Multi-DoF continuous estimation for wrist torques using stacked autoencoder

Human machine interface (HMI) based on surface electromyography (sEMG) promises to provide an intuitive and noninvasive way to interact with peripheral equipments, such as prostheses, exoskeletons, and robots. Most recently, advances in machine learning, especially in deep learning algorithms, prese...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical signal processing and control Vol. 57; p. 101733
Main Authors: Yu, Yang, Chen, Chen, Sheng, Xinjun, Zhu, Xiangyang
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.03.2020
Subjects:
ISSN:1746-8094, 1746-8108
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Human machine interface (HMI) based on surface electromyography (sEMG) promises to provide an intuitive and noninvasive way to interact with peripheral equipments, such as prostheses, exoskeletons, and robots. Most recently, advances in machine learning, especially in deep learning algorithms, present the capabilities in constructing complicated mapping functions. In this study, we construct a stacked autoencoder-based deep neural network (SAE-DNN) to continuously estimate multiple degrees-of-freedom (DoFs) kinetics of wrist from sEMG signals. During the experiments, high-density sEMG signals and multi-DoF wrist torques were simultaneously acquired under the guidance of a visual feedback system, with eight healthy subjects and an amputee recruited. Moreover, the estimation performance of SAE-DNN was compared with two of commonly used conventional regressors, linear regression (LR) and support vector regression (SVR). As a consequence, the results demonstrate the feasibility of this scheme and significant superiority of SAE-DNN over LR and SVR with higher R2 values across all DoFs (SAE-DNN: 0.829±0.050, LR: 0.757±0.075, SVR: 0.751±0.079). The outcomes of this study provide us with a perspective and a feasible scheme for simultaneous and proportional control.
AbstractList Human machine interface (HMI) based on surface electromyography (sEMG) promises to provide an intuitive and noninvasive way to interact with peripheral equipments, such as prostheses, exoskeletons, and robots. Most recently, advances in machine learning, especially in deep learning algorithms, present the capabilities in constructing complicated mapping functions. In this study, we construct a stacked autoencoder-based deep neural network (SAE-DNN) to continuously estimate multiple degrees-of-freedom (DoFs) kinetics of wrist from sEMG signals. During the experiments, high-density sEMG signals and multi-DoF wrist torques were simultaneously acquired under the guidance of a visual feedback system, with eight healthy subjects and an amputee recruited. Moreover, the estimation performance of SAE-DNN was compared with two of commonly used conventional regressors, linear regression (LR) and support vector regression (SVR). As a consequence, the results demonstrate the feasibility of this scheme and significant superiority of SAE-DNN over LR and SVR with higher R2 values across all DoFs (SAE-DNN: 0.829±0.050, LR: 0.757±0.075, SVR: 0.751±0.079). The outcomes of this study provide us with a perspective and a feasible scheme for simultaneous and proportional control.
ArticleNumber 101733
Author Zhu, Xiangyang
Yu, Yang
Chen, Chen
Sheng, Xinjun
Author_xml – sequence: 1
  givenname: Yang
  surname: Yu
  fullname: Yu, Yang
– sequence: 2
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
– sequence: 3
  givenname: Xinjun
  surname: Sheng
  fullname: Sheng, Xinjun
  email: xjsheng@sjtu.edu.cn
– sequence: 4
  givenname: Xiangyang
  surname: Zhu
  fullname: Zhu, Xiangyang
BookMark eNp9kEFOwzAQRS1UJNrCBVj5AimexHUSiQ0qtCCK2MDacuwxcilxsR0QtyehsGHR1XyN9Ebz34SMWt8iIefAZsBAXGxmTdzpWc6gHhZlURyRMZRcZBWwavSXWc1PyCTGDWO8KoGPyf1Dt00uu_ZLqn2bXNv5LlKMyb2p5HxLrQ_0M7iYaPLhvcNIu-jaFxqT0q9oqOqSx1Z7g-GUHFu1jXj2O6fkeXnztLjN1o-ru8XVOtMFYymrWQmmKsp5o63JNTZcVDkHsJWai5yrQgkBrJkbATloDYaXTNUCbd1Hg7aYknx_VwcfY0Ard6F_N3xJYHLQITdy0CEHHXKvo4eqf5B26adiCsptD6OXexT7Uh8Og4za9Z3RuIA6SePdIfwbAVl-jA
CitedBy_id crossref_primary_10_1080_2326263X_2021_1900032
crossref_primary_10_1109_JSEN_2022_3206883
crossref_primary_10_1109_TNSRE_2023_3260209
crossref_primary_10_1109_ACCESS_2023_3323586
crossref_primary_10_1142_S0219649222500174
crossref_primary_10_3390_bios15040259
crossref_primary_10_1016_j_bspc_2022_104198
crossref_primary_10_1002_aisy_202500126
crossref_primary_10_1109_TIE_2021_3050367
crossref_primary_10_1016_j_bspc_2021_103012
crossref_primary_10_1109_JBHI_2020_3041861
crossref_primary_10_3389_fbioe_2020_00058
crossref_primary_10_1109_JSEN_2021_3098120
crossref_primary_10_1016_j_bspc_2022_103557
crossref_primary_10_1109_JAS_2021_1003865
crossref_primary_10_1109_TIE_2020_3020037
crossref_primary_10_1109_TNSRE_2025_3565305
crossref_primary_10_1142_S0219519424500453
crossref_primary_10_1109_JBHI_2024_3373432
crossref_primary_10_1109_TNSRE_2024_3383857
crossref_primary_10_1017_wtc_2022_18
crossref_primary_10_1017_wtc_2022_19
crossref_primary_10_1109_JBHI_2020_2987528
crossref_primary_10_1109_LRA_2022_3169448
Cites_doi 10.3389/fnbot.2017.00006
10.1016/j.bspc.2017.10.002
10.3390/app8071126
10.1109/TBME.2010.2068298
10.1109/TBME.2008.2007967
10.1126/science.1127647
10.1109/TRO.2009.2039378
10.1038/323533a0
10.1109/TBME.2008.919734
10.1109/TNSRE.2014.2305097
10.1109/TNSRE.2014.2305520
10.1109/TITB.2010.2040832
10.1186/s12984-019-0516-x
10.1002/asmb.537
10.1126/scirobotics.aat3630
10.1109/TNSRE.2013.2287383
10.1186/1743-0003-11-5
10.1109/TNSRE.2011.2178039
10.1038/srep36571
10.1023/A:1022627411411
10.1109/TBME.2018.2817688
10.1109/TNSRE.2013.2278411
10.1682/JRRD.2010.09.0177
10.1016/B978-0-12-420045-6.00002-X
10.1109/TNSRE.2012.2196711
10.1007/s40137-013-0044-8
10.1063/1.4932556
10.1186/s12984-018-0363-1
10.1088/1741-2552/aab383
10.1126/scirobotics.aar7650
10.1109/TNSRE.2014.2323576
10.1016/S1388-2457(02)00057-3
10.3389/fnbot.2017.00007
10.3390/bdcc2030021
10.1088/1741-2552/aa9666
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2019.101733
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2019_101733
S1746809419303143
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-9071d8375bcfd2ceb4682411f8a5624a3a6610b5d6121cc1d470a96ef91d4def3
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000512481800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Sat Nov 29 07:00:11 EST 2025
Tue Nov 18 22:25:25 EST 2025
Fri Feb 23 02:48:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Simultaneous and proportional control
Stacked autoencoder
Human machine interface
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-9071d8375bcfd2ceb4682411f8a5624a3a6610b5d6121cc1d470a96ef91d4def3
ParticipantIDs crossref_primary_10_1016_j_bspc_2019_101733
crossref_citationtrail_10_1016_j_bspc_2019_101733
elsevier_sciencedirect_doi_10_1016_j_bspc_2019_101733
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Oskoei, Hu (bib0030) 2008; 55
Roche, Rehbaum, Farina, Aszmann (bib0055) 2014; 2
Nielsen, Holmgaard, Jiang, Englehart, Farina, Parker (bib0145) 2010; 58
Lin, Wang, Jiang, Farina (bib0110) 2018; 15
del Valle, Navarro (bib0020) 2013
Hinton, Salakhutdinov (bib0175) 2006; 313
Atkins, Heard, Donovan (bib0180) 1996; 8
Ortiz-Catalan, Bo, Branemark (bib0070) 2014; 22
Phinyomark, Scheme (bib0120) 2018; 2
Artemiadis, Kyriakopoulos (bib0190) 2010; 26
Balasubramanian, Garcia-Cossio, Birbaumer, Burdet, Ramos-Murguialday (bib0045) 2018; 65
E. Scheme, K. Englehart, Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use., J. Rehabil. Res. Dev. 48 (6).
Khan, Hong (bib0010) 2017; 11
Jiang, Vujaklija, Rehbaum, Graimann, Farina (bib0095) 2014; 22
Vujaklija, Shalchyan, Kamavuako, Jiang, Marateb, Farina (bib0135) 2018; 15
Cortes, Vapnik (bib0150) 1995; 20
Ison, Antuvan, Artemiadis (bib0050) 2014
Englehart, Hudgins (bib0025) 2003; 50
Boser, Guyon, Vapnik (bib0155) 1992
Chen, Lin, Sch”olkopf (bib0165) 2005; 21
Hahne, Schweisfurth, Koppe, Farina (bib0075) 2018; 3
Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (bib0005) 2002; 113
Artemiadis, Kyriakopoulos (bib0195) 2010; 14
Hong, Aziz, Ghafoor (bib0015) 2018; 15
Fougner, Stavdahl, Kyberd, Losier, Parker (bib0035) 2012; 20
Jiang, Englehart, Parker (bib0100) 2009; 56
Kapelner, Vujaklija, Jiang, Negro, Aszmann, Principe, Farina (bib0200) 2019; 16
Muceli, Farina (bib0080) 2012; 20
Yang, Bellingham, Dupont, Fischer, Floridi, Full, Jacobstein, Kumar, McNutt, Merrifield (bib0115) 2018; 3
Zia ur Rehman, Gilani, Waris, Niazi, Slabaugh, Farina, Kamavuako (bib0130) 2018; 8
Chen, Zhang, Cheng, Xi (bib0040) 2018; 40
Young, Smith, Rouse, Hargrove (bib0060) 2014; 11
Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib0185) 2010; 11
Hahne, Biessmann, Jiang, Rehbaum, Farina, Meinecke, M“uller, Parra (bib0090) 2014; 22
Geng, Du, Jin, Wei, Hu, Li (bib0125) 2016; 6
Kuhn, Tucker (bib0160) 2014
Jiang, Rehbaum, Vujaklija, Graimann, Farina (bib0105) 2014; 22
Rumelhart, Hinton, Williams (bib0170) 1986; 323
Vujaklija, Roche, Hasenoehrl, Sturma, Amsuess, Farina, Aszmann (bib0205) 2017; 11
Pan, Yang, Zhang (bib0140) 2015; 86
Ameri, Kamavuako, Scheme, Englehart, Parker (bib0085) 2014; 22
Hahne (10.1016/j.bspc.2019.101733_bib0090) 2014; 22
Phinyomark (10.1016/j.bspc.2019.101733_bib0120) 2018; 2
Geng (10.1016/j.bspc.2019.101733_bib0125) 2016; 6
Vujaklija (10.1016/j.bspc.2019.101733_bib0205) 2017; 11
Hinton (10.1016/j.bspc.2019.101733_bib0175) 2006; 313
Chen (10.1016/j.bspc.2019.101733_bib0040) 2018; 40
Fougner (10.1016/j.bspc.2019.101733_bib0035) 2012; 20
Muceli (10.1016/j.bspc.2019.101733_bib0080) 2012; 20
Balasubramanian (10.1016/j.bspc.2019.101733_bib0045) 2018; 65
Jiang (10.1016/j.bspc.2019.101733_bib0100) 2009; 56
Ortiz-Catalan (10.1016/j.bspc.2019.101733_bib0070) 2014; 22
Vujaklija (10.1016/j.bspc.2019.101733_bib0135) 2018; 15
Oskoei (10.1016/j.bspc.2019.101733_bib0030) 2008; 55
Roche (10.1016/j.bspc.2019.101733_bib0055) 2014; 2
Boser (10.1016/j.bspc.2019.101733_bib0155) 1992
Ison (10.1016/j.bspc.2019.101733_bib0050) 2014
Yang (10.1016/j.bspc.2019.101733_bib0115) 2018; 3
Hong (10.1016/j.bspc.2019.101733_bib0015) 2018; 15
Khan (10.1016/j.bspc.2019.101733_bib0010) 2017; 11
Nielsen (10.1016/j.bspc.2019.101733_bib0145) 2010; 58
Hahne (10.1016/j.bspc.2019.101733_bib0075) 2018; 3
Wolpaw (10.1016/j.bspc.2019.101733_bib0005) 2002; 113
10.1016/j.bspc.2019.101733_bib0065
Artemiadis (10.1016/j.bspc.2019.101733_bib0195) 2010; 14
Vincent (10.1016/j.bspc.2019.101733_bib0185) 2010; 11
Rumelhart (10.1016/j.bspc.2019.101733_bib0170) 1986; 323
Englehart (10.1016/j.bspc.2019.101733_bib0025) 2003; 50
Lin (10.1016/j.bspc.2019.101733_bib0110) 2018; 15
Cortes (10.1016/j.bspc.2019.101733_bib0150) 1995; 20
Pan (10.1016/j.bspc.2019.101733_bib0140) 2015; 86
Ameri (10.1016/j.bspc.2019.101733_bib0085) 2014; 22
Jiang (10.1016/j.bspc.2019.101733_bib0105) 2014; 22
Young (10.1016/j.bspc.2019.101733_bib0060) 2014; 11
Jiang (10.1016/j.bspc.2019.101733_bib0095) 2014; 22
Kuhn (10.1016/j.bspc.2019.101733_bib0160) 2014
Atkins (10.1016/j.bspc.2019.101733_bib0180) 1996; 8
Chen (10.1016/j.bspc.2019.101733_bib0165) 2005; 21
Artemiadis (10.1016/j.bspc.2019.101733_bib0190) 2010; 26
Zia ur Rehman (10.1016/j.bspc.2019.101733_bib0130) 2018; 8
Kapelner (10.1016/j.bspc.2019.101733_bib0200) 2019; 16
del Valle (10.1016/j.bspc.2019.101733_bib0020) 2013
References_xml – volume: 15
  start-page: 031004
  year: 2018
  ident: bib0015
  article-title: Motor-commands decoding using peripheral nerve signals: a review
  publication-title: J. Neural Eng.
– volume: 22
  start-page: 501
  year: 2014
  end-page: 510
  ident: bib0105
  article-title: Intuitive, online, simultaneous, and proportional myoelectric control over two degrees-of-freedom in upper limb amputees
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 20
  start-page: 663
  year: 2012
  end-page: 677
  ident: bib0035
  article-title: Control of upper limb prostheses: terminology and proportional myoelectric control-a review
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 65
  start-page: 2790
  year: 2018
  end-page: 2797
  ident: bib0045
  article-title: Is EMG a viable alternative to BCI for detecting movement intention in severe stroke?
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 15
  start-page: 026017
  year: 2018
  ident: bib0110
  article-title: Robust extraction of basis functions for simultaneous and proportional myoelectric control via sparse non-negative matrix factorization
  publication-title: J. Neural Eng.
– volume: 40
  start-page: 335
  year: 2018
  end-page: 342
  ident: bib0040
  article-title: Surface EMG based continuous estimation of human lower limb joint angles by using deep belief networks
  publication-title: Biomed. Signal Proces. Control
– volume: 8
  start-page: 1126
  year: 2018
  ident: bib0130
  article-title: Stacked sparse autoencoders for EMG-based classification of hand motions: A comparative multi day analyses between surface and intramuscular EMG
  publication-title: Appl. Sci.
– volume: 16
  start-page: 47
  year: 2019
  ident: bib0200
  article-title: Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses
  publication-title: J. Neuroeng. Rehabil.
– volume: 6
  start-page: 36571
  year: 2016
  ident: bib0125
  article-title: Gesture recognition by instantaneous surface EMG images
  publication-title: Sci. Rep.
– start-page: 247
  year: 2014
  end-page: 258
  ident: bib0160
  article-title: Nonlinear programming
  publication-title: Traces and emergence of nonlinear programming
– volume: 21
  start-page: 111
  year: 2005
  end-page: 136
  ident: bib0165
  article-title: A tutorial on nu-support vector machines
  publication-title: Appl. Stoch. Model. Bus.
– volume: 8
  start-page: 2
  year: 1996
  end-page: 11
  ident: bib0180
  article-title: Epidemiologic overview of individuals with upper-limb loss and their reported research priorities
  publication-title: JPO: J. Prosthet. Orthot.
– volume: 50
  start-page: 848
  year: 2003
  end-page: 854
  ident: bib0025
  article-title: A robust, real-time control scheme for multifunction myoelectric control, IEEE Trans
  publication-title: Biomed. Eng.
– reference: E. Scheme, K. Englehart, Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use., J. Rehabil. Res. Dev. 48 (6).
– volume: 22
  start-page: 269
  year: 2014
  end-page: 279
  ident: bib0090
  article-title: Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 58
  start-page: 681
  year: 2010
  end-page: 688
  ident: bib0145
  article-title: Simultaneous and proportional force estimation for multifunction myoelectric prostheses using mirrored bilateral training
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 55
  start-page: 1956
  year: 2008
  end-page: 1965
  ident: bib0030
  article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 323
  start-page: 533
  year: 1986
  ident: bib0170
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 26
  start-page: 393
  year: 2010
  end-page: 398
  ident: bib0190
  article-title: EMG-based control of a robot arm using low-dimensional embeddings
  publication-title: IEEE Trans. Robot.
– volume: 2
  start-page: 44
  year: 2014
  ident: bib0055
  article-title: Prosthetic myoelectric control strategies: a clinical perspective
  publication-title: Curr. Surg. Rep.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib0175
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 3
  year: 2018
  ident: bib0075
  article-title: Simultaneous control of multiple functions of bionic hand prostheses: Performance and robustness in end users
  publication-title: Sci. Robot.
– volume: 113
  start-page: 767
  year: 2002
  end-page: 791
  ident: bib0005
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0150
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 11
  start-page: 5
  year: 2014
  ident: bib0060
  article-title: A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements
  publication-title: J. Neuroeng. Rehabil.
– start-page: 2880
  year: 2014
  end-page: 2885
  ident: bib0050
  article-title: Learning efficient control of robots using myoelectric interfaces
  publication-title: Robotics and Automation (ICRA), 2014 IEEE Int. Conf. on
– volume: 56
  start-page: 1070
  year: 2009
  end-page: 1080
  ident: bib0100
  article-title: Extracting simultaneous and proportional neural control information for multiple-DoF prostheses from the surface electromyographic signal
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 86
  start-page: 104301
  year: 2015
  ident: bib0140
  article-title: A structurally decoupled mechanism for measuring wrist torque in three degrees of freedom
  publication-title: Rev. Sci. Instrum.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bib0185
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 3
  year: 2018
  ident: bib0115
  article-title: The grand challenges of Science Robotics
  publication-title: Sci. Robot.
– volume: 22
  start-page: 1198
  year: 2014
  end-page: 1209
  ident: bib0085
  article-title: Support vector regression for improved real-time, simultaneous myoelectric control
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 20
  start-page: 371
  year: 2012
  end-page: 378
  ident: bib0080
  article-title: Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 15
  start-page: 21
  year: 2018
  ident: bib0135
  article-title: Online mapping of EMG signals into kinematics by autoencoding
  publication-title: J. Neuroeng. Rehabil.
– volume: 11
  start-page: 7
  year: 2017
  ident: bib0205
  article-title: Translating research on myoelectric control into clinics-are the performance assessment methods adequate?
  publication-title: Front. Neurorobot.
– volume: 11
  start-page: 6
  year: 2017
  ident: bib0010
  article-title: Hybrid EEG-fNIRS-based eight-command decoding for BCI: application to quadcopter control
  publication-title: Front. Neurorobot.
– volume: 14
  start-page: 582
  year: 2010
  end-page: 588
  ident: bib0195
  article-title: An EMG-based robot control scheme robust to time-varying EMG signal features
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 2
  start-page: 21
  year: 2018
  ident: bib0120
  article-title: EMG pattern recognition in the era of big data and deep learning
  publication-title: Big Data Cognit. Comput.
– start-page: 63
  year: 2013
  end-page: 83
  ident: bib0020
  article-title: Interfaces with the peripheral nerve for the control of neuroprostheses
  publication-title: Int. Rev. Neurobiol., Vol. 109
– start-page: 144
  year: 1992
  end-page: 152
  ident: bib0155
  article-title: A training algorithm for optimal margin classifiers
  publication-title: Proceedings of the fifth annual workshop on Computational learning theory
– volume: 22
  start-page: 549
  year: 2014
  end-page: 558
  ident: bib0095
  article-title: Is accurate mapping of EMG signals on kinematics needed for precise online myoelectric control?
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 22
  start-page: 756
  year: 2014
  end-page: 764
  ident: bib0070
  article-title: Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 11
  start-page: 6
  year: 2017
  ident: 10.1016/j.bspc.2019.101733_bib0010
  article-title: Hybrid EEG-fNIRS-based eight-command decoding for BCI: application to quadcopter control
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2017.00006
– volume: 40
  start-page: 335
  year: 2018
  ident: 10.1016/j.bspc.2019.101733_bib0040
  article-title: Surface EMG based continuous estimation of human lower limb joint angles by using deep belief networks
  publication-title: Biomed. Signal Proces. Control
  doi: 10.1016/j.bspc.2017.10.002
– start-page: 2880
  year: 2014
  ident: 10.1016/j.bspc.2019.101733_bib0050
  article-title: Learning efficient control of robots using myoelectric interfaces
– volume: 8
  start-page: 1126
  issue: 7
  year: 2018
  ident: 10.1016/j.bspc.2019.101733_bib0130
  article-title: Stacked sparse autoencoders for EMG-based classification of hand motions: A comparative multi day analyses between surface and intramuscular EMG
  publication-title: Appl. Sci.
  doi: 10.3390/app8071126
– volume: 58
  start-page: 681
  issue: 3
  year: 2010
  ident: 10.1016/j.bspc.2019.101733_bib0145
  article-title: Simultaneous and proportional force estimation for multifunction myoelectric prostheses using mirrored bilateral training
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2068298
– volume: 56
  start-page: 1070
  issue: 4
  year: 2009
  ident: 10.1016/j.bspc.2019.101733_bib0100
  article-title: Extracting simultaneous and proportional neural control information for multiple-DoF prostheses from the surface electromyographic signal
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2007967
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.bspc.2019.101733_bib0175
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 26
  start-page: 393
  issue: 2
  year: 2010
  ident: 10.1016/j.bspc.2019.101733_bib0190
  article-title: EMG-based control of a robot arm using low-dimensional embeddings
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2009.2039378
– volume: 50
  start-page: 848
  issue: 7
  year: 2003
  ident: 10.1016/j.bspc.2019.101733_bib0025
  article-title: A robust, real-time control scheme for multifunction myoelectric control, IEEE Trans
  publication-title: Biomed. Eng.
– start-page: 247
  year: 2014
  ident: 10.1016/j.bspc.2019.101733_bib0160
  article-title: Nonlinear programming
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.bspc.2019.101733_bib0170
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 55
  start-page: 1956
  issue: 8
  year: 2008
  ident: 10.1016/j.bspc.2019.101733_bib0030
  article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.919734
– volume: 22
  start-page: 756
  issue: 4
  year: 2014
  ident: 10.1016/j.bspc.2019.101733_bib0070
  article-title: Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2305097
– volume: 8
  start-page: 2
  issue: 1
  year: 1996
  ident: 10.1016/j.bspc.2019.101733_bib0180
  article-title: Epidemiologic overview of individuals with upper-limb loss and their reported research priorities
  publication-title: JPO: J. Prosthet. Orthot.
– volume: 22
  start-page: 269
  issue: 2
  year: 2014
  ident: 10.1016/j.bspc.2019.101733_bib0090
  article-title: Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2305520
– volume: 14
  start-page: 582
  issue: 3
  year: 2010
  ident: 10.1016/j.bspc.2019.101733_bib0195
  article-title: An EMG-based robot control scheme robust to time-varying EMG signal features
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2010.2040832
– volume: 16
  start-page: 47
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2019.101733_bib0200
  article-title: Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-019-0516-x
– volume: 21
  start-page: 111
  issue: 2
  year: 2005
  ident: 10.1016/j.bspc.2019.101733_bib0165
  article-title: A tutorial on nu-support vector machines
  publication-title: Appl. Stoch. Model. Bus.
  doi: 10.1002/asmb.537
– volume: 3
  issue: 19
  year: 2018
  ident: 10.1016/j.bspc.2019.101733_bib0075
  article-title: Simultaneous control of multiple functions of bionic hand prostheses: Performance and robustness in end users
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aat3630
– volume: 22
  start-page: 549
  issue: 3
  year: 2014
  ident: 10.1016/j.bspc.2019.101733_bib0095
  article-title: Is accurate mapping of EMG signals on kinematics needed for precise online myoelectric control?
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2287383
– volume: 11
  start-page: 5
  issue: 1
  year: 2014
  ident: 10.1016/j.bspc.2019.101733_bib0060
  article-title: A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-5
– volume: 20
  start-page: 371
  issue: 3
  year: 2012
  ident: 10.1016/j.bspc.2019.101733_bib0080
  article-title: Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2011.2178039
– volume: 11
  start-page: 3371
  issue: Dec
  year: 2010
  ident: 10.1016/j.bspc.2019.101733_bib0185
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: 36571
  year: 2016
  ident: 10.1016/j.bspc.2019.101733_bib0125
  article-title: Gesture recognition by instantaneous surface EMG images
  publication-title: Sci. Rep.
  doi: 10.1038/srep36571
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.bspc.2019.101733_bib0150
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– volume: 65
  start-page: 2790
  issue: 12
  year: 2018
  ident: 10.1016/j.bspc.2019.101733_bib0045
  article-title: Is EMG a viable alternative to BCI for detecting movement intention in severe stroke?
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2817688
– volume: 22
  start-page: 501
  issue: 3
  year: 2014
  ident: 10.1016/j.bspc.2019.101733_bib0105
  article-title: Intuitive, online, simultaneous, and proportional myoelectric control over two degrees-of-freedom in upper limb amputees
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2278411
– ident: 10.1016/j.bspc.2019.101733_bib0065
  doi: 10.1682/JRRD.2010.09.0177
– start-page: 63
  year: 2013
  ident: 10.1016/j.bspc.2019.101733_bib0020
  article-title: Interfaces with the peripheral nerve for the control of neuroprostheses
  doi: 10.1016/B978-0-12-420045-6.00002-X
– volume: 20
  start-page: 663
  issue: 5
  year: 2012
  ident: 10.1016/j.bspc.2019.101733_bib0035
  article-title: Control of upper limb prostheses: terminology and proportional myoelectric control-a review
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2196711
– volume: 2
  start-page: 44
  issue: 3
  year: 2014
  ident: 10.1016/j.bspc.2019.101733_bib0055
  article-title: Prosthetic myoelectric control strategies: a clinical perspective
  publication-title: Curr. Surg. Rep.
  doi: 10.1007/s40137-013-0044-8
– volume: 86
  start-page: 104301
  issue: 10
  year: 2015
  ident: 10.1016/j.bspc.2019.101733_bib0140
  article-title: A structurally decoupled mechanism for measuring wrist torque in three degrees of freedom
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4932556
– volume: 15
  start-page: 21
  issue: 1
  year: 2018
  ident: 10.1016/j.bspc.2019.101733_bib0135
  article-title: Online mapping of EMG signals into kinematics by autoencoding
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-018-0363-1
– volume: 15
  start-page: 031004
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2019.101733_bib0015
  article-title: Motor-commands decoding using peripheral nerve signals: a review
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aab383
– volume: 3
  issue: 14
  year: 2018
  ident: 10.1016/j.bspc.2019.101733_bib0115
  article-title: The grand challenges of Science Robotics
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aar7650
– volume: 22
  start-page: 1198
  issue: 6
  year: 2014
  ident: 10.1016/j.bspc.2019.101733_bib0085
  article-title: Support vector regression for improved real-time, simultaneous myoelectric control
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2323576
– volume: 113
  start-page: 767
  issue: 6
  year: 2002
  ident: 10.1016/j.bspc.2019.101733_bib0005
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00057-3
– start-page: 144
  year: 1992
  ident: 10.1016/j.bspc.2019.101733_bib0155
  article-title: A training algorithm for optimal margin classifiers
– volume: 11
  start-page: 7
  year: 2017
  ident: 10.1016/j.bspc.2019.101733_bib0205
  article-title: Translating research on myoelectric control into clinics-are the performance assessment methods adequate?
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2017.00007
– volume: 2
  start-page: 21
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2019.101733_bib0120
  article-title: EMG pattern recognition in the era of big data and deep learning
  publication-title: Big Data Cognit. Comput.
  doi: 10.3390/bdcc2030021
– volume: 15
  start-page: 026017
  issue: 2
  year: 2018
  ident: 10.1016/j.bspc.2019.101733_bib0110
  article-title: Robust extraction of basis functions for simultaneous and proportional myoelectric control via sparse non-negative matrix factorization
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa9666
SSID ssj0048714
Score 2.36018
Snippet Human machine interface (HMI) based on surface electromyography (sEMG) promises to provide an intuitive and noninvasive way to interact with peripheral...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101733
SubjectTerms Human machine interface
Simultaneous and proportional control
Stacked autoencoder
Title Multi-DoF continuous estimation for wrist torques using stacked autoencoder
URI https://dx.doi.org/10.1016/j.bspc.2019.101733
Volume 57
WOSCitedRecordID wos000512481800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELZ4HcoBQUtVXpUP3FZBeXg39hHxEFAJVQKkVS-RYzvtrmh2tbvh8e8Z25NkCy0qBy6RZSVO5PkyHtvffCZkXxQw6hRKBj3wfQFjmgU5j2VgFONCM2lM4g-bSC8veb8vviN1aOqOE0jLkj88iPG7mhrqwNg2dfYN5m4ahQoog9HhCmaH638Z3qXUBsejU0dDH5SVJblaLY3fLa_w3v7aEHZO7KjQqaa4qAB_tO7Iajay6pYaebv1jq_L0_dJlIOfNoYd-xyDOssRSe-NG6mcd5c4MjoGgcEd_jb97ArKztn0B-Wwaqp__Kp8JTz-WDeBaxMwEW3IWehOU2bljv0xxrW_9YLU6DCtR_BKGC98uV9WGB7k07HVmozEQXvzn8LZzwa0hmZYM9iGmW0js21kvo1FshynXQFucPnw_KR_UQ_eMH1zcvDNh2OelacEPv-Sv8cyc_HJ9TpZw4kFPfSA2CALpvxIVufkJj-Rbw00aAsN2kKDAjSogwZFaFAHDYrQoHPQ2CQ3pyfXR2cBHqYRqCQMZ4GAWFLzJO3mqtCxMjnrcYjeooJLCIGZTCREamHe1VZSTqlIszSUomcKAUVtiuQzWSpHpflCqI5DVUAHqJQJJmEKENndcc61ZDpncbFForpbMoVK8_bAk9vs3wbZIp3mmbHXWXn17m7d2xlGij4CzAA8rzy3_aa37JAPLah3ydJsUpk9sqLuZoPp5Csi5wmIbIul
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-DoF+continuous+estimation+for+wrist+torques+using+stacked+autoencoder&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Yu%2C+Yang&rft.au=Chen%2C+Chen&rft.au=Sheng%2C+Xinjun&rft.au=Zhu%2C+Xiangyang&rft.date=2020-03-01&rft.issn=1746-8094&rft.volume=57&rft.spage=101733&rft_id=info:doi/10.1016%2Fj.bspc.2019.101733&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2019_101733
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon