Intelligent process modeling and optimization of die-sinking electric discharge machining

This paper reports an intelligent approach for process modeling and optimization of electric discharge machining (EDM). Physics based process modeling using finite element method (FEM) has been integrated with the soft computing techniques like artificial neural networks (ANN) and genetic algorithm...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied soft computing Ročník 11; číslo 2; s. 2743 - 2755
Hlavní autori: Joshi, S.N., Pande, S.S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.03.2011
Predmet:
ISSN:1568-4946, 1872-9681
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper reports an intelligent approach for process modeling and optimization of electric discharge machining (EDM). Physics based process modeling using finite element method (FEM) has been integrated with the soft computing techniques like artificial neural networks (ANN) and genetic algorithm (GA) to improve prediction accuracy of the model with less dependency on the experimental data. A two-dimensional axi-symmetric numerical (FEM) model of single spark EDM process has been developed based on more realistic assumptions such as Gaussian distribution of heat flux, time and energy dependent spark radius, etc. to predict the shape of crater, material removal rate (MRR) and tool wear rate (TWR). The model is validated using the reported analytical and experimental results. A comprehensive ANN based process model is proposed to establish relation between input process conditions (current, discharge voltage, duty cycle and discharge duration) and the process responses (crater size, MRR and TWR) .The ANN model was trained, tested and tuned by using the data generated from the numerical (FEM) model. It was found to accurately predict EDM process responses for chosen process conditions. The developed ANN process model was used in conjunction with the evolutionary non-dominated sorting genetic algorithm II (NSGA-II) to select optimal process parameters for roughing and finishing operations of EDM. Experimental studies were carried out to verify the process performance for the optimum machining conditions suggested by our approach. The proposed integrated (FEM–ANN–GA) approach was found efficient and robust as the suggested optimum process parameters were found to give the expected optimum performance of the EDM process.
AbstractList This paper reports an intelligent approach for process modeling and optimization of electric discharge machining (EDM). Physics based process modeling using finite element method (FEM) has been integrated with the soft computing techniques like artificial neural networks (ANN) and genetic algorithm (GA) to improve prediction accuracy of the model with less dependency on the experimental data. A two-dimensional axi-symmetric numerical (FEM) model of single spark EDM process has been developed based on more realistic assumptions such as Gaussian distribution of heat flux, time and energy dependent spark radius, etc. to predict the shape of crater, material removal rate (MRR) and tool wear rate (TWR). The model is validated using the reported analytical and experimental results. A comprehensive ANN based process model is proposed to establish relation between input process conditions (current, discharge voltage, duty cycle and discharge duration) and the process responses (crater size, MRR and TWR) .The ANN model was trained, tested and tuned by using the data generated from the numerical (FEM) model. It was found to accurately predict EDM process responses for chosen process conditions. The developed ANN process model was used in conjunction with the evolutionary non-dominated sorting genetic algorithm II (NSGA-II) to select optimal process parameters for roughing and finishing operations of EDM. Experimental studies were carried out to verify the process performance for the optimum machining conditions suggested by our approach. The proposed integrated (FEM–ANN–GA) approach was found efficient and robust as the suggested optimum process parameters were found to give the expected optimum performance of the EDM process.
Author Pande, S.S.
Joshi, S.N.
Author_xml – sequence: 1
  givenname: S.N.
  surname: Joshi
  fullname: Joshi, S.N.
  organization: Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
– sequence: 2
  givenname: S.S.
  surname: Pande
  fullname: Pande, S.S.
  email: s.s.pande@iitb.ac.in
  organization: Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
BookMark eNp9kE1LAzEQhoNUsK3-AU_7B3bNZL-y4EWKHwXBix48hWwy26Zuk5IEQX-9WevJQ08zvC_PwDwLMrPOIiHXQAug0NzsChmcKhidAigorc_IHHjL8q7hMEt73fC86qrmgixC2NEEdYzPyfvaRhxHs0Ebs4N3CkPI9k7jaOwmk1Zn7hDN3nzLaJzN3JBpg3kw9mPqcUQVvVEpDGor_QazvVRbY1N5Sc4HOQa8-ptL8vZw_7p6yp9fHteru-dclZTGnKPibdUz3QLtGdYlQN3zmnZQcoQSO2DYa1ASVdUp2rZ9o5qhbUpdc4aSl0vCjneVdyF4HMTBm730XwKomOSInZjkiEmOABBJToL4P0iZ-Pti9NKMp9HbI4rpqU-DXgRl0CrUxicbQjtzCv8BJhKD3g
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3080297
crossref_primary_10_1051_matecconf_20167801014
crossref_primary_10_1007_s00170_023_11603_x
crossref_primary_10_1007_s40430_013_0047_5
crossref_primary_10_1007_s00170_012_3963_0
crossref_primary_10_1007_s00170_014_6507_y
crossref_primary_10_1007_s11465_013_0269_3
crossref_primary_10_1007_s41870_018_0102_7
crossref_primary_10_3390_technologies6020054
crossref_primary_10_1007_s10462_017_9602_2
crossref_primary_10_1007_s12633_022_02022_w
crossref_primary_10_1016_j_matpr_2022_11_148
crossref_primary_10_1142_S2737599423400091
crossref_primary_10_1007_s10845_012_0648_3
crossref_primary_10_3390_ma15217846
crossref_primary_10_1016_j_matpr_2017_02_050
crossref_primary_10_1155_2013_392531
crossref_primary_10_1016_j_procir_2017_12_115
crossref_primary_10_1016_j_optlastec_2018_12_016
crossref_primary_10_1016_j_matpr_2020_12_749
crossref_primary_10_1007_s00170_015_7777_8
crossref_primary_10_1007_s10845_018_1443_6
crossref_primary_10_1007_s00366_013_0320_3
crossref_primary_10_1016_j_procir_2013_03_086
crossref_primary_10_1177_0954405421995605
crossref_primary_10_1177_0954406219892297
crossref_primary_10_1007_s00170_016_8455_1
crossref_primary_10_3390_jmmp7060225
crossref_primary_10_1007_s00170_012_4628_8
crossref_primary_10_1177_0954405413489294
crossref_primary_10_1016_j_matdes_2011_03_049
crossref_primary_10_4018_ijmmme_2013040101
crossref_primary_10_1016_j_matpr_2018_09_011
crossref_primary_10_1016_j_mtcomm_2023_107357
crossref_primary_10_1016_j_procir_2017_12_225
crossref_primary_10_1016_j_acme_2015_06_009
crossref_primary_10_1016_j_matpr_2021_10_303
crossref_primary_10_3390_sym14020377
crossref_primary_10_1016_j_matpr_2020_10_367
crossref_primary_10_1016_j_proeng_2011_08_745
crossref_primary_10_1177_09544089251325756
crossref_primary_10_1007_s12008_022_01130_6
crossref_primary_10_1007_s12597_019_00410_2
crossref_primary_10_1007_s12046_012_0078_0
crossref_primary_10_1007_s00521_016_2796_4
crossref_primary_10_1016_j_asoc_2015_01_042
crossref_primary_10_3390_ma15197019
crossref_primary_10_1016_j_matpr_2020_05_135
crossref_primary_10_1007_s00170_014_5894_4
crossref_primary_10_1016_j_engappai_2024_109975
crossref_primary_10_3390_mi14030508
crossref_primary_10_1007_s00170_016_9005_6
crossref_primary_10_1016_j_asoc_2014_11_011
crossref_primary_10_1016_j_optlastec_2017_09_024
crossref_primary_10_1007_s00170_021_06796_y
crossref_primary_10_1016_j_jmapro_2022_02_013
crossref_primary_10_4018_ijsir_2013070103
crossref_primary_10_1016_j_rcim_2017_05_010
crossref_primary_10_1007_s11740_012_0398_2
crossref_primary_10_3390_mi12060702
crossref_primary_10_1007_s12206_014_0520_9
crossref_primary_10_1007_s12206_011_0905_y
crossref_primary_10_1016_j_procir_2013_03_059
crossref_primary_10_1177_0954405414538960
crossref_primary_10_1177_25165984251328100
crossref_primary_10_1007_s10462_013_9397_8
crossref_primary_10_1080_10426914_2014_930892
crossref_primary_10_1007_s12289_012_1117_4
crossref_primary_10_1016_j_jmsy_2022_05_018
crossref_primary_10_1016_j_ijmachtools_2012_10_004
crossref_primary_10_1016_j_pisc_2016_04_099
crossref_primary_10_1080_10426914_2017_1292037
crossref_primary_10_1007_s00170_016_8554_z
crossref_primary_10_1080_2374068X_2022_2135733
crossref_primary_10_3390_app10062082
crossref_primary_10_1007_s10751_024_01933_x
crossref_primary_10_1007_s42452_020_04083_1
crossref_primary_10_3390_math10183228
crossref_primary_10_1016_j_matpr_2019_07_340
crossref_primary_10_1007_s12008_022_01079_6
crossref_primary_10_1080_2374068X_2021_1945300
crossref_primary_10_1016_j_jal_2012_07_006
crossref_primary_10_3390_ma12060907
crossref_primary_10_1007_s00170_024_13618_4
crossref_primary_10_26634_jms_6_2_14328
crossref_primary_10_1007_s10845_014_0942_3
crossref_primary_10_1016_j_ijmachtools_2016_12_005
Cites_doi 10.1162/evco.1994.2.3.221
10.1016/j.jmatprotec.2007.01.009
10.1016/j.jmatprotec.2006.12.030
10.1016/j.asoc.2004.02.004
10.1016/S0893-6080(05)80056-5
10.1016/S0924-0136(01)01198-0
10.1016/S0890-6955(01)00028-1
10.1016/j.jmatprotec.2008.04.003
10.1016/j.rcim.2005.08.004
10.1063/1.343994
10.1016/j.matdes.2006.01.028
10.1016/S0924-0136(01)01146-3
10.1016/j.jmatprotec.2008.10.053
10.1016/j.asoc.2007.07.003
10.1016/j.jmatprotec.2004.08.026
10.1016/j.ijmachtools.2006.08.001
10.1007/s10845-008-0081-9
10.1081/AMP-200055033
10.1016/j.jmatprotec.2003.10.059
10.1631/jzus.A071242
10.1016/S0007-8506(07)60020-1
10.1109/4235.996017
10.1016/S0890-6955(03)00162-7
10.1016/j.jmatprotec.2007.10.026
10.1016/S0890-6955(03)00102-0
10.1007/s00170-009-1972-4
10.1109/72.80341
10.1016/j.asoc.2007.06.007
ContentType Journal Article
Copyright 2010 Elsevier B.V.
Copyright_xml – notice: 2010 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2010.11.005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 2755
ExternalDocumentID 10_1016_j_asoc_2010_11_005
S1568494610002826
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-8ec874b2d710b2e53115b8509138e13e912ebd1caec49c077b6c6f763d582ea83
ISICitedReferencesCount 98
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000286373200122&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 22:20:08 EST 2025
Sat Nov 29 02:08:16 EST 2025
Fri Feb 23 02:23:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Finite element method (FEM)
Electric discharge machining (EDM)
Non-dominated sorting genetic algorithm (NSGA)
Scaled conjugate gradient algorithm (SCG)
Artificial neural networks (ANN)
Process modeling and optimization
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-8ec874b2d710b2e53115b8509138e13e912ebd1caec49c077b6c6f763d582ea83
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_asoc_2010_11_005
crossref_citationtrail_10_1016_j_asoc_2010_11_005
elsevier_sciencedirect_doi_10_1016_j_asoc_2010_11_005
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2011
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rao, Janardhana, Rao, Rao (bib0100) 2009; 209
ANSYS Version 10.0 Manuals, ANSYS™ Inc., USA.
Chen, Cowan, Grant (bib0145) 1991
Fenggou, Dayong (bib0065) 2004; 149
Su, Kao, Tarng (bib0075) 2004; 24
Srinivas, Deb (bib0155) 1994; 2
Tzeng, Chen (bib0110) 2007; 28
Smith, German, Smith (bib0120) 2002; 120
Yanga, Srinivas, Mohana, Lee, Balaji (bib0105) 2009
Jain, Jain, Deb (bib0020) 2007; 47
Panda, Bhoi (bib0070) 2005; 20
DiBitonto, Eubank, Patel, Barrufet (bib0035) 1989; 66
Mandal, Pal, Saha (bib0085) 2007
Srinivasu, Ramesh Babu (bib0125) 2008; 8
Sen, Shan (bib0080) 2007; 23
Moller (bib0150) 1993; 6
Sastry (bib0165) 2007
Markopoulos, Manolakos, Vaxevanidis (bib0015) 2008; 19
Panda, Bhoi (bib0040) 2001; 10
F.L. Amorim, W.L. Weingaertner, Die-sinking EDM of AISI P20 Tool Steel Under Rough Machining Using Copper Electrodes, 20th COBEF, CD-Rom, Uberlandia, Brazil, 2003, pp. 1–5.
Panda, Chakraborty, Pal (bib0130) 2008; 8
Wang, Gelgele, Wang, Yuan, Fang (bib0060) 2003; 43
Machining Data Handbook V2, Machiniability Data Center. Metcut Research, 1981.
Ho, Newman (bib0005) 2003; 43
Kunieda, Lauwers, Rajurkar, Schumacher (bib0010) 2005; 54
Rao, Janardhana, Rao, Rao (bib0095) 2008; 3
Amorim, Weingaertner (bib0175) 2005; 166
Joshi, Pande (bib0030) 2009; 45
Gao, Zhang, Su, Zhang (bib0090) 2008; 9
Allen, Chen (bib0045) 2007; 186
Tsai, Wang (bib0055) 2001; 41
Salido, Murakami (bib0135) 2004; 4
Yeo, Kurnia, Tan (bib0025) 2007; 203
Tsai, Wang (bib0050) 2001; 117
Deb, Pratap, Agrawal, Meyarivan (bib0160) 2002; 6
Srinivasu (10.1016/j.asoc.2010.11.005_bib0125) 2008; 8
Sastry (10.1016/j.asoc.2010.11.005_bib0165) 2007
Allen (10.1016/j.asoc.2010.11.005_bib0045) 2007; 186
10.1016/j.asoc.2010.11.005_bib0115
Fenggou (10.1016/j.asoc.2010.11.005_bib0065) 2004; 149
Panda (10.1016/j.asoc.2010.11.005_bib0070) 2005; 20
Rao (10.1016/j.asoc.2010.11.005_bib0100) 2009; 209
Panda (10.1016/j.asoc.2010.11.005_bib0130) 2008; 8
Amorim (10.1016/j.asoc.2010.11.005_bib0175) 2005; 166
Yeo (10.1016/j.asoc.2010.11.005_bib0025) 2007; 203
Gao (10.1016/j.asoc.2010.11.005_bib0090) 2008; 9
10.1016/j.asoc.2010.11.005_bib0170
Chen (10.1016/j.asoc.2010.11.005_bib0145) 1991
Moller (10.1016/j.asoc.2010.11.005_bib0150) 1993; 6
Yanga (10.1016/j.asoc.2010.11.005_bib0105) 2009
DiBitonto (10.1016/j.asoc.2010.11.005_bib0035) 1989; 66
Mandal (10.1016/j.asoc.2010.11.005_bib0085) 2007
Kunieda (10.1016/j.asoc.2010.11.005_bib0010) 2005; 54
Joshi (10.1016/j.asoc.2010.11.005_bib0030) 2009; 45
Sen (10.1016/j.asoc.2010.11.005_bib0080) 2007; 23
Srinivas (10.1016/j.asoc.2010.11.005_bib0155) 1994; 2
Smith (10.1016/j.asoc.2010.11.005_bib0120) 2002; 120
Wang (10.1016/j.asoc.2010.11.005_bib0060) 2003; 43
Rao (10.1016/j.asoc.2010.11.005_bib0095) 2008; 3
Jain (10.1016/j.asoc.2010.11.005_bib0020) 2007; 47
Panda (10.1016/j.asoc.2010.11.005_bib0040) 2001; 10
Tzeng (10.1016/j.asoc.2010.11.005_bib0110) 2007; 28
Markopoulos (10.1016/j.asoc.2010.11.005_bib0015) 2008; 19
Su (10.1016/j.asoc.2010.11.005_bib0075) 2004; 24
Deb (10.1016/j.asoc.2010.11.005_bib0160) 2002; 6
Salido (10.1016/j.asoc.2010.11.005_bib0135) 2004; 4
Ho (10.1016/j.asoc.2010.11.005_bib0005) 2003; 43
Tsai (10.1016/j.asoc.2010.11.005_bib0055) 2001; 41
10.1016/j.asoc.2010.11.005_bib0140
Tsai (10.1016/j.asoc.2010.11.005_bib0050) 2001; 117
References_xml – volume: 117
  start-page: 111
  year: 2001
  end-page: 124
  ident: bib0050
  article-title: Comparison of neural network models on material removal rate in EDM
  publication-title: J. Mater. Process. Technol.
– year: 2007
  ident: bib0085
  article-title: Modeling of EDM using BPNN and multi-objective optimization using non dominating sorting algorithm – II
  publication-title: J. Mater. Process. Technol.
– start-page: 302
  year: 1991
  end-page: 309
  ident: bib0145
  article-title: Orthogonal Least Squares learning algorithm for radial basis function networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 41
  start-page: 1385
  year: 2001
  end-page: 1403
  ident: bib0055
  article-title: Predictions on surface finish in electrical discharge machining based upon neural network models
  publication-title: Int. J. Mach. Tool Manufact.
– volume: 3
  start-page: 19
  year: 2008
  end-page: 30
  ident: bib0095
  article-title: Development of hybrid model and optimization of metal removal rate in electric discharge machining using artificial neural networks and genetic algorithm
  publication-title: ARPN J. Eng. Appl. Sci.
– volume: 6
  start-page: 525
  year: 1993
  end-page: 533
  ident: bib0150
  article-title: A scale conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Netw.
– volume: 149
  start-page: 83
  year: 2004
  end-page: 87
  ident: bib0065
  article-title: The study of high efficiency and intelligent optimization system in EDM sinking process
  publication-title: J. Mater. Process. Technol.
– volume: 2
  start-page: 221
  year: 1994
  end-page: 248
  ident: bib0155
  article-title: Muiltiobjective optimization using non-dominated sorting in genetic algorithms
  publication-title: Evol. Comput.
– volume: 43
  start-page: 1287
  year: 2003
  end-page: 1300
  ident: bib0005
  article-title: State of the art in electrical discharge machining (EDM)
  publication-title: Int. J. Mach. Tool Manufact.
– volume: 54
  start-page: 599
  year: 2005
  end-page: 622
  ident: bib0010
  article-title: Advancing EDM through fundamental insight into the process
  publication-title: CIRP Ann.
– volume: 66
  start-page: 4095
  year: 1989
  end-page: 4103
  ident: bib0035
  article-title: Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model
  publication-title: J. Appl. Phys.
– volume: 166
  start-page: 411
  year: 2005
  end-page: 416
  ident: bib0175
  article-title: The influence of generator actuation mode and process parameters on the performance of finish EDM of tool steel
  publication-title: J. Mater. Process. Technol.
– volume: 209
  start-page: 1512
  year: 2009
  end-page: 1520
  ident: bib0100
  article-title: Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm
  publication-title: J. Mater. Process. Technol.
– year: 2009
  ident: bib0105
  article-title: Optimization of electric discharge machining using simulated annealing
  publication-title: J. Mater. Process. Technol.
– reference: ANSYS Version 10.0 Manuals, ANSYS™ Inc., USA.
– volume: 120
  start-page: 419
  year: 2002
  end-page: 425
  ident: bib0120
  article-title: A neural network approach for solution of the inverse problem for selection of powder metallurgy materials
  publication-title: J. Mater. Process. Technol.
– volume: 203
  start-page: 241
  year: 2007
  end-page: 251
  ident: bib0025
  article-title: Critical assessment and numerical comparison of electro-thermal models in EDM
  publication-title: J. Mater. Process. Technol.
– volume: 8
  start-page: 809
  year: 2008
  end-page: 819
  ident: bib0125
  article-title: A neuro-genetic approach for selection of process parameters in abrasive waterjet cutting considering variation in diameter of focusing nozzle
  publication-title: Appl. Soft Comput.
– reference: Machining Data Handbook V2, Machiniability Data Center. Metcut Research, 1981.
– volume: 47
  start-page: 900
  year: 2007
  end-page: 919
  ident: bib0020
  article-title: Optimization of process parameters of mechanical type advanced machining processes using genetic algorithms
  publication-title: Int. J. Mach. Tool Manufact.
– volume: 9
  start-page: 104
  year: 2008
  end-page: 108
  ident: bib0090
  article-title: Parameter optimization model in electrical discharge machining process
  publication-title: J. Zhejiang Univ. Sci. A
– volume: 24
  start-page: 81
  year: 2004
  end-page: 90
  ident: bib0075
  article-title: Optimisation of the electrical discharge machining process using a GA-based neural network
  publication-title: Int. J. Adv. Manufact. Technol.
– volume: 10
  start-page: 71
  year: 2001
  end-page: 90
  ident: bib0040
  article-title: Developing transient three-dimensional thermal models for electro discharge machining of semi infinite and infinite solid
  publication-title: J. Mater. Process. Manufact. Sci.
– volume: 23
  start-page: 17
  year: 2007
  end-page: 24
  ident: bib0080
  article-title: Electro jet drilling using hybrid NNGA approach
  publication-title: Robot. Comp. Integr. Manufact.
– volume: 45
  start-page: 300
  year: 2009
  end-page: 317
  ident: bib0030
  article-title: Development of an intelligent process model for EDM
  publication-title: Int. J. Adv. Manufact. Technol.
– volume: 8
  start-page: 858
  year: 2008
  end-page: 871
  ident: bib0130
  article-title: Flank wear prediction in drilling using back propagation neural network and radial basis function network
  publication-title: Appl. Soft Comput.
– volume: 43
  start-page: 995
  year: 2003
  end-page: 999
  ident: bib0060
  article-title: A hybrid intelligent method for modeling the EDM process
  publication-title: Int. J. Mach. Tool Manufact.
– volume: 4
  start-page: 413
  year: 2004
  end-page: 422
  ident: bib0135
  article-title: Comparison of two learning mechanisms for automatic design of fuzzy systems for rotating machinery
  publication-title: Appl. Soft Comput.
– year: 2007
  ident: bib0165
  article-title: Single and Multi Objective Genetic Algorithm Toolbox for MATLAB in C++ (IlliGAL Report No. 2007017)
– volume: 19
  start-page: 283
  year: 2008
  end-page: 292
  ident: bib0015
  article-title: Artificial neural network models for the prediction of surface roughness in electrical discharge machining
  publication-title: J. Intell. Manufact.
– volume: 28
  start-page: 1159
  year: 2007
  end-page: 1168
  ident: bib0110
  article-title: Multi-objective optimisation of high-speed electrical discharge machining process using a Taguchi fuzzy-based approach
  publication-title: Mater. Des.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0160
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– reference: F.L. Amorim, W.L. Weingaertner, Die-sinking EDM of AISI P20 Tool Steel Under Rough Machining Using Copper Electrodes, 20th COBEF, CD-Rom, Uberlandia, Brazil, 2003, pp. 1–5.
– volume: 186
  start-page: 346
  year: 2007
  end-page: 355
  ident: bib0045
  article-title: Process simulation of micro electro-discharge machining on molybdenum
  publication-title: J. Mater. Process. Technol.
– volume: 20
  start-page: 645
  year: 2005
  end-page: 672
  ident: bib0070
  article-title: Artificial neural network prediction of material removal rate in EDM
  publication-title: Mater. Manufact. Process.
– volume: 2
  start-page: 221
  issue: 3
  year: 1994
  ident: 10.1016/j.asoc.2010.11.005_bib0155
  article-title: Muiltiobjective optimization using non-dominated sorting in genetic algorithms
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1994.2.3.221
– volume: 186
  start-page: 346
  year: 2007
  ident: 10.1016/j.asoc.2010.11.005_bib0045
  article-title: Process simulation of micro electro-discharge machining on molybdenum
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2007.01.009
– volume: 24
  start-page: 81
  year: 2004
  ident: 10.1016/j.asoc.2010.11.005_bib0075
  article-title: Optimisation of the electrical discharge machining process using a GA-based neural network
  publication-title: Int. J. Adv. Manufact. Technol.
– year: 2007
  ident: 10.1016/j.asoc.2010.11.005_bib0085
  article-title: Modeling of EDM using BPNN and multi-objective optimization using non dominating sorting algorithm – II
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2006.12.030
– volume: 4
  start-page: 413
  year: 2004
  ident: 10.1016/j.asoc.2010.11.005_bib0135
  article-title: Comparison of two learning mechanisms for automatic design of fuzzy systems for rotating machinery
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2004.02.004
– volume: 6
  start-page: 525
  year: 1993
  ident: 10.1016/j.asoc.2010.11.005_bib0150
  article-title: A scale conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80056-5
– volume: 120
  start-page: 419
  year: 2002
  ident: 10.1016/j.asoc.2010.11.005_bib0120
  article-title: A neural network approach for solution of the inverse problem for selection of powder metallurgy materials
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/S0924-0136(01)01198-0
– volume: 41
  start-page: 1385
  year: 2001
  ident: 10.1016/j.asoc.2010.11.005_bib0055
  article-title: Predictions on surface finish in electrical discharge machining based upon neural network models
  publication-title: Int. J. Mach. Tool Manufact.
  doi: 10.1016/S0890-6955(01)00028-1
– volume: 209
  start-page: 1512
  year: 2009
  ident: 10.1016/j.asoc.2010.11.005_bib0100
  article-title: Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2008.04.003
– volume: 23
  start-page: 17
  year: 2007
  ident: 10.1016/j.asoc.2010.11.005_bib0080
  article-title: Electro jet drilling using hybrid NNGA approach
  publication-title: Robot. Comp. Integr. Manufact.
  doi: 10.1016/j.rcim.2005.08.004
– volume: 66
  start-page: 4095
  issue: 9
  year: 1989
  ident: 10.1016/j.asoc.2010.11.005_bib0035
  article-title: Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.343994
– volume: 28
  start-page: 1159
  year: 2007
  ident: 10.1016/j.asoc.2010.11.005_bib0110
  article-title: Multi-objective optimisation of high-speed electrical discharge machining process using a Taguchi fuzzy-based approach
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2006.01.028
– volume: 117
  start-page: 111
  year: 2001
  ident: 10.1016/j.asoc.2010.11.005_bib0050
  article-title: Comparison of neural network models on material removal rate in EDM
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/S0924-0136(01)01146-3
– year: 2009
  ident: 10.1016/j.asoc.2010.11.005_bib0105
  article-title: Optimization of electric discharge machining using simulated annealing
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2008.10.053
– volume: 3
  start-page: 19
  issue: 1
  year: 2008
  ident: 10.1016/j.asoc.2010.11.005_bib0095
  article-title: Development of hybrid model and optimization of metal removal rate in electric discharge machining using artificial neural networks and genetic algorithm
  publication-title: ARPN J. Eng. Appl. Sci.
– ident: 10.1016/j.asoc.2010.11.005_bib0115
– volume: 8
  start-page: 858
  issue: 2
  year: 2008
  ident: 10.1016/j.asoc.2010.11.005_bib0130
  article-title: Flank wear prediction in drilling using back propagation neural network and radial basis function network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.07.003
– volume: 166
  start-page: 411
  year: 2005
  ident: 10.1016/j.asoc.2010.11.005_bib0175
  article-title: The influence of generator actuation mode and process parameters on the performance of finish EDM of tool steel
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2004.08.026
– ident: 10.1016/j.asoc.2010.11.005_bib0170
– volume: 47
  start-page: 900
  year: 2007
  ident: 10.1016/j.asoc.2010.11.005_bib0020
  article-title: Optimization of process parameters of mechanical type advanced machining processes using genetic algorithms
  publication-title: Int. J. Mach. Tool Manufact.
  doi: 10.1016/j.ijmachtools.2006.08.001
– volume: 19
  start-page: 283
  year: 2008
  ident: 10.1016/j.asoc.2010.11.005_bib0015
  article-title: Artificial neural network models for the prediction of surface roughness in electrical discharge machining
  publication-title: J. Intell. Manufact.
  doi: 10.1007/s10845-008-0081-9
– volume: 20
  start-page: 645
  year: 2005
  ident: 10.1016/j.asoc.2010.11.005_bib0070
  article-title: Artificial neural network prediction of material removal rate in EDM
  publication-title: Mater. Manufact. Process.
  doi: 10.1081/AMP-200055033
– volume: 149
  start-page: 83
  year: 2004
  ident: 10.1016/j.asoc.2010.11.005_bib0065
  article-title: The study of high efficiency and intelligent optimization system in EDM sinking process
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2003.10.059
– volume: 9
  start-page: 104
  issue: 1
  year: 2008
  ident: 10.1016/j.asoc.2010.11.005_bib0090
  article-title: Parameter optimization model in electrical discharge machining process
  publication-title: J. Zhejiang Univ. Sci. A
  doi: 10.1631/jzus.A071242
– volume: 54
  start-page: 599
  issue: 2
  year: 2005
  ident: 10.1016/j.asoc.2010.11.005_bib0010
  article-title: Advancing EDM through fundamental insight into the process
  publication-title: CIRP Ann.
  doi: 10.1016/S0007-8506(07)60020-1
– year: 2007
  ident: 10.1016/j.asoc.2010.11.005_bib0165
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.asoc.2010.11.005_bib0160
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 43
  start-page: 1287
  year: 2003
  ident: 10.1016/j.asoc.2010.11.005_bib0005
  article-title: State of the art in electrical discharge machining (EDM)
  publication-title: Int. J. Mach. Tool Manufact.
  doi: 10.1016/S0890-6955(03)00162-7
– volume: 10
  start-page: 71
  issue: 2
  year: 2001
  ident: 10.1016/j.asoc.2010.11.005_bib0040
  article-title: Developing transient three-dimensional thermal models for electro discharge machining of semi infinite and infinite solid
  publication-title: J. Mater. Process. Manufact. Sci.
– volume: 203
  start-page: 241
  year: 2007
  ident: 10.1016/j.asoc.2010.11.005_bib0025
  article-title: Critical assessment and numerical comparison of electro-thermal models in EDM
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2007.10.026
– volume: 43
  start-page: 995
  year: 2003
  ident: 10.1016/j.asoc.2010.11.005_bib0060
  article-title: A hybrid intelligent method for modeling the EDM process
  publication-title: Int. J. Mach. Tool Manufact.
  doi: 10.1016/S0890-6955(03)00102-0
– ident: 10.1016/j.asoc.2010.11.005_bib0140
– volume: 45
  start-page: 300
  issue: 3
  year: 2009
  ident: 10.1016/j.asoc.2010.11.005_bib0030
  article-title: Development of an intelligent process model for EDM
  publication-title: Int. J. Adv. Manufact. Technol.
  doi: 10.1007/s00170-009-1972-4
– start-page: 302
  year: 1991
  ident: 10.1016/j.asoc.2010.11.005_bib0145
  article-title: Orthogonal Least Squares learning algorithm for radial basis function networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.80341
– volume: 8
  start-page: 809
  year: 2008
  ident: 10.1016/j.asoc.2010.11.005_bib0125
  article-title: A neuro-genetic approach for selection of process parameters in abrasive waterjet cutting considering variation in diameter of focusing nozzle
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.06.007
SSID ssj0016928
Score 2.3022385
Snippet This paper reports an intelligent approach for process modeling and optimization of electric discharge machining (EDM). Physics based process modeling using...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 2743
SubjectTerms Artificial neural networks (ANN)
Electric discharge machining (EDM)
Finite element method (FEM)
Non-dominated sorting genetic algorithm (NSGA)
Process modeling and optimization
Scaled conjugate gradient algorithm (SCG)
Title Intelligent process modeling and optimization of die-sinking electric discharge machining
URI https://dx.doi.org/10.1016/j.asoc.2010.11.005
Volume 11
WOSCitedRecordID wos000286373200122&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pa9swFBaj2WGXrls3-mtDh92CjSzLlnQMpaUdIwzSlexkbFmClM0JtVv65-_JkhzTbWU97GKCseUk7_N7T9J734fQJ0oTeJ2zNKrz0sAExZioZCmPqCbaMFLlZd-Vdv2Fz-diuZRffRF728sJ8KYRDw9y819NDefA2LZ19hnmHgaFE_AZjA5HMDsc_8nwlwPJZjfduDYAp3cT2hHX4CV--vZLmyvWKx21TkJh6lRxVspu3PQkSra-1ZZbhggXCGt98tqCF-_L0u-6cEVfjtP2WsHTRTyPt5tUjaP4XcSLeLzYkIyqrYJ_zEXEpF81DA40GQGFjr0hdxRMPrJS7hh5f_PabgHhJi4BkK7azhKrkmwbo8K-_KPQNRQUhlq1m8KOUdgxYG5T9Oy2E3iuBIc3mV2eLT8PW0y57IV3h1_kO6pc8d_jb_LnrGWUiVztoV0_hcAzZ_o36IVu3qLXQZ4De2-9j76PkIA9EnBAAgZr4DES8NrgERJwQAIekIAHJLxD387Prk4vIq-kEamUkC4SWgnOKlpDPllRnVmKpUrYXDEVOkm1TKiu6kSVWjGpCOdVrnIDoafOBNWlSN-jnWbd6AOEq0oYadVE6tSwrGaCMcWJsSLWjEgiD1ES_qlCeZp5q3byo_i7jQ7RdLhn40hWnrw6CwYofJro0r8C8PTEfUfPesoxerV9AU7QTnd7pz-gl-q-W7W3Hz2YfgG0rYmk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+process+modeling+and+optimization+of+die-sinking+electric+discharge+machining&rft.jtitle=Applied+soft+computing&rft.au=Joshi%2C+S.N.&rft.au=Pande%2C+S.S.&rft.date=2011-03-01&rft.issn=1568-4946&rft.volume=11&rft.issue=2&rft.spage=2743&rft.epage=2755&rft_id=info:doi/10.1016%2Fj.asoc.2010.11.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2010_11_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon