Multi-DoF continuous estimation for wrist torques using stacked autoencoder
Human machine interface (HMI) based on surface electromyography (sEMG) promises to provide an intuitive and noninvasive way to interact with peripheral equipments, such as prostheses, exoskeletons, and robots. Most recently, advances in machine learning, especially in deep learning algorithms, prese...
Saved in:
| Published in: | Biomedical signal processing and control Vol. 57; p. 101733 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.03.2020
|
| Subjects: | |
| ISSN: | 1746-8094, 1746-8108 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Human machine interface (HMI) based on surface electromyography (sEMG) promises to provide an intuitive and noninvasive way to interact with peripheral equipments, such as prostheses, exoskeletons, and robots. Most recently, advances in machine learning, especially in deep learning algorithms, present the capabilities in constructing complicated mapping functions. In this study, we construct a stacked autoencoder-based deep neural network (SAE-DNN) to continuously estimate multiple degrees-of-freedom (DoFs) kinetics of wrist from sEMG signals. During the experiments, high-density sEMG signals and multi-DoF wrist torques were simultaneously acquired under the guidance of a visual feedback system, with eight healthy subjects and an amputee recruited. Moreover, the estimation performance of SAE-DNN was compared with two of commonly used conventional regressors, linear regression (LR) and support vector regression (SVR). As a consequence, the results demonstrate the feasibility of this scheme and significant superiority of SAE-DNN over LR and SVR with higher R2 values across all DoFs (SAE-DNN: 0.829±0.050, LR: 0.757±0.075, SVR: 0.751±0.079). The outcomes of this study provide us with a perspective and a feasible scheme for simultaneous and proportional control. |
|---|---|
| AbstractList | Human machine interface (HMI) based on surface electromyography (sEMG) promises to provide an intuitive and noninvasive way to interact with peripheral equipments, such as prostheses, exoskeletons, and robots. Most recently, advances in machine learning, especially in deep learning algorithms, present the capabilities in constructing complicated mapping functions. In this study, we construct a stacked autoencoder-based deep neural network (SAE-DNN) to continuously estimate multiple degrees-of-freedom (DoFs) kinetics of wrist from sEMG signals. During the experiments, high-density sEMG signals and multi-DoF wrist torques were simultaneously acquired under the guidance of a visual feedback system, with eight healthy subjects and an amputee recruited. Moreover, the estimation performance of SAE-DNN was compared with two of commonly used conventional regressors, linear regression (LR) and support vector regression (SVR). As a consequence, the results demonstrate the feasibility of this scheme and significant superiority of SAE-DNN over LR and SVR with higher R2 values across all DoFs (SAE-DNN: 0.829±0.050, LR: 0.757±0.075, SVR: 0.751±0.079). The outcomes of this study provide us with a perspective and a feasible scheme for simultaneous and proportional control. |
| ArticleNumber | 101733 |
| Author | Zhu, Xiangyang Yu, Yang Chen, Chen Sheng, Xinjun |
| Author_xml | – sequence: 1 givenname: Yang surname: Yu fullname: Yu, Yang – sequence: 2 givenname: Chen surname: Chen fullname: Chen, Chen – sequence: 3 givenname: Xinjun surname: Sheng fullname: Sheng, Xinjun email: xjsheng@sjtu.edu.cn – sequence: 4 givenname: Xiangyang surname: Zhu fullname: Zhu, Xiangyang |
| BookMark | eNp9kEFOwzAQRS1UJNrCBVj5AimexHUSiQ0qtCCK2MDacuwxcilxsR0QtyehsGHR1XyN9Ebz34SMWt8iIefAZsBAXGxmTdzpWc6gHhZlURyRMZRcZBWwavSXWc1PyCTGDWO8KoGPyf1Dt00uu_ZLqn2bXNv5LlKMyb2p5HxLrQ_0M7iYaPLhvcNIu-jaFxqT0q9oqOqSx1Z7g-GUHFu1jXj2O6fkeXnztLjN1o-ru8XVOtMFYymrWQmmKsp5o63JNTZcVDkHsJWai5yrQgkBrJkbATloDYaXTNUCbd1Hg7aYknx_VwcfY0Ard6F_N3xJYHLQITdy0CEHHXKvo4eqf5B26adiCsptD6OXexT7Uh8Og4za9Z3RuIA6SePdIfwbAVl-jA |
| CitedBy_id | crossref_primary_10_1080_2326263X_2021_1900032 crossref_primary_10_1109_JSEN_2022_3206883 crossref_primary_10_1109_TNSRE_2023_3260209 crossref_primary_10_1109_ACCESS_2023_3323586 crossref_primary_10_1142_S0219649222500174 crossref_primary_10_3390_bios15040259 crossref_primary_10_1016_j_bspc_2022_104198 crossref_primary_10_1002_aisy_202500126 crossref_primary_10_1109_TIE_2021_3050367 crossref_primary_10_1016_j_bspc_2021_103012 crossref_primary_10_1109_JBHI_2020_3041861 crossref_primary_10_3389_fbioe_2020_00058 crossref_primary_10_1109_JSEN_2021_3098120 crossref_primary_10_1016_j_bspc_2022_103557 crossref_primary_10_1109_JAS_2021_1003865 crossref_primary_10_1109_TIE_2020_3020037 crossref_primary_10_1109_TNSRE_2025_3565305 crossref_primary_10_1142_S0219519424500453 crossref_primary_10_1109_JBHI_2024_3373432 crossref_primary_10_1109_TNSRE_2024_3383857 crossref_primary_10_1017_wtc_2022_18 crossref_primary_10_1017_wtc_2022_19 crossref_primary_10_1109_JBHI_2020_2987528 crossref_primary_10_1109_LRA_2022_3169448 |
| Cites_doi | 10.3389/fnbot.2017.00006 10.1016/j.bspc.2017.10.002 10.3390/app8071126 10.1109/TBME.2010.2068298 10.1109/TBME.2008.2007967 10.1126/science.1127647 10.1109/TRO.2009.2039378 10.1038/323533a0 10.1109/TBME.2008.919734 10.1109/TNSRE.2014.2305097 10.1109/TNSRE.2014.2305520 10.1109/TITB.2010.2040832 10.1186/s12984-019-0516-x 10.1002/asmb.537 10.1126/scirobotics.aat3630 10.1109/TNSRE.2013.2287383 10.1186/1743-0003-11-5 10.1109/TNSRE.2011.2178039 10.1038/srep36571 10.1023/A:1022627411411 10.1109/TBME.2018.2817688 10.1109/TNSRE.2013.2278411 10.1682/JRRD.2010.09.0177 10.1016/B978-0-12-420045-6.00002-X 10.1109/TNSRE.2012.2196711 10.1007/s40137-013-0044-8 10.1063/1.4932556 10.1186/s12984-018-0363-1 10.1088/1741-2552/aab383 10.1126/scirobotics.aar7650 10.1109/TNSRE.2014.2323576 10.1016/S1388-2457(02)00057-3 10.3389/fnbot.2017.00007 10.3390/bdcc2030021 10.1088/1741-2552/aa9666 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd |
| Copyright_xml | – notice: 2019 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2019.101733 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| ExternalDocumentID | 10_1016_j_bspc_2019_101733 S1746809419303143 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-9071d8375bcfd2ceb4682411f8a5624a3a6610b5d6121cc1d470a96ef91d4def3 |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000512481800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1746-8094 |
| IngestDate | Sat Nov 29 07:00:11 EST 2025 Tue Nov 18 22:25:25 EST 2025 Fri Feb 23 02:48:19 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Simultaneous and proportional control Stacked autoencoder Human machine interface |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-9071d8375bcfd2ceb4682411f8a5624a3a6610b5d6121cc1d470a96ef91d4def3 |
| ParticipantIDs | crossref_primary_10_1016_j_bspc_2019_101733 crossref_citationtrail_10_1016_j_bspc_2019_101733 elsevier_sciencedirect_doi_10_1016_j_bspc_2019_101733 |
| PublicationCentury | 2000 |
| PublicationDate | March 2020 2020-03-00 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Oskoei, Hu (bib0030) 2008; 55 Roche, Rehbaum, Farina, Aszmann (bib0055) 2014; 2 Nielsen, Holmgaard, Jiang, Englehart, Farina, Parker (bib0145) 2010; 58 Lin, Wang, Jiang, Farina (bib0110) 2018; 15 del Valle, Navarro (bib0020) 2013 Hinton, Salakhutdinov (bib0175) 2006; 313 Atkins, Heard, Donovan (bib0180) 1996; 8 Ortiz-Catalan, Bo, Branemark (bib0070) 2014; 22 Phinyomark, Scheme (bib0120) 2018; 2 Artemiadis, Kyriakopoulos (bib0190) 2010; 26 Balasubramanian, Garcia-Cossio, Birbaumer, Burdet, Ramos-Murguialday (bib0045) 2018; 65 E. Scheme, K. Englehart, Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use., J. Rehabil. Res. Dev. 48 (6). Khan, Hong (bib0010) 2017; 11 Jiang, Vujaklija, Rehbaum, Graimann, Farina (bib0095) 2014; 22 Vujaklija, Shalchyan, Kamavuako, Jiang, Marateb, Farina (bib0135) 2018; 15 Cortes, Vapnik (bib0150) 1995; 20 Ison, Antuvan, Artemiadis (bib0050) 2014 Englehart, Hudgins (bib0025) 2003; 50 Boser, Guyon, Vapnik (bib0155) 1992 Chen, Lin, Sch”olkopf (bib0165) 2005; 21 Hahne, Schweisfurth, Koppe, Farina (bib0075) 2018; 3 Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (bib0005) 2002; 113 Artemiadis, Kyriakopoulos (bib0195) 2010; 14 Hong, Aziz, Ghafoor (bib0015) 2018; 15 Fougner, Stavdahl, Kyberd, Losier, Parker (bib0035) 2012; 20 Jiang, Englehart, Parker (bib0100) 2009; 56 Kapelner, Vujaklija, Jiang, Negro, Aszmann, Principe, Farina (bib0200) 2019; 16 Muceli, Farina (bib0080) 2012; 20 Yang, Bellingham, Dupont, Fischer, Floridi, Full, Jacobstein, Kumar, McNutt, Merrifield (bib0115) 2018; 3 Zia ur Rehman, Gilani, Waris, Niazi, Slabaugh, Farina, Kamavuako (bib0130) 2018; 8 Chen, Zhang, Cheng, Xi (bib0040) 2018; 40 Young, Smith, Rouse, Hargrove (bib0060) 2014; 11 Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib0185) 2010; 11 Hahne, Biessmann, Jiang, Rehbaum, Farina, Meinecke, M“uller, Parra (bib0090) 2014; 22 Geng, Du, Jin, Wei, Hu, Li (bib0125) 2016; 6 Kuhn, Tucker (bib0160) 2014 Jiang, Rehbaum, Vujaklija, Graimann, Farina (bib0105) 2014; 22 Rumelhart, Hinton, Williams (bib0170) 1986; 323 Vujaklija, Roche, Hasenoehrl, Sturma, Amsuess, Farina, Aszmann (bib0205) 2017; 11 Pan, Yang, Zhang (bib0140) 2015; 86 Ameri, Kamavuako, Scheme, Englehart, Parker (bib0085) 2014; 22 Hahne (10.1016/j.bspc.2019.101733_bib0090) 2014; 22 Phinyomark (10.1016/j.bspc.2019.101733_bib0120) 2018; 2 Geng (10.1016/j.bspc.2019.101733_bib0125) 2016; 6 Vujaklija (10.1016/j.bspc.2019.101733_bib0205) 2017; 11 Hinton (10.1016/j.bspc.2019.101733_bib0175) 2006; 313 Chen (10.1016/j.bspc.2019.101733_bib0040) 2018; 40 Fougner (10.1016/j.bspc.2019.101733_bib0035) 2012; 20 Muceli (10.1016/j.bspc.2019.101733_bib0080) 2012; 20 Balasubramanian (10.1016/j.bspc.2019.101733_bib0045) 2018; 65 Jiang (10.1016/j.bspc.2019.101733_bib0100) 2009; 56 Ortiz-Catalan (10.1016/j.bspc.2019.101733_bib0070) 2014; 22 Vujaklija (10.1016/j.bspc.2019.101733_bib0135) 2018; 15 Oskoei (10.1016/j.bspc.2019.101733_bib0030) 2008; 55 Roche (10.1016/j.bspc.2019.101733_bib0055) 2014; 2 Boser (10.1016/j.bspc.2019.101733_bib0155) 1992 Ison (10.1016/j.bspc.2019.101733_bib0050) 2014 Yang (10.1016/j.bspc.2019.101733_bib0115) 2018; 3 Hong (10.1016/j.bspc.2019.101733_bib0015) 2018; 15 Khan (10.1016/j.bspc.2019.101733_bib0010) 2017; 11 Nielsen (10.1016/j.bspc.2019.101733_bib0145) 2010; 58 Hahne (10.1016/j.bspc.2019.101733_bib0075) 2018; 3 Wolpaw (10.1016/j.bspc.2019.101733_bib0005) 2002; 113 10.1016/j.bspc.2019.101733_bib0065 Artemiadis (10.1016/j.bspc.2019.101733_bib0195) 2010; 14 Vincent (10.1016/j.bspc.2019.101733_bib0185) 2010; 11 Rumelhart (10.1016/j.bspc.2019.101733_bib0170) 1986; 323 Englehart (10.1016/j.bspc.2019.101733_bib0025) 2003; 50 Lin (10.1016/j.bspc.2019.101733_bib0110) 2018; 15 Cortes (10.1016/j.bspc.2019.101733_bib0150) 1995; 20 Pan (10.1016/j.bspc.2019.101733_bib0140) 2015; 86 Ameri (10.1016/j.bspc.2019.101733_bib0085) 2014; 22 Jiang (10.1016/j.bspc.2019.101733_bib0105) 2014; 22 Young (10.1016/j.bspc.2019.101733_bib0060) 2014; 11 Jiang (10.1016/j.bspc.2019.101733_bib0095) 2014; 22 Kuhn (10.1016/j.bspc.2019.101733_bib0160) 2014 Atkins (10.1016/j.bspc.2019.101733_bib0180) 1996; 8 Chen (10.1016/j.bspc.2019.101733_bib0165) 2005; 21 Artemiadis (10.1016/j.bspc.2019.101733_bib0190) 2010; 26 Zia ur Rehman (10.1016/j.bspc.2019.101733_bib0130) 2018; 8 Kapelner (10.1016/j.bspc.2019.101733_bib0200) 2019; 16 del Valle (10.1016/j.bspc.2019.101733_bib0020) 2013 |
| References_xml | – volume: 15 start-page: 031004 year: 2018 ident: bib0015 article-title: Motor-commands decoding using peripheral nerve signals: a review publication-title: J. Neural Eng. – volume: 22 start-page: 501 year: 2014 end-page: 510 ident: bib0105 article-title: Intuitive, online, simultaneous, and proportional myoelectric control over two degrees-of-freedom in upper limb amputees publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 20 start-page: 663 year: 2012 end-page: 677 ident: bib0035 article-title: Control of upper limb prostheses: terminology and proportional myoelectric control-a review publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 65 start-page: 2790 year: 2018 end-page: 2797 ident: bib0045 article-title: Is EMG a viable alternative to BCI for detecting movement intention in severe stroke? publication-title: IEEE Trans. Biomed. Eng. – volume: 15 start-page: 026017 year: 2018 ident: bib0110 article-title: Robust extraction of basis functions for simultaneous and proportional myoelectric control via sparse non-negative matrix factorization publication-title: J. Neural Eng. – volume: 40 start-page: 335 year: 2018 end-page: 342 ident: bib0040 article-title: Surface EMG based continuous estimation of human lower limb joint angles by using deep belief networks publication-title: Biomed. Signal Proces. Control – volume: 8 start-page: 1126 year: 2018 ident: bib0130 article-title: Stacked sparse autoencoders for EMG-based classification of hand motions: A comparative multi day analyses between surface and intramuscular EMG publication-title: Appl. Sci. – volume: 16 start-page: 47 year: 2019 ident: bib0200 article-title: Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses publication-title: J. Neuroeng. Rehabil. – volume: 6 start-page: 36571 year: 2016 ident: bib0125 article-title: Gesture recognition by instantaneous surface EMG images publication-title: Sci. Rep. – start-page: 247 year: 2014 end-page: 258 ident: bib0160 article-title: Nonlinear programming publication-title: Traces and emergence of nonlinear programming – volume: 21 start-page: 111 year: 2005 end-page: 136 ident: bib0165 article-title: A tutorial on nu-support vector machines publication-title: Appl. Stoch. Model. Bus. – volume: 8 start-page: 2 year: 1996 end-page: 11 ident: bib0180 article-title: Epidemiologic overview of individuals with upper-limb loss and their reported research priorities publication-title: JPO: J. Prosthet. Orthot. – volume: 50 start-page: 848 year: 2003 end-page: 854 ident: bib0025 article-title: A robust, real-time control scheme for multifunction myoelectric control, IEEE Trans publication-title: Biomed. Eng. – reference: E. Scheme, K. Englehart, Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use., J. Rehabil. Res. Dev. 48 (6). – volume: 22 start-page: 269 year: 2014 end-page: 279 ident: bib0090 article-title: Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 58 start-page: 681 year: 2010 end-page: 688 ident: bib0145 article-title: Simultaneous and proportional force estimation for multifunction myoelectric prostheses using mirrored bilateral training publication-title: IEEE Trans. Biomed. Eng. – volume: 55 start-page: 1956 year: 2008 end-page: 1965 ident: bib0030 article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb publication-title: IEEE Trans. Biomed. Eng. – volume: 323 start-page: 533 year: 1986 ident: bib0170 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 26 start-page: 393 year: 2010 end-page: 398 ident: bib0190 article-title: EMG-based control of a robot arm using low-dimensional embeddings publication-title: IEEE Trans. Robot. – volume: 2 start-page: 44 year: 2014 ident: bib0055 article-title: Prosthetic myoelectric control strategies: a clinical perspective publication-title: Curr. Surg. Rep. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: bib0175 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 3 year: 2018 ident: bib0075 article-title: Simultaneous control of multiple functions of bionic hand prostheses: Performance and robustness in end users publication-title: Sci. Robot. – volume: 113 start-page: 767 year: 2002 end-page: 791 ident: bib0005 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0150 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 11 start-page: 5 year: 2014 ident: bib0060 article-title: A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements publication-title: J. Neuroeng. Rehabil. – start-page: 2880 year: 2014 end-page: 2885 ident: bib0050 article-title: Learning efficient control of robots using myoelectric interfaces publication-title: Robotics and Automation (ICRA), 2014 IEEE Int. Conf. on – volume: 56 start-page: 1070 year: 2009 end-page: 1080 ident: bib0100 article-title: Extracting simultaneous and proportional neural control information for multiple-DoF prostheses from the surface electromyographic signal publication-title: IEEE Trans. Biomed. Eng. – volume: 86 start-page: 104301 year: 2015 ident: bib0140 article-title: A structurally decoupled mechanism for measuring wrist torque in three degrees of freedom publication-title: Rev. Sci. Instrum. – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: bib0185 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 3 year: 2018 ident: bib0115 article-title: The grand challenges of Science Robotics publication-title: Sci. Robot. – volume: 22 start-page: 1198 year: 2014 end-page: 1209 ident: bib0085 article-title: Support vector regression for improved real-time, simultaneous myoelectric control publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 20 start-page: 371 year: 2012 end-page: 378 ident: bib0080 article-title: Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 15 start-page: 21 year: 2018 ident: bib0135 article-title: Online mapping of EMG signals into kinematics by autoencoding publication-title: J. Neuroeng. Rehabil. – volume: 11 start-page: 7 year: 2017 ident: bib0205 article-title: Translating research on myoelectric control into clinics-are the performance assessment methods adequate? publication-title: Front. Neurorobot. – volume: 11 start-page: 6 year: 2017 ident: bib0010 article-title: Hybrid EEG-fNIRS-based eight-command decoding for BCI: application to quadcopter control publication-title: Front. Neurorobot. – volume: 14 start-page: 582 year: 2010 end-page: 588 ident: bib0195 article-title: An EMG-based robot control scheme robust to time-varying EMG signal features publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 2 start-page: 21 year: 2018 ident: bib0120 article-title: EMG pattern recognition in the era of big data and deep learning publication-title: Big Data Cognit. Comput. – start-page: 63 year: 2013 end-page: 83 ident: bib0020 article-title: Interfaces with the peripheral nerve for the control of neuroprostheses publication-title: Int. Rev. Neurobiol., Vol. 109 – start-page: 144 year: 1992 end-page: 152 ident: bib0155 article-title: A training algorithm for optimal margin classifiers publication-title: Proceedings of the fifth annual workshop on Computational learning theory – volume: 22 start-page: 549 year: 2014 end-page: 558 ident: bib0095 article-title: Is accurate mapping of EMG signals on kinematics needed for precise online myoelectric control? publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 22 start-page: 756 year: 2014 end-page: 764 ident: bib0070 article-title: Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 11 start-page: 6 year: 2017 ident: 10.1016/j.bspc.2019.101733_bib0010 article-title: Hybrid EEG-fNIRS-based eight-command decoding for BCI: application to quadcopter control publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2017.00006 – volume: 40 start-page: 335 year: 2018 ident: 10.1016/j.bspc.2019.101733_bib0040 article-title: Surface EMG based continuous estimation of human lower limb joint angles by using deep belief networks publication-title: Biomed. Signal Proces. Control doi: 10.1016/j.bspc.2017.10.002 – start-page: 2880 year: 2014 ident: 10.1016/j.bspc.2019.101733_bib0050 article-title: Learning efficient control of robots using myoelectric interfaces – volume: 8 start-page: 1126 issue: 7 year: 2018 ident: 10.1016/j.bspc.2019.101733_bib0130 article-title: Stacked sparse autoencoders for EMG-based classification of hand motions: A comparative multi day analyses between surface and intramuscular EMG publication-title: Appl. Sci. doi: 10.3390/app8071126 – volume: 58 start-page: 681 issue: 3 year: 2010 ident: 10.1016/j.bspc.2019.101733_bib0145 article-title: Simultaneous and proportional force estimation for multifunction myoelectric prostheses using mirrored bilateral training publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2068298 – volume: 56 start-page: 1070 issue: 4 year: 2009 ident: 10.1016/j.bspc.2019.101733_bib0100 article-title: Extracting simultaneous and proportional neural control information for multiple-DoF prostheses from the surface electromyographic signal publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2007967 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.bspc.2019.101733_bib0175 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 26 start-page: 393 issue: 2 year: 2010 ident: 10.1016/j.bspc.2019.101733_bib0190 article-title: EMG-based control of a robot arm using low-dimensional embeddings publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2009.2039378 – volume: 50 start-page: 848 issue: 7 year: 2003 ident: 10.1016/j.bspc.2019.101733_bib0025 article-title: A robust, real-time control scheme for multifunction myoelectric control, IEEE Trans publication-title: Biomed. Eng. – start-page: 247 year: 2014 ident: 10.1016/j.bspc.2019.101733_bib0160 article-title: Nonlinear programming – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 10.1016/j.bspc.2019.101733_bib0170 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 55 start-page: 1956 issue: 8 year: 2008 ident: 10.1016/j.bspc.2019.101733_bib0030 article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.919734 – volume: 22 start-page: 756 issue: 4 year: 2014 ident: 10.1016/j.bspc.2019.101733_bib0070 article-title: Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2305097 – volume: 8 start-page: 2 issue: 1 year: 1996 ident: 10.1016/j.bspc.2019.101733_bib0180 article-title: Epidemiologic overview of individuals with upper-limb loss and their reported research priorities publication-title: JPO: J. Prosthet. Orthot. – volume: 22 start-page: 269 issue: 2 year: 2014 ident: 10.1016/j.bspc.2019.101733_bib0090 article-title: Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2305520 – volume: 14 start-page: 582 issue: 3 year: 2010 ident: 10.1016/j.bspc.2019.101733_bib0195 article-title: An EMG-based robot control scheme robust to time-varying EMG signal features publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2010.2040832 – volume: 16 start-page: 47 issue: 1 year: 2019 ident: 10.1016/j.bspc.2019.101733_bib0200 article-title: Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-019-0516-x – volume: 21 start-page: 111 issue: 2 year: 2005 ident: 10.1016/j.bspc.2019.101733_bib0165 article-title: A tutorial on nu-support vector machines publication-title: Appl. Stoch. Model. Bus. doi: 10.1002/asmb.537 – volume: 3 issue: 19 year: 2018 ident: 10.1016/j.bspc.2019.101733_bib0075 article-title: Simultaneous control of multiple functions of bionic hand prostheses: Performance and robustness in end users publication-title: Sci. Robot. doi: 10.1126/scirobotics.aat3630 – volume: 22 start-page: 549 issue: 3 year: 2014 ident: 10.1016/j.bspc.2019.101733_bib0095 article-title: Is accurate mapping of EMG signals on kinematics needed for precise online myoelectric control? publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2287383 – volume: 11 start-page: 5 issue: 1 year: 2014 ident: 10.1016/j.bspc.2019.101733_bib0060 article-title: A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-11-5 – volume: 20 start-page: 371 issue: 3 year: 2012 ident: 10.1016/j.bspc.2019.101733_bib0080 article-title: Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2011.2178039 – volume: 11 start-page: 3371 issue: Dec year: 2010 ident: 10.1016/j.bspc.2019.101733_bib0185 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 6 start-page: 36571 year: 2016 ident: 10.1016/j.bspc.2019.101733_bib0125 article-title: Gesture recognition by instantaneous surface EMG images publication-title: Sci. Rep. doi: 10.1038/srep36571 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.bspc.2019.101733_bib0150 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1023/A:1022627411411 – volume: 65 start-page: 2790 issue: 12 year: 2018 ident: 10.1016/j.bspc.2019.101733_bib0045 article-title: Is EMG a viable alternative to BCI for detecting movement intention in severe stroke? publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2817688 – volume: 22 start-page: 501 issue: 3 year: 2014 ident: 10.1016/j.bspc.2019.101733_bib0105 article-title: Intuitive, online, simultaneous, and proportional myoelectric control over two degrees-of-freedom in upper limb amputees publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2278411 – ident: 10.1016/j.bspc.2019.101733_bib0065 doi: 10.1682/JRRD.2010.09.0177 – start-page: 63 year: 2013 ident: 10.1016/j.bspc.2019.101733_bib0020 article-title: Interfaces with the peripheral nerve for the control of neuroprostheses doi: 10.1016/B978-0-12-420045-6.00002-X – volume: 20 start-page: 663 issue: 5 year: 2012 ident: 10.1016/j.bspc.2019.101733_bib0035 article-title: Control of upper limb prostheses: terminology and proportional myoelectric control-a review publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2196711 – volume: 2 start-page: 44 issue: 3 year: 2014 ident: 10.1016/j.bspc.2019.101733_bib0055 article-title: Prosthetic myoelectric control strategies: a clinical perspective publication-title: Curr. Surg. Rep. doi: 10.1007/s40137-013-0044-8 – volume: 86 start-page: 104301 issue: 10 year: 2015 ident: 10.1016/j.bspc.2019.101733_bib0140 article-title: A structurally decoupled mechanism for measuring wrist torque in three degrees of freedom publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4932556 – volume: 15 start-page: 21 issue: 1 year: 2018 ident: 10.1016/j.bspc.2019.101733_bib0135 article-title: Online mapping of EMG signals into kinematics by autoencoding publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-018-0363-1 – volume: 15 start-page: 031004 issue: 3 year: 2018 ident: 10.1016/j.bspc.2019.101733_bib0015 article-title: Motor-commands decoding using peripheral nerve signals: a review publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aab383 – volume: 3 issue: 14 year: 2018 ident: 10.1016/j.bspc.2019.101733_bib0115 article-title: The grand challenges of Science Robotics publication-title: Sci. Robot. doi: 10.1126/scirobotics.aar7650 – volume: 22 start-page: 1198 issue: 6 year: 2014 ident: 10.1016/j.bspc.2019.101733_bib0085 article-title: Support vector regression for improved real-time, simultaneous myoelectric control publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2323576 – volume: 113 start-page: 767 issue: 6 year: 2002 ident: 10.1016/j.bspc.2019.101733_bib0005 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00057-3 – start-page: 144 year: 1992 ident: 10.1016/j.bspc.2019.101733_bib0155 article-title: A training algorithm for optimal margin classifiers – volume: 11 start-page: 7 year: 2017 ident: 10.1016/j.bspc.2019.101733_bib0205 article-title: Translating research on myoelectric control into clinics-are the performance assessment methods adequate? publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2017.00007 – volume: 2 start-page: 21 issue: 3 year: 2018 ident: 10.1016/j.bspc.2019.101733_bib0120 article-title: EMG pattern recognition in the era of big data and deep learning publication-title: Big Data Cognit. Comput. doi: 10.3390/bdcc2030021 – volume: 15 start-page: 026017 issue: 2 year: 2018 ident: 10.1016/j.bspc.2019.101733_bib0110 article-title: Robust extraction of basis functions for simultaneous and proportional myoelectric control via sparse non-negative matrix factorization publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa9666 |
| SSID | ssj0048714 |
| Score | 2.36018 |
| Snippet | Human machine interface (HMI) based on surface electromyography (sEMG) promises to provide an intuitive and noninvasive way to interact with peripheral... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 101733 |
| SubjectTerms | Human machine interface Simultaneous and proportional control Stacked autoencoder |
| Title | Multi-DoF continuous estimation for wrist torques using stacked autoencoder |
| URI | https://dx.doi.org/10.1016/j.bspc.2019.101733 |
| Volume | 57 |
| WOSCitedRecordID | wos000512481800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIEXJ dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELZ4HcoBQUtVXpUP3FZBeXg39hHxEFAJVQKkVS-RYzvtrmh2tbvh8e8Z25NkCy0qBy6RZSVO5PkyHtvffCZkXxQw6hRKBj3wfQFjmgU5j2VgFONCM2lM4g-bSC8veb8vviN1aOqOE0jLkj88iPG7mhrqwNg2dfYN5m4ahQoog9HhCmaH638Z3qXUBsejU0dDH5SVJblaLY3fLa_w3v7aEHZO7KjQqaa4qAB_tO7Iajay6pYaebv1jq_L0_dJlIOfNoYd-xyDOssRSe-NG6mcd5c4MjoGgcEd_jb97ArKztn0B-Wwaqp__Kp8JTz-WDeBaxMwEW3IWehOU2bljv0xxrW_9YLU6DCtR_BKGC98uV9WGB7k07HVmozEQXvzn8LZzwa0hmZYM9iGmW0js21kvo1FshynXQFucPnw_KR_UQ_eMH1zcvDNh2OelacEPv-Sv8cyc_HJ9TpZw4kFPfSA2CALpvxIVufkJj-Rbw00aAsN2kKDAjSogwZFaFAHDYrQoHPQ2CQ3pyfXR2cBHqYRqCQMZ4GAWFLzJO3mqtCxMjnrcYjeooJLCIGZTCREamHe1VZSTqlIszSUomcKAUVtiuQzWSpHpflCqI5DVUAHqJQJJmEKENndcc61ZDpncbFForpbMoVK8_bAk9vs3wbZIp3mmbHXWXn17m7d2xlGij4CzAA8rzy3_aa37JAPLah3ydJsUpk9sqLuZoPp5Csi5wmIbIul |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-DoF+continuous+estimation+for+wrist+torques+using+stacked+autoencoder&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Yu%2C+Yang&rft.au=Chen%2C+Chen&rft.au=Sheng%2C+Xinjun&rft.au=Zhu%2C+Xiangyang&rft.date=2020-03-01&rft.issn=1746-8094&rft.volume=57&rft.spage=101733&rft_id=info:doi/10.1016%2Fj.bspc.2019.101733&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2019_101733 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |