ident: b0315
  article-title: A discrete learning fruit fly algorithm based on knowledge for the distributed no-wait flow shop scheduling with due windows
  publication-title: Expert Systems with Applications
– volume: 140
  year: 2022
  ident: b0220
  article-title: Metaheuristics for the permutation flowshop problem with a weighted quadratic tardiness objective
  publication-title: Computers & Operations Research
– volume: S0377221723002655
  year: 2023
  ident: b0055
  article-title: An asymmetric traveling salesman problem based matheuristic algorithm for flowshop group scheduling problem
  publication-title: European Journal of Operational Research
– volume: 59
  start-page: 7266
  year: 2021
  end-page: 7282
  ident: b0080
  article-title: Effective heuristics and metaheuristics to minimise total tardiness for the distributed permutation flowshop scheduling problem
  publication-title: International Journal of Production Research
– volume: 221
  year: 2021
  ident: b0215
  article-title: Effective constructive heuristic and iterated greedy algorithm for distributed mixed blocking permutation flow-shop scheduling problem
  publication-title: Knowledge-Based Systems
– year: 2023
  ident: b0250
  article-title: An effective two-stage iterated greedy algorithm for distributed flowshop group scheduling problem with setup time
  publication-title: Expert Systems With Applications
– volume: 44
  start-page: 41
  year: 2014
  end-page: 50
  ident: b0170
  article-title: An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem
  publication-title: Omega
– volume: 19
  year: 2018
  ident: b0130
  article-title: Impact Of Just-In-Time, Total Quality Management And Supply Chain Management On Organizational Performance: A Review Perspective
  publication-title: Jurnal Teknik Industri
– volume: 201
  year: 2022
  ident: b0190
  article-title: A collaborative iterative greedy algorithm for the scheduling of distributed heterogeneous hybrid flow shop with blocking constraints
  publication-title: Expert Systems with Applications
– volume: 239
  year: 2022
  ident: b0100
  article-title: A referenced iterated greedy algorithm for the distributed assembly mixed no-idle permutation flowshop scheduling problem with the total tardiness criterion
  publication-title: Knowledge-Based Systems
– volume: 184
  year: 2019
  ident: b0135
  article-title: A distributed permutation flowshop scheduling problem with the customer order constraint
  publication-title: Knowledge-Based Systems
– volume: 1–12
  year: 2022
  ident: b0305
  article-title: A Population-Based Iterated Greedy Algorithm for Distributed Assembly No-Wait Flow-Shop Scheduling Problem
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 58
  start-page: 425
  year: 2021
  end-page: 447
  ident: b0005
  article-title: Distributed permutation flowshop scheduling problem with total completion time objective
  publication-title: OPSEARCH
– volume: 74
  year: 2022
  ident: b0260
  article-title: An effective two-stage iterated greedy algorithm to minimize total tardiness for the distributed flowshop group scheduling problem
  publication-title: Swarm and Evolutionary Computation
– volume: 238
  year: 2024
  ident: b0025
  article-title: A tabu memory based iterated greedy algorithm for the distributed heterogeneous permutation flowshop scheduling problem with the total tardiness criterion
  publication-title: Expert Systems with Applications
– volume: 219
  start-page: 347
  year: 2020
  end-page: 359
  ident: b0145
  article-title: An integrated production scheduling and delivery route planning with multi-purpose machines: A case study from a furniture manufacturing company
  publication-title: International Journal of Production Economics
– volume: 70
  start-page: 274
  year: 2023
  end-page: 283
  ident: b0210
  article-title: Maximizing the weighted number of just-in-time jobs in a distributed flow-shop scheduling system
  publication-title: Naval Research Logistics (NRL)
– volume: 47
  start-page: 92
  year: 2014
  end-page: 105
  ident: b0270
  article-title: Minimizing the total completion time in a distributed two stage assembly system with setup times
  publication-title: Computers & Operations Research
– volume: 54
  year: 2022
  ident: b0275
  article-title: Real-time scheduling for distributed permutation flowshops with dynamic job arrivals using deep reinforcement learning
  publication-title: Advanced Engineering Informatics
– volume: 1
  start-page: 117
  year: 1976
  end-page: 129
  ident: b0050
  article-title: The Complexity of Flowshop and Jobshop Scheduling
  publication-title: Mathematics of Operations Research
– reference: Mao, F., Liu, X., & Zhao, H. (2022). An Adaptive Population-based Iterative Greedy Algorithm for Optimizing the Maximum Completion Time of Hybrid Flow Shop.
– volume: 129
  year: 2021
  ident: b0265
  article-title: Just-in-time scheduling for a distributed concrete precast flow shop system
  publication-title: Computers & Operations Research
– volume: 104
  year: 2021
  ident: b0015
  article-title: A population-based iterated greedy algorithm to minimize total flowtime for the distributed blocking flowshop scheduling problem
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 52
  start-page: 10721
  year: 2022
  end-page: 10734
  ident: b0085
  article-title: Many-Objective Evolutionary Algorithm With Reference Point-Based Fuzzy Correlation Entropy for Energy-Efficient Job Shop Scheduling With Limited Workers
  publication-title: IEEE Transactions on Cybernetics
– volume: 208
  year: 2022
  ident: b0185
  article-title: Adaptive genetic algorithm for two-stage hybrid flow-shop scheduling with sequence-independent setup time and no-interruption requirement
  publication-title: Expert Systems with Applications
– volume: 165
  year: 2022
  ident: b0090
  article-title: The distributed flowshop scheduling problem with delivery dates and cumulative payoffs
  publication-title: Computers & Industrial Engineering
– volume: 83
  start-page: 213
  year: 2019
  end-page: 222
  ident: b0195
  article-title: Iterated Greedy methods for the distributed permutation flowshop scheduling problem
  publication-title: Omega
– volume: 163
  year: 2022
  ident: b0010
  article-title: Automatic generation of iterated greedy algorithms for the non-permutation flow shop scheduling problem with total completion time minimization
  publication-title: Computers & Industrial Engineering
– volume: 47
  start-page: 65
  year: 1990
  end-page: 74
  ident: b0235
  article-title: Some efficient heuristic methods for the flow shop sequencing problem
  publication-title: European Journal of Operational Research
– volume: 242
  year: 2022
  ident: b0125
  article-title: A hash map-based memetic algorithm for the distributed permutation flowshop scheduling problem with preventive maintenance to minimize total flowtime
  publication-title: Knowledge-Based Systems
– volume: 124
  start-page: 309
  year: 2019
  end-page: 324
  ident: b0165
  article-title: Effective heuristics and metaheuristics to minimize total flowtime for the distributed permutation flowshop problem
  publication-title: Expert Systems with Applications
– reference: , 187–192. https://doi.org/10.1145/3561613.3561642.
– volume: 35
  start-page: 1350
  year: 2008
  end-page: 1373
  ident: b0240
  article-title: Minimising total tardiness in the m-machine flowshop problem: A review and evaluation of heuristics and metaheuristics
  publication-title: Computers & Operations Research
– volume: 101320
  year: 2023
  ident: b0255
  article-title: A cooperative iterated greedy algorithm for the distributed flowshop group robust scheduling problem with uncertain processing times
  publication-title: Swarm and Evolutionary Computation
– volume: 94
  start-page: 58
  year: 2018
  end-page: 69
  ident: b0040
  article-title: Iterated-greedy-based algorithms with beam search initialization for the permutation flowshop to minimise total tardiness
  publication-title: Expert Systems with Applications
– volume: 59
  year: 2020
  ident: b0060
  article-title: An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Swarm and Evolutionary Computation
– volume: 37
  start-page: 754
  year: 2010
  end-page: 768
  ident: b0150
  article-title: The distributed permutation flowshop scheduling problem
  publication-title: Computers & Operations Research
– volume: 14
  start-page: 204
  year: 2022
  ident: b0310
  article-title: A Hybrid Imperialist Competitive Algorithm for the Distributed Unrelated Parallel Machines Scheduling Problem
  publication-title: Symmetry
– volume: 118
  start-page: 464
  year: 2018
  end-page: 477
  ident: b0035
  article-title: The distributed permutation flow shop to minimise the total flowtime
  publication-title: Computers & Industrial Engineering
– volume: 152
  year: 2021
  ident: b0070
  article-title: An improved iterated greedy algorithm for the distributed assembly permutation flowshop scheduling problem
  publication-title: Computers & Industrial Engineering
– volume: S0377221723001170
  year: 2023
  ident: b0180
  article-title: A review and classification on distributed permutation flowshop scheduling problems
  publication-title: European Journal of Operational Research
– volume: 75
  year: 2022
  ident: b0285
  article-title: A discrete artificial bee colony method based on variable neighborhood structures for the distributed permutation flowshop problem with sequence-dependent setup times
  publication-title: Swarm and Evolutionary Computation
– volume: 116
  year: 2022
  ident: b0295
  article-title: A self-learning hyper-heuristic for the distributed assembly blocking flow shop scheduling problem with total flowtime criterion
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 177
  start-page: 2033
  year: 2007
  end-page: 2049
  ident: b0200
  article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem
  publication-title: European Journal of Operational Research
– year: 2011
  ident: b0155
  article-title: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem
  publication-title: Information Sciences
– volume: 243
  year: 2022
  ident: b0300
  article-title: An effective water wave optimization algorithm with problem-specific knowledge for the distributed assembly blocking flow-shop scheduling problem
  publication-title: Knowledge-Based Systems
– volume: 52
  start-page: 5999
  year: 2022
  end-page: 6012
  ident: b0160
  article-title: An Effective Cooperative Co-Evolutionary Algorithm for Distributed Flowshop Group Scheduling Problems
  publication-title: IEEE Transactions on Cybernetics
– volume: 165
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0090
  article-title: The distributed flowshop scheduling problem with delivery dates and cumulative payoffs
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2022.107961
– volume: 69
  start-page: 1124
  issue: 8
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0020
  article-title: Maximizing total early work in a distributed two-machine flow-shop
  publication-title: Naval Research Logistics (NRL)
  doi: 10.1002/nav.22076
– volume: 47
  start-page: 92
  year: 2014
  ident: 10.1016/j.eswa.2024.123278_b0270
  article-title: Minimizing the total completion time in a distributed two stage assembly system with setup times
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2014.02.005
– volume: 243
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0300
  article-title: An effective water wave optimization algorithm with problem-specific knowledge for the distributed assembly blocking flow-shop scheduling problem
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.108471
– volume: S0377221723002655
  year: 2023
  ident: 10.1016/j.eswa.2024.123278_b0055
  article-title: An asymmetric traveling salesman problem based matheuristic algorithm for flowshop group scheduling problem
  publication-title: European Journal of Operational Research
– volume: 83
  start-page: 213
  year: 2019
  ident: 10.1016/j.eswa.2024.123278_b0195
  article-title: Iterated Greedy methods for the distributed permutation flowshop scheduling problem
  publication-title: Omega
  doi: 10.1016/j.omega.2018.03.004
– volume: 96
  year: 2020
  ident: 10.1016/j.eswa.2024.123278_b0075
  article-title: An effective Iterated Greedy algorithm for the distributed permutation flowshop scheduling with due windows
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106629
– volume: 303
  start-page: 99
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0140
  article-title: A parameter-Less iterated greedy method for the hybrid flowshop scheduling problem with setup times and due date windows
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2022.02.019
– volume: 61
  start-page: 1755
  issue: 6
  year: 2023
  ident: 10.1016/j.eswa.2024.123278_b0065
  article-title: An effective memetic algorithm for the distributed flowshop scheduling problem with an assemble machine
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2022.2047238
– volume: 4
  start-page: 166
  issue: 3
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0230
  article-title: A deep reinforcement learning based approach for dynamic distributed blocking flowshop scheduling with job insertions
  publication-title: IET Collaborative Intelligent Manufacturing
  doi: 10.1049/cim2.12060
– volume: 184
  year: 2019
  ident: 10.1016/j.eswa.2024.123278_b0135
  article-title: A distributed permutation flowshop scheduling problem with the customer order constraint
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.104894
– volume: 163
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0010
  article-title: Automatic generation of iterated greedy algorithms for the non-permutation flow shop scheduling problem with total completion time minimization
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107843
– volume: 53
  start-page: 1111
  issue: 4
  year: 2015
  ident: 10.1016/j.eswa.2024.123278_b0030
  article-title: A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2014.948578
– volume: 238
  year: 2024
  ident: 10.1016/j.eswa.2024.123278_b0025
  article-title: A tabu memory based iterated greedy algorithm for the distributed heterogeneous permutation flowshop scheduling problem with the total tardiness criterion
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121790
– volume: 63
  year: 2021
  ident: 10.1016/j.eswa.2024.123278_b0095
  article-title: An Adaptive Iterated Greedy algorithm for distributed mixed no-idle permutation flowshop scheduling problems
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2021.100874
– volume: 58
  start-page: 425
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2024.123278_b0005
  article-title: Distributed permutation flowshop scheduling problem with total completion time objective
  publication-title: OPSEARCH
  doi: 10.1007/s12597-020-00484-3
– volume: 59
  start-page: 7266
  issue: 23
  year: 2021
  ident: 10.1016/j.eswa.2024.123278_b0080
  article-title: Effective heuristics and metaheuristics to minimise total tardiness for the distributed permutation flowshop scheduling problem
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2020.1837982
– volume: 47
  start-page: 65
  issue: 1
  year: 1990
  ident: 10.1016/j.eswa.2024.123278_b0235
  article-title: Some efficient heuristic methods for the flow shop sequencing problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(90)90090-X
– volume: 19
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2024.123278_b0130
  article-title: Impact Of Just-In-Time, Total Quality Management And Supply Chain Management On Organizational Performance: A Review Perspective
  publication-title: Jurnal Teknik Industri
  doi: 10.22219/JTIUMM.Vol19.No1.11-20
– volume: 221
  year: 2021
  ident: 10.1016/j.eswa.2024.123278_b0215
  article-title: Effective constructive heuristic and iterated greedy algorithm for distributed mixed blocking permutation flow-shop scheduling problem
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.106959
– volume: 59
  start-page: 4053
  issue: 13
  year: 2021
  ident: 10.1016/j.eswa.2024.123278_b0280
  article-title: The distributed assembly permutation flowshop scheduling problem with flexible assembly and batch delivery
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2020.1757174
– start-page: 45
  year: 2014
  ident: 10.1016/j.eswa.2024.123278_b0045
  article-title: Overview of Scheduling Models
– volume: 177
  start-page: 2033
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2024.123278_b0200
  article-title: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.12.009
– ident: 10.1016/j.eswa.2024.123278_b0120
  doi: 10.1145/3561613.3561642
– volume: 116
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0295
  article-title: A self-learning hyper-heuristic for the distributed assembly blocking flow shop scheduling problem with total flowtime criterion
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2022.105418
– volume: 124
  start-page: 309
  year: 2019
  ident: 10.1016/j.eswa.2024.123278_b0165
  article-title: Effective heuristics and metaheuristics to minimize total flowtime for the distributed permutation flowshop problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.01.062
– volume: 125
  start-page: 423
  year: 2018
  ident: 10.1016/j.eswa.2024.123278_b0290
  article-title: Memetic social spider optimization algorithm for scheduling two-stage assembly flowshop in a distributed environment
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.09.007
– volume: 117
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0245
  article-title: An adaptive artificial bee colony with reinforcement learning for distributed three-stage assembly scheduling with maintenance
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.108371
– volume: 53
  start-page: 1877
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2024.123278_b0115
  article-title: Preemptive multi-skilled resource constrained project scheduling problem with hard/soft interval due dates
  publication-title: RAIRO - Operations Research
  doi: 10.1051/ro/2018103
– volume: 74
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0260
  article-title: An effective two-stage iterated greedy algorithm to minimize total tardiness for the distributed flowshop group scheduling problem
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2022.101143
– volume: 75
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0285
  article-title: A discrete artificial bee colony method based on variable neighborhood structures for the distributed permutation flowshop problem with sequence-dependent setup times
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2022.101179
– volume: 59
  year: 2020
  ident: 10.1016/j.eswa.2024.123278_b0060
  article-title: An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2020.100742
– volume: 208
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0185
  article-title: Adaptive genetic algorithm for two-stage hybrid flow-shop scheduling with sequence-independent setup time and no-interruption requirement
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.118068
– year: 2008
  ident: 10.1016/j.eswa.2024.123278_b0175
  article-title: A discrete differential evolution algorithm for the permutation flowshop scheduling problem
  publication-title: Industrial Engineering
– volume: S0377221723001170
  year: 2023
  ident: 10.1016/j.eswa.2024.123278_b0180
  article-title: A review and classification on distributed permutation flowshop scheduling problems
  publication-title: European Journal of Operational Research
– year: 2011
  ident: 10.1016/j.eswa.2024.123278_b0155
  article-title: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.12.025
– volume: 140
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0220
  article-title: Metaheuristics for the permutation flowshop problem with a weighted quadratic tardiness objective
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2021.105691
– volume: 239
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0100
  article-title: A referenced iterated greedy algorithm for the distributed assembly mixed no-idle permutation flowshop scheduling problem with the total tardiness criterion
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.108036
– volume: 152
  year: 2021
  ident: 10.1016/j.eswa.2024.123278_b0070
  article-title: An improved iterated greedy algorithm for the distributed assembly permutation flowshop scheduling problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.107021
– volume: 70
  start-page: 127
  year: 2023
  ident: 10.1016/j.eswa.2024.123278_b0110
  article-title: An improved genetic algorithm with modified critical path-based searching for integrated process planning and scheduling problem considering automated guided vehicle transportation task
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2023.07.004
– volume: 52
  start-page: 10721
  issue: 10
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0085
  article-title: Many-Objective Evolutionary Algorithm With Reference Point-Based Fuzzy Correlation Entropy for Energy-Efficient Job Shop Scheduling With Limited Workers
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2021.3069184
– year: 2023
  ident: 10.1016/j.eswa.2024.123278_b0250
  article-title: An effective two-stage iterated greedy algorithm for distributed flowshop group scheduling problem with setup time
  publication-title: Expert Systems With Applications
  doi: 10.1016/j.eswa.2023.120909
– volume: 129
  year: 2021
  ident: 10.1016/j.eswa.2024.123278_b0265
  article-title: Just-in-time scheduling for a distributed concrete precast flow shop system
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2020.105204
– volume: 118
  start-page: 464
  year: 2018
  ident: 10.1016/j.eswa.2024.123278_b0035
  article-title: The distributed permutation flow shop to minimise the total flowtime
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.03.014
– volume: 37
  start-page: 754
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2024.123278_b0150
  article-title: The distributed permutation flowshop scheduling problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2009.06.019
– volume: 242
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0125
  article-title: A hash map-based memetic algorithm for the distributed permutation flowshop scheduling problem with preventive maintenance to minimize total flowtime
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.108413
– volume: 201
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0190
  article-title: A collaborative iterative greedy algorithm for the scheduling of distributed heterogeneous hybrid flow shop with blocking constraints
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117256
– volume: 1–12
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0305
  article-title: A Population-Based Iterated Greedy Algorithm for Distributed Assembly No-Wait Flow-Shop Scheduling Problem
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 104
  year: 2021
  ident: 10.1016/j.eswa.2024.123278_b0015
  article-title: A population-based iterated greedy algorithm to minimize total flowtime for the distributed blocking flowshop scheduling problem
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2021.104375
– volume: 215
  year: 2023
  ident: 10.1016/j.eswa.2024.123278_b0225
  article-title: Hybrid genetic algorithm with variable neighborhood search for flexible job shop scheduling problem in a machining system
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.119359
– volume: 219
  start-page: 347
  year: 2020
  ident: 10.1016/j.eswa.2024.123278_b0145
  article-title: An integrated production scheduling and delivery route planning with multi-purpose machines: A case study from a furniture manufacturing company
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2019.05.017
– volume: 54
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0275
  article-title: Real-time scheduling for distributed permutation flowshops with dynamic job arrivals using deep reinforcement learning
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2022.101776
– volume: 14
  start-page: 204
  issue: 2
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0310
  article-title: A Hybrid Imperialist Competitive Algorithm for the Distributed Unrelated Parallel Machines Scheduling Problem
  publication-title: Symmetry
  doi: 10.3390/sym14020204
– volume: 44
  start-page: 64
  year: 2019
  ident: 10.1016/j.eswa.2024.123278_b0205
  article-title: Effective invasive weed optimization algorithms for distributed assembly permutation flowshop problem with total flowtime criterion
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.12.001
– volume: 44
  start-page: 41
  year: 2014
  ident: 10.1016/j.eswa.2024.123278_b0170
  article-title: An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem
  publication-title: Omega
  doi: 10.1016/j.omega.2013.10.002
– volume: 35
  start-page: 1350
  issue: 4
  year: 2008
  ident: 10.1016/j.eswa.2024.123278_b0240
  article-title: Minimising total tardiness in the m-machine flowshop problem: A review and evaluation of heuristics and metaheuristics
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2006.08.016
– volume: 101320
  year: 2023
  ident: 10.1016/j.eswa.2024.123278_b0255
  article-title: A cooperative iterated greedy algorithm for the distributed flowshop group robust scheduling problem with uncertain processing times
  publication-title: Swarm and Evolutionary Computation
– volume: 52
  start-page: 5999
  issue: 7
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0160
  article-title: An Effective Cooperative Co-Evolutionary Algorithm for Distributed Flowshop Group Scheduling Problems
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2020.3041494
– volume: 70
  start-page: 274
  issue: 3
  year: 2023
  ident: 10.1016/j.eswa.2024.123278_b0210
  article-title: Maximizing the weighted number of just-in-time jobs in a distributed flow-shop scheduling system
  publication-title: Naval Research Logistics (NRL)
  doi: 10.1002/nav.22097
– volume: 94
  start-page: 58
  year: 2018
  ident: 10.1016/j.eswa.2024.123278_b0040
  article-title: Iterated-greedy-based algorithms with beam search initialization for the permutation flowshop to minimise total tardiness
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.10.050
– volume: 233
  year: 2023
  ident: 10.1016/j.eswa.2024.123278_b0105
  article-title: An iterated greedy algorithm for distributed flowshops with tardiness and rejection costs to maximize total profit
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.120830
– volume: 198
  year: 2022
  ident: 10.1016/j.eswa.2024.123278_b0315
  article-title: A discrete learning fruit fly algorithm based on knowledge for the distributed no-wait flow shop scheduling with due windows
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.116921
– volume: 1
  start-page: 117
  issue: 2
  year: 1976
  ident: 10.1016/j.eswa.2024.123278_b0050
  article-title: The Complexity of Flowshop and Jobshop Scheduling
  publication-title: Mathematics of Operations Research
  doi: 10.1287/moor.1.2.117
SSID ssj0017007
Score 2.5098577
Snippet Although the distributed permutation flowshop scheduling problem (DPFSP) has recently received extensive research attention, most studies assume that either...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 123278
SubjectTerms Deadline
Distributed permutation flowshop
Iterated greedy
Scheduling
Total completion time
Title Self-Adaptive Population-Based Iterated Greedy Algorithm for Distributed Permutation Flowshop Scheduling Problem with Part of Jobs Subject to a Common Deadline Constraint
URI https://dx.doi.org/10.1016/j.eswa.2024.123278
Volume 248
WOSCitedRecordID wos001181324600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3qjlpTlwqzayvXbWPgZoVUJVpUqR0pPlx7pNFewocdryl_gf_C9mvLtOGlAFSFysxLKzG8-3M-PZmfkYexd6aeYEKkfPTSju5yLnuIoC_Jo6hSdx-aVNn9kjeXwcjsfRsNP5YWthrqayLMObm2j2X0WN51DYVDr7F-JufxRP4GcUOh5R7Hj8I8GP1LTg_TyZNUlBw5agi79Hg5VTbJ66Q1AYCg3Xt73-9LyaT-qLr03C4Ufqo0sUWHjBEJX20iQjHkyr68VFNaOunWicmhr2oeai0aHcIc6EHM9BlS5IG1F4h_zahDQO_ndUbEneuLREEdoQU9zeFaCWy7VpLG1L7tY219vEoSb74GSy5GfW6DYbYI3yPFkmJf_cQnVkYuGHVXnOz1bLYGB4XMZLxY_UZD3w4fkUydWlnzoaZytyVulPOqwpue9q5p-u0ko9lIL3pGZitFrf0w0-f7EgOphx2VWLa2pL5fldcjo1zdBGZ-4RDUZjUR4u-p3je2zbk0GE9mG7_2l_PGi3s6Sj6_bt5Ez1lk403Bzp9x7Smtdz-pg9NK8r0Ncwe8I6qnzKHlkqEDCW4Rn7fgt1sIk6sKgDjTpoUQeIOlhDHayhDizqYIU6MKgDQggQ6qAqgFAHBnVQV5CARh1Y1MEKdc_Zl4P90w-H3NCA8Ew4Ts0j3_PywlVh7qaykH4kFXHtol9VEJdDz1UCH57M8M08KYSTJE4kg7ynVBQKkapcvGBbZVWqHQZ-5ogkc4NcyNAXiYh6BeVpqjALvcQL1S5z7aOPM9Mjn-Y2jW0y5GVM4opJXLEW1y7ba--Z6Q4xd14dWInGxsfVvmuMALzjvpf_eN8r9mC1dl6zrXq-VG_Y_eyqnizmbw1OfwKguNIZ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Adaptive+Population-Based+Iterated+Greedy+Algorithm+for+Distributed+Permutation+Flowshop+Scheduling+Problem+with+Part+of+Jobs+Subject+to+a+Common+Deadline+Constraint&rft.jtitle=Expert+systems+with+applications&rft.au=Li%2C+Qiu-Ying&rft.au=Pan%2C+Quan-Ke&rft.au=Sang%2C+Hong-Yan&rft.au=Jing%2C+Xue-Lei&rft.date=2024-08-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=248&rft_id=info:doi/10.1016%2Fj.eswa.2024.123278&rft.externalDocID=S095741742400143X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon