Multi-label learning via minimax probability machine

In this paper, we propose Minimax Probability Machine for Multi-label data classification and is termed as Multi-Label Minimax Probability Machine (MLMPM). Based on data mean and covariance information, MLMPM builds a classifier that minimizes an upper bound on the mis-classification probability of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of approximate reasoning Ročník 145; s. 1 - 17
Hlavní autoři: Rastogi (nee Khemchandani), Reshma, Jain, Sambhav
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.06.2022
Témata:
ISSN:0888-613X, 1873-4731
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we propose Minimax Probability Machine for Multi-label data classification and is termed as Multi-Label Minimax Probability Machine (MLMPM). Based on data mean and covariance information, MLMPM builds a classifier that minimizes an upper bound on the mis-classification probability of unseen future data. For capturing label correlation we have considered asymmetric co-occurrency matrix into the model. The proposed model has also been extended to non-linear settings using the Mercer Kernel trick. To accelerate the training procedure, iterative weighted least squares is used to train the underlying optimization model efficiently. Extensive experimental comparisons of our proposed method with related multi-label algorithms on synthetic as well as real world multi-label datasets, along with Amazon rainforest satellite images dataset, prove its efficacy.
AbstractList In this paper, we propose Minimax Probability Machine for Multi-label data classification and is termed as Multi-Label Minimax Probability Machine (MLMPM). Based on data mean and covariance information, MLMPM builds a classifier that minimizes an upper bound on the mis-classification probability of unseen future data. For capturing label correlation we have considered asymmetric co-occurrency matrix into the model. The proposed model has also been extended to non-linear settings using the Mercer Kernel trick. To accelerate the training procedure, iterative weighted least squares is used to train the underlying optimization model efficiently. Extensive experimental comparisons of our proposed method with related multi-label algorithms on synthetic as well as real world multi-label datasets, along with Amazon rainforest satellite images dataset, prove its efficacy.
Author Rastogi (nee Khemchandani), Reshma
Jain, Sambhav
Author_xml – sequence: 1
  givenname: Reshma
  surname: Rastogi (nee Khemchandani)
  fullname: Rastogi (nee Khemchandani), Reshma
  email: reshma.khemchandani@sau.ac.in
– sequence: 2
  givenname: Sambhav
  orcidid: 0000-0001-8835-285X
  surname: Jain
  fullname: Jain, Sambhav
  email: sambhav.sau@gmail.com
BookMark eNp9j8tKw0AYhQepYFt9AVd5gcS5JTMBN1K8QcWNgrthZvKP_iGdlEks9u1NqSsXhQNn9R3OtyCz2Ecg5JrRglFW3bQFtjYVnHJe0CmUn5E500rkUgk2I3Oqtc4rJj4uyGIYWkpppaSeE_ny3Y2Yd9ZBl3VgU8T4me3QZhuMuLE_2Tb1zjrscNxnG-u_MMIlOQ-2G-Dqr5fk_eH-bfWUr18fn1d369wLSsdcQ1k30CjOtISqBCtKXYILTDsNwauyDlyxWjqpQLFQqobWkoVGOQdCCi-WhB93feqHIUEw2zR9SnvDqDl4m9YcvM3B29AplE-Q_gd5HO2IfRyTxe40entEYZLaISQzeIToocEEfjRNj6fwX-NudhY
CitedBy_id crossref_primary_10_1007_s13042_024_02518_4
Cites_doi 10.1007/s10994-011-5256-5
10.1016/j.patcog.2004.03.009
10.1016/j.neunet.2018.09.003
10.1109/TKDE.2016.2608339
10.1109/TKDE.2017.2785795
10.1016/j.knosys.2020.106709
10.1016/j.ijar.2018.10.009
10.1016/j.knosys.2019.06.014
10.1016/j.entcs.2014.01.025
10.1109/TNNLS.2016.2544779
10.1016/j.patcog.2006.12.019
10.1016/j.knosys.2020.105703
10.1109/TCYB.2017.2663838
10.1109/TKDE.2011.141
10.1109/TPAMI.2014.2339815
10.1007/BF02868641
10.1007/s10489-018-1156-8
10.1016/j.patcog.2015.10.008
10.1016/j.ijar.2015.06.006
10.1007/s10489-018-1345-5
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ijar.2022.02.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-4731
EndPage 17
ExternalDocumentID 10_1016_j_ijar_2022_02_002
S0888613X22000329
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
UHS
WUQ
XPP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-8e59ded72184e65ea3585ebf18b8efc759f27194b47e71f57d0941fd7bbe343c3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000782661100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-613X
IngestDate Sat Nov 29 07:13:15 EST 2025
Tue Nov 18 22:38:10 EST 2025
Fri Feb 23 02:41:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Label correlation
Weighted least squares
Multi-label classification
Minimax probability machine
Second order cone programming problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-8e59ded72184e65ea3585ebf18b8efc759f27194b47e71f57d0941fd7bbe343c3
ORCID 0000-0001-8835-285X
PageCount 17
ParticipantIDs crossref_primary_10_1016_j_ijar_2022_02_002
crossref_citationtrail_10_1016_j_ijar_2022_02_002
elsevier_sciencedirect_doi_10_1016_j_ijar_2022_02_002
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle International journal of approximate reasoning
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Boutell, Luo, Shen, Brown (br0030) 2004; 37
Jiang, Wang, Zhu (br0170) 2008
Chen, Shao, Li, Deng (br0050) 2016; 52
Isii (br0160) 1962; 14
He, Yang (br0120) 2019; 49
Read, Pfahringer, Holmes, Frank (br0270) 2011; 85
Zhang, Miao, Zhang, Xu, Luo (br0430) 2018; 103
Ma, Yang, Wen, Sun (br0220) 2020; 187
Xu, Wang, Shen, Wang, Chen (br0400) 2014
Lanckriet, Ghaoui, Bhattacharyya, Jordan (br0190) 2002
Tsoumakas, Vlahavas (br0320) 2007
Huang, Li, Huang, Wu (br0130) 2016; 28
Teisseyre (br0290) 2021; 213
Lanckriet, Ghaoui, Bhattacharyya, Jordan (br0200) 2002; 3
Wang, Huang, Ding (br0350) 2009
Mahalanobis (br0230) 1936
Gu, Sun, Sheng (br0090) 2016; 28
Huang, Yu, Zhou (br0150) 2012
Mitiche, Nesbitt, Boreham, Stewart, Morison (br0240) 2018
Elisseeff, Weston (br0070) 2001
Guo, Gu (br0100) 2011
Wu, Tian, Liu (br0380) 2018; 108
Wan, Xu (br0340) 2007
Huang, Li, Huang, Wu (br0140) 2017; 48
Ma, Shen (br0210) 2020
Prathibhamol, Jyothy, Noora (br0260) 2016
Zhu, Kwok, Zhou (br0440) 2018; 30
Kong, Ng, Zhou (br0180) 2011; 25
Zhang, Zhou (br0420) 2007; 40
He, Yang, Liu (br0110) 2014; 25
Wu, Liu, Wang, Hu, Ji (br0360) 2014
Bertsimas, Sethuraman (br0010) 2000
Wu, Lyu, Ghanem (br0370) 2015
Ding, Yang, Lan (br0060) 2018; 48
Gopal, Yang (br0080) 2010
Wu, Tian, Liu (br0390) 2018; 108
Tsoumakas, Dimou, Spyromitros, Mezaris, Kompatsiaris, Vlahavas (br0310) 2009
Boyd, Vandenberghe (br0040) 2001
Nath, Bhattacharyya (br0250) 2007
Varando, Bielza, Larrañaga (br0330) 2016; 68
Boutell, Luo, Shen, Brown (br0020) 2004; 37
Tang, Rajan, Narayanan (br0280) 2009
Tomás, Spolaôr, Cherman, Monard (br0300) 2014; 302
Zhang, Wu (br0410) 2014; 37
Boyd (10.1016/j.ijar.2022.02.002_br0040) 2001
He (10.1016/j.ijar.2022.02.002_br0120) 2019; 49
Wu (10.1016/j.ijar.2022.02.002_br0390) 2018; 108
Xu (10.1016/j.ijar.2022.02.002_br0400) 2014
Mitiche (10.1016/j.ijar.2022.02.002_br0240) 2018
Jiang (10.1016/j.ijar.2022.02.002_br0170) 2008
Wu (10.1016/j.ijar.2022.02.002_br0380) 2018; 108
Wu (10.1016/j.ijar.2022.02.002_br0370) 2015
Boutell (10.1016/j.ijar.2022.02.002_br0030) 2004; 37
Zhu (10.1016/j.ijar.2022.02.002_br0440) 2018; 30
Chen (10.1016/j.ijar.2022.02.002_br0050) 2016; 52
Tang (10.1016/j.ijar.2022.02.002_br0280)
Gopal (10.1016/j.ijar.2022.02.002_br0080) 2010
Huang (10.1016/j.ijar.2022.02.002_br0130) 2016; 28
Wan (10.1016/j.ijar.2022.02.002_br0340) 2007
Teisseyre (10.1016/j.ijar.2022.02.002_br0290) 2021; 213
Wu (10.1016/j.ijar.2022.02.002_br0360) 2014
Zhang (10.1016/j.ijar.2022.02.002_br0410) 2014; 37
Zhang (10.1016/j.ijar.2022.02.002_br0420) 2007; 40
Mahalanobis (10.1016/j.ijar.2022.02.002_br0230) 1936
Tsoumakas (10.1016/j.ijar.2022.02.002_br0320) 2007
Elisseeff (10.1016/j.ijar.2022.02.002_br0070) 2001
Huang (10.1016/j.ijar.2022.02.002_br0150) 2012
Gu (10.1016/j.ijar.2022.02.002_br0090) 2016; 28
Guo (10.1016/j.ijar.2022.02.002_br0100) 2011
Isii (10.1016/j.ijar.2022.02.002_br0160) 1962; 14
Prathibhamol (10.1016/j.ijar.2022.02.002_br0260) 2016
Boutell (10.1016/j.ijar.2022.02.002_br0020) 2004; 37
Tomás (10.1016/j.ijar.2022.02.002_br0300) 2014; 302
Wang (10.1016/j.ijar.2022.02.002_br0350)
Tsoumakas (10.1016/j.ijar.2022.02.002_br0310) 2009
Zhang (10.1016/j.ijar.2022.02.002_br0430) 2018; 103
Nath (10.1016/j.ijar.2022.02.002_br0250) 2007
Ma (10.1016/j.ijar.2022.02.002_br0210) 2020
Varando (10.1016/j.ijar.2022.02.002_br0330) 2016; 68
Kong (10.1016/j.ijar.2022.02.002_br0180) 2011; 25
Ding (10.1016/j.ijar.2022.02.002_br0060) 2018; 48
Lanckriet (10.1016/j.ijar.2022.02.002_br0200) 2002; 3
He (10.1016/j.ijar.2022.02.002_br0110) 2014; 25
Huang (10.1016/j.ijar.2022.02.002_br0140) 2017; 48
Read (10.1016/j.ijar.2022.02.002_br0270) 2011; 85
Bertsimas (10.1016/j.ijar.2022.02.002_br0010) 2000
Lanckriet (10.1016/j.ijar.2022.02.002_br0190) 2002
Ma (10.1016/j.ijar.2022.02.002_br0220) 2020; 187
References_xml – volume: 37
  start-page: 107
  year: 2014
  end-page: 120
  ident: br0410
  article-title: Lift: multi-label learning with label-specific features
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 14
  start-page: 185
  year: 1962
  end-page: 197
  ident: br0160
  article-title: On sharpness of Tchebycheff-type inequalities
  publication-title: Ann. Inst. Stat. Math.
– start-page: 162
  year: 2018
  end-page: 166
  ident: br0240
  article-title: Naive Bayes multi-label classification approach for high-voltage condition monitoring
  publication-title: 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS)
– start-page: 101
  year: 2009
  end-page: 116
  ident: br0310
  article-title: Correlation-based pruning of stacked binary relevance models for multi-label learning
  publication-title: Proceedings of the 1st International Workshop on Learning from Multi-Label Data
– start-page: 1300
  year: 2011
  ident: br0100
  article-title: Multi-label classification using conditional dependency networks
  publication-title: IJCAI Proceedings-International Joint Conference on Artificial Intelligence
– start-page: 406
  year: 2007
  end-page: 417
  ident: br0320
  article-title: Random k-labelsets: an ensemble method for multilabel classification
  publication-title: European Conference on Machine Learning
– year: 2009
  ident: br0350
  article-title: Image annotation using multi-label correlated Green's function
– start-page: 1067
  year: 2014
  end-page: 1072
  ident: br0400
  article-title: Learning low-rank label correlations for multi-label classification with missing labels
  publication-title: 2014 IEEE International Conference on Data Mining
– start-page: 525
  year: 2012
  end-page: 533
  ident: br0150
  article-title: Multi-label hypothesis reuse
  publication-title: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 2708
  year: 2016
  end-page: 2712
  ident: br0260
  article-title: Multi label classification based on logistic regression (mlc-lr)
  publication-title: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)
– volume: 30
  start-page: 1081
  year: 2018
  end-page: 1094
  ident: br0440
  article-title: Multi-label learning with global and local label correlation
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2020
  ident: br0210
  article-title: A novel twin minimax probability machine for classification and regression
  publication-title: Knowl.-Based Syst.
– volume: 40
  start-page: 2038
  year: 2007
  end-page: 2048
  ident: br0420
  article-title: Ml-knn: a lazy learning approach to multi-label learning
  publication-title: Pattern Recognit.
– volume: 28
  start-page: 1646
  year: 2016
  end-page: 1656
  ident: br0090
  article-title: Structural minimax probability machine
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 49
  start-page: 1708
  year: 2019
  end-page: 1723
  ident: br0120
  article-title: Sparse and low-rank representation for multi-label classification
  publication-title: Appl. Intell.
– start-page: 681
  year: 2001
  end-page: 687
  ident: br0070
  article-title: A kernel method for multi-labelled classification
  publication-title: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic
– volume: 28
  start-page: 3309
  year: 2016
  end-page: 3323
  ident: br0130
  article-title: Learning label-specific features and class-dependent labels for multi-label classification
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 1936
  ident: br0230
  article-title: On the Generalized Distance in Statistics
– volume: 52
  start-page: 61
  year: 2016
  end-page: 74
  ident: br0050
  article-title: Mltsvm: a novel twin support vector machine to multi-label learning
  publication-title: Pattern Recognit.
– volume: 108
  start-page: 411
  year: 2018
  end-page: 423
  ident: br0380
  article-title: Cost-sensitive multi-label learning with positive and negative label pairwise correlations
  publication-title: Neural Netw.
– volume: 108
  start-page: 411
  year: 2018
  end-page: 423
  ident: br0390
  article-title: Cost-sensitive multi-label learning with positive and negative label pairwise correlations
  publication-title: Neural Netw.
– volume: 37
  start-page: 1757
  year: 2004
  end-page: 1771
  ident: br0030
  article-title: Learning multi-label scene classification
  publication-title: Pattern Recognit.
– volume: 25
  start-page: 704
  year: 2011
  end-page: 719
  ident: br0180
  article-title: Transductive multilabel learning via label set propagation
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 187
  year: 2020
  ident: br0220
  article-title: Twin minimax probability extreme learning machine for pattern recognition
  publication-title: Knowl.-Based Syst.
– volume: 48
  start-page: 3577
  year: 2018
  end-page: 3590
  ident: br0060
  article-title: Multi-label imbalanced classification based on assessments of cost and value
  publication-title: Appl. Intell.
– start-page: 1450
  year: 2008
  end-page: 1455
  ident: br0170
  article-title: Calibrated rank-svm for multi-label image categorization
  publication-title: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)
– volume: 302
  start-page: 155
  year: 2014
  end-page: 176
  ident: br0300
  article-title: A framework to generate synthetic multi-label datasets
  publication-title: Electron. Notes Theor. Comput. Sci.
– start-page: 4157
  year: 2015
  end-page: 4165
  ident: br0370
  article-title: Ml-mg: multi-label learning with missing labels using a mixed graph
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 801
  year: 2002
  end-page: 807
  ident: br0190
  article-title: Minimax probability machine
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1964
  year: 2014
  end-page: 1968
  ident: br0360
  article-title: Multi-label learning with missing labels
  publication-title: 2014 22nd International Conference on Pattern Recognition
– volume: 103
  start-page: 394
  year: 2018
  end-page: 413
  ident: br0430
  article-title: A three-way selective ensemble model for multi-label classification
  publication-title: Int. J. Approx. Reason.
– start-page: 1447
  year: 2007
  end-page: 1452
  ident: br0340
  article-title: A multi-label classification algorithm based on triple class support vector machine
  publication-title: 2007 International Conference on Wavelet Analysis and Pattern Recognition
– volume: 68
  start-page: 164
  year: 2016
  end-page: 178
  ident: br0330
  article-title: Decision functions for chain classifiers based on Bayesian networks for multi-label classification
  publication-title: Int. J. Approx. Reason.
– volume: 3
  start-page: 555
  year: 2002
  end-page: 582
  ident: br0200
  article-title: A robust minimax approach to classification
  publication-title: J. Mach. Learn. Res.
– start-page: 315
  year: 2010
  end-page: 322
  ident: br0080
  article-title: Multilabel classification with meta-level features
  publication-title: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval
– start-page: 469
  year: 2000
  end-page: 509
  ident: br0010
  article-title: Moment problems and semidefinite optimization
  publication-title: Handbook of Semidefinite Programming
– year: 2001
  ident: br0040
  article-title: Convex Optimization
– volume: 25
  start-page: 1967
  year: 2014
  end-page: 1981
  ident: br0110
  article-title: Joint learning of multi-label classification and label correlations
  publication-title: J. Softw.
– volume: 213
  year: 2021
  ident: br0290
  article-title: Classifier chains for positive unlabelled multi-label learning
  publication-title: Knowl.-Based Syst.
– volume: 48
  start-page: 876
  year: 2017
  end-page: 889
  ident: br0140
  article-title: Joint feature selection and classification for multilabel learning
  publication-title: IEEE Trans. Cybern.
– start-page: 35
  year: 2007
  end-page: 46
  ident: br0250
  article-title: Maximum margin classifiers with specified false positive and false negative error rates
  publication-title: Proceedings of the 2007 SIAM International Conference on Data Mining
– volume: 85
  start-page: 333
  year: 2011
  ident: br0270
  article-title: Classifier chains for multi-label classification
  publication-title: Mach. Learn.
– volume: 37
  start-page: 1757
  year: 2004
  end-page: 1771
  ident: br0020
  article-title: Learning multi-label scene classification
  publication-title: Pattern Recognit.
– year: 2009
  ident: br0280
  article-title: Large scale multi-label classification via Metalabeler
– volume: 3
  start-page: 555
  year: 2002
  ident: 10.1016/j.ijar.2022.02.002_br0200
  article-title: A robust minimax approach to classification
  publication-title: J. Mach. Learn. Res.
– volume: 85
  start-page: 333
  year: 2011
  ident: 10.1016/j.ijar.2022.02.002_br0270
  article-title: Classifier chains for multi-label classification
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-011-5256-5
– start-page: 2708
  year: 2016
  ident: 10.1016/j.ijar.2022.02.002_br0260
  article-title: Multi label classification based on logistic regression (mlc-lr)
– start-page: 35
  year: 2007
  ident: 10.1016/j.ijar.2022.02.002_br0250
  article-title: Maximum margin classifiers with specified false positive and false negative error rates
– volume: 37
  start-page: 1757
  year: 2004
  ident: 10.1016/j.ijar.2022.02.002_br0030
  article-title: Learning multi-label scene classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2004.03.009
– start-page: 406
  year: 2007
  ident: 10.1016/j.ijar.2022.02.002_br0320
  article-title: Random k-labelsets: an ensemble method for multilabel classification
– volume: 108
  start-page: 411
  year: 2018
  ident: 10.1016/j.ijar.2022.02.002_br0380
  article-title: Cost-sensitive multi-label learning with positive and negative label pairwise correlations
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.09.003
– volume: 37
  start-page: 1757
  year: 2004
  ident: 10.1016/j.ijar.2022.02.002_br0020
  article-title: Learning multi-label scene classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2004.03.009
– volume: 28
  start-page: 3309
  year: 2016
  ident: 10.1016/j.ijar.2022.02.002_br0130
  article-title: Learning label-specific features and class-dependent labels for multi-label classification
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2608339
– start-page: 1450
  year: 2008
  ident: 10.1016/j.ijar.2022.02.002_br0170
  article-title: Calibrated rank-svm for multi-label image categorization
– start-page: 681
  year: 2001
  ident: 10.1016/j.ijar.2022.02.002_br0070
  article-title: A kernel method for multi-labelled classification
– start-page: 525
  year: 2012
  ident: 10.1016/j.ijar.2022.02.002_br0150
  article-title: Multi-label hypothesis reuse
– volume: 30
  start-page: 1081
  year: 2018
  ident: 10.1016/j.ijar.2022.02.002_br0440
  article-title: Multi-label learning with global and local label correlation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2785795
– volume: 213
  year: 2021
  ident: 10.1016/j.ijar.2022.02.002_br0290
  article-title: Classifier chains for positive unlabelled multi-label learning
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106709
– volume: 103
  start-page: 394
  year: 2018
  ident: 10.1016/j.ijar.2022.02.002_br0430
  article-title: A three-way selective ensemble model for multi-label classification
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2018.10.009
– start-page: 315
  year: 2010
  ident: 10.1016/j.ijar.2022.02.002_br0080
  article-title: Multilabel classification with meta-level features
– volume: 187
  year: 2020
  ident: 10.1016/j.ijar.2022.02.002_br0220
  article-title: Twin minimax probability extreme learning machine for pattern recognition
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.06.014
– volume: 302
  start-page: 155
  year: 2014
  ident: 10.1016/j.ijar.2022.02.002_br0300
  article-title: A framework to generate synthetic multi-label datasets
  publication-title: Electron. Notes Theor. Comput. Sci.
  doi: 10.1016/j.entcs.2014.01.025
– start-page: 4157
  year: 2015
  ident: 10.1016/j.ijar.2022.02.002_br0370
  article-title: Ml-mg: multi-label learning with missing labels using a mixed graph
– start-page: 1964
  year: 2014
  ident: 10.1016/j.ijar.2022.02.002_br0360
  article-title: Multi-label learning with missing labels
– volume: 28
  start-page: 1646
  year: 2016
  ident: 10.1016/j.ijar.2022.02.002_br0090
  article-title: Structural minimax probability machine
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2544779
– ident: 10.1016/j.ijar.2022.02.002_br0280
– volume: 40
  start-page: 2038
  year: 2007
  ident: 10.1016/j.ijar.2022.02.002_br0420
  article-title: Ml-knn: a lazy learning approach to multi-label learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2006.12.019
– year: 2020
  ident: 10.1016/j.ijar.2022.02.002_br0210
  article-title: A novel twin minimax probability machine for classification and regression
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105703
– volume: 48
  start-page: 876
  year: 2017
  ident: 10.1016/j.ijar.2022.02.002_br0140
  article-title: Joint feature selection and classification for multilabel learning
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2663838
– start-page: 1067
  year: 2014
  ident: 10.1016/j.ijar.2022.02.002_br0400
  article-title: Learning low-rank label correlations for multi-label classification with missing labels
– start-page: 101
  year: 2009
  ident: 10.1016/j.ijar.2022.02.002_br0310
  article-title: Correlation-based pruning of stacked binary relevance models for multi-label learning
– volume: 25
  start-page: 704
  year: 2011
  ident: 10.1016/j.ijar.2022.02.002_br0180
  article-title: Transductive multilabel learning via label set propagation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.141
– start-page: 469
  year: 2000
  ident: 10.1016/j.ijar.2022.02.002_br0010
  article-title: Moment problems and semidefinite optimization
– volume: 37
  start-page: 107
  year: 2014
  ident: 10.1016/j.ijar.2022.02.002_br0410
  article-title: Lift: multi-label learning with label-specific features
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2339815
– volume: 14
  start-page: 185
  year: 1962
  ident: 10.1016/j.ijar.2022.02.002_br0160
  article-title: On sharpness of Tchebycheff-type inequalities
  publication-title: Ann. Inst. Stat. Math.
  doi: 10.1007/BF02868641
– volume: 48
  start-page: 3577
  year: 2018
  ident: 10.1016/j.ijar.2022.02.002_br0060
  article-title: Multi-label imbalanced classification based on assessments of cost and value
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1156-8
– volume: 52
  start-page: 61
  year: 2016
  ident: 10.1016/j.ijar.2022.02.002_br0050
  article-title: Mltsvm: a novel twin support vector machine to multi-label learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.10.008
– volume: 25
  start-page: 1967
  year: 2014
  ident: 10.1016/j.ijar.2022.02.002_br0110
  article-title: Joint learning of multi-label classification and label correlations
  publication-title: J. Softw.
– start-page: 162
  year: 2018
  ident: 10.1016/j.ijar.2022.02.002_br0240
  article-title: Naive Bayes multi-label classification approach for high-voltage condition monitoring
– volume: 68
  start-page: 164
  year: 2016
  ident: 10.1016/j.ijar.2022.02.002_br0330
  article-title: Decision functions for chain classifiers based on Bayesian networks for multi-label classification
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2015.06.006
– ident: 10.1016/j.ijar.2022.02.002_br0350
– volume: 108
  start-page: 411
  year: 2018
  ident: 10.1016/j.ijar.2022.02.002_br0390
  article-title: Cost-sensitive multi-label learning with positive and negative label pairwise correlations
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.09.003
– year: 2001
  ident: 10.1016/j.ijar.2022.02.002_br0040
– volume: 49
  start-page: 1708
  year: 2019
  ident: 10.1016/j.ijar.2022.02.002_br0120
  article-title: Sparse and low-rank representation for multi-label classification
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1345-5
– start-page: 801
  year: 2002
  ident: 10.1016/j.ijar.2022.02.002_br0190
  article-title: Minimax probability machine
– year: 1936
  ident: 10.1016/j.ijar.2022.02.002_br0230
– start-page: 1447
  year: 2007
  ident: 10.1016/j.ijar.2022.02.002_br0340
  article-title: A multi-label classification algorithm based on triple class support vector machine
– start-page: 1300
  year: 2011
  ident: 10.1016/j.ijar.2022.02.002_br0100
  article-title: Multi-label classification using conditional dependency networks
SSID ssj0006748
Score 2.362698
Snippet In this paper, we propose Minimax Probability Machine for Multi-label data classification and is termed as Multi-Label Minimax Probability Machine (MLMPM)....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Label correlation
Minimax probability machine
Multi-label classification
Second order cone programming problem
Weighted least squares
Title Multi-label learning via minimax probability machine
URI https://dx.doi.org/10.1016/j.ijar.2022.02.002
Volume 145
WOSCitedRecordID wos000782661100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4731
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006748
  issn: 0888-613X
  databaseCode: AIEXJ
  dateStart: 20211213
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdbuoe97HusHxt-2JvxsCXZkh5L6ei6UQbtIG9Gks9NQuOWJgvZf9-TJTvONso2GAQTjGUrup_vQ7n7HSHvcyi4I31OLKN1wpVWiRG6SrStuWDK2tS0XUu-iLMzOR6rryEhc9G2ExBNI9drdfNfRY3nUNiudPYvxN3fFE_gdxQ6HlHsePwjwbcltQkKF666nhCX8WqqY8ciMtdrl5JlPDv3j3je5lJupQNt7xEOmCVa-vE13mLpWq3oRbuRu_mfCL3Iy6lzWBuA-PME5q6muGpbRikvyMVkYwROtScvONdzM9Gr4eYDxq19kpTfEeuqYraSNlFxSQxJ2z6_aGO8YpWCJSj9bEvz8nygO7OBEfb1nL-od7_TMPswnWnH5Uqp51ulG2PWpxieu1m4SVBXjMSoekh2qMiVHJGdw0_H49PeXrt2Kz7W8LMOpVU-C_DnJ_3efRm4JBfPyJMQS0SHHgPPyQNoXpCnXZ-OKKjtl4QPIBF1kIgQElGARDSARBQg8Yp8-3h8cXSShG4Z-Jql6TKRkKsKKuFidihy0AwjQTB1Jo2E2uJPr6nIFDdcgMjqXFQY2Wd1JYwBxpllr8mouW7gDYkqtMaFRVWtC8YLbhXGFCnIWnNrpJZsl2TdIpQ2UMm7jiZXZZczOCvdwpVu4coUPyndJXE_5sYTqdx7dd6tbRlcQe_ilQiFe8bt_eO4ffJ4A-8DMlrefoe35JFdLaeL23cBMXfr6IS1
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-label+learning+via+minimax+probability+machine&rft.jtitle=International+journal+of+approximate+reasoning&rft.au=Rastogi+%28nee+Khemchandani%29%2C+Reshma&rft.au=Jain%2C+Sambhav&rft.date=2022-06-01&rft.pub=Elsevier+Inc&rft.issn=0888-613X&rft.eissn=1873-4731&rft.volume=145&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1016%2Fj.ijar.2022.02.002&rft.externalDocID=S0888613X22000329
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-613X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-613X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-613X&client=summon