Multi-label learning via minimax probability machine
In this paper, we propose Minimax Probability Machine for Multi-label data classification and is termed as Multi-Label Minimax Probability Machine (MLMPM). Based on data mean and covariance information, MLMPM builds a classifier that minimizes an upper bound on the mis-classification probability of...
Saved in:
| Published in: | International journal of approximate reasoning Vol. 145; pp. 1 - 17 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.06.2022
|
| Subjects: | |
| ISSN: | 0888-613X, 1873-4731 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we propose Minimax Probability Machine for Multi-label data classification and is termed as Multi-Label Minimax Probability Machine (MLMPM). Based on data mean and covariance information, MLMPM builds a classifier that minimizes an upper bound on the mis-classification probability of unseen future data. For capturing label correlation we have considered asymmetric co-occurrency matrix into the model. The proposed model has also been extended to non-linear settings using the Mercer Kernel trick. To accelerate the training procedure, iterative weighted least squares is used to train the underlying optimization model efficiently. Extensive experimental comparisons of our proposed method with related multi-label algorithms on synthetic as well as real world multi-label datasets, along with Amazon rainforest satellite images dataset, prove its efficacy. |
|---|---|
| AbstractList | In this paper, we propose Minimax Probability Machine for Multi-label data classification and is termed as Multi-Label Minimax Probability Machine (MLMPM). Based on data mean and covariance information, MLMPM builds a classifier that minimizes an upper bound on the mis-classification probability of unseen future data. For capturing label correlation we have considered asymmetric co-occurrency matrix into the model. The proposed model has also been extended to non-linear settings using the Mercer Kernel trick. To accelerate the training procedure, iterative weighted least squares is used to train the underlying optimization model efficiently. Extensive experimental comparisons of our proposed method with related multi-label algorithms on synthetic as well as real world multi-label datasets, along with Amazon rainforest satellite images dataset, prove its efficacy. |
| Author | Rastogi (nee Khemchandani), Reshma Jain, Sambhav |
| Author_xml | – sequence: 1 givenname: Reshma surname: Rastogi (nee Khemchandani) fullname: Rastogi (nee Khemchandani), Reshma email: reshma.khemchandani@sau.ac.in – sequence: 2 givenname: Sambhav orcidid: 0000-0001-8835-285X surname: Jain fullname: Jain, Sambhav email: sambhav.sau@gmail.com |
| BookMark | eNp9j8tKw0AYhQepYFt9AVd5gcS5JTMBN1K8QcWNgrthZvKP_iGdlEks9u1NqSsXhQNn9R3OtyCz2Ecg5JrRglFW3bQFtjYVnHJe0CmUn5E500rkUgk2I3Oqtc4rJj4uyGIYWkpppaSeE_ny3Y2Yd9ZBl3VgU8T4me3QZhuMuLE_2Tb1zjrscNxnG-u_MMIlOQ-2G-Dqr5fk_eH-bfWUr18fn1d369wLSsdcQ1k30CjOtISqBCtKXYILTDsNwauyDlyxWjqpQLFQqobWkoVGOQdCCi-WhB93feqHIUEw2zR9SnvDqDl4m9YcvM3B29AplE-Q_gd5HO2IfRyTxe40entEYZLaISQzeIToocEEfjRNj6fwX-NudhY |
| CitedBy_id | crossref_primary_10_1007_s13042_024_02518_4 |
| Cites_doi | 10.1007/s10994-011-5256-5 10.1016/j.patcog.2004.03.009 10.1016/j.neunet.2018.09.003 10.1109/TKDE.2016.2608339 10.1109/TKDE.2017.2785795 10.1016/j.knosys.2020.106709 10.1016/j.ijar.2018.10.009 10.1016/j.knosys.2019.06.014 10.1016/j.entcs.2014.01.025 10.1109/TNNLS.2016.2544779 10.1016/j.patcog.2006.12.019 10.1016/j.knosys.2020.105703 10.1109/TCYB.2017.2663838 10.1109/TKDE.2011.141 10.1109/TPAMI.2014.2339815 10.1007/BF02868641 10.1007/s10489-018-1156-8 10.1016/j.patcog.2015.10.008 10.1016/j.ijar.2015.06.006 10.1007/s10489-018-1345-5 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Inc. |
| Copyright_xml | – notice: 2022 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijar.2022.02.002 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-4731 |
| EndPage | 17 |
| ExternalDocumentID | 10_1016_j_ijar_2022_02_002 S0888613X22000329 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ IHE IXB J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K UHS WUQ XPP ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-8e59ded72184e65ea3585ebf18b8efc759f27194b47e71f57d0941fd7bbe343c3 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000782661100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0888-613X |
| IngestDate | Sat Nov 29 07:13:15 EST 2025 Tue Nov 18 22:38:10 EST 2025 Fri Feb 23 02:41:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Label correlation Weighted least squares Multi-label classification Minimax probability machine Second order cone programming problem |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-8e59ded72184e65ea3585ebf18b8efc759f27194b47e71f57d0941fd7bbe343c3 |
| ORCID | 0000-0001-8835-285X |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1016_j_ijar_2022_02_002 crossref_citationtrail_10_1016_j_ijar_2022_02_002 elsevier_sciencedirect_doi_10_1016_j_ijar_2022_02_002 |
| PublicationCentury | 2000 |
| PublicationDate | June 2022 2022-06-00 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of approximate reasoning |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Boutell, Luo, Shen, Brown (br0030) 2004; 37 Jiang, Wang, Zhu (br0170) 2008 Chen, Shao, Li, Deng (br0050) 2016; 52 Isii (br0160) 1962; 14 He, Yang (br0120) 2019; 49 Read, Pfahringer, Holmes, Frank (br0270) 2011; 85 Zhang, Miao, Zhang, Xu, Luo (br0430) 2018; 103 Ma, Yang, Wen, Sun (br0220) 2020; 187 Xu, Wang, Shen, Wang, Chen (br0400) 2014 Lanckriet, Ghaoui, Bhattacharyya, Jordan (br0190) 2002 Tsoumakas, Vlahavas (br0320) 2007 Huang, Li, Huang, Wu (br0130) 2016; 28 Teisseyre (br0290) 2021; 213 Lanckriet, Ghaoui, Bhattacharyya, Jordan (br0200) 2002; 3 Wang, Huang, Ding (br0350) 2009 Mahalanobis (br0230) 1936 Gu, Sun, Sheng (br0090) 2016; 28 Huang, Yu, Zhou (br0150) 2012 Mitiche, Nesbitt, Boreham, Stewart, Morison (br0240) 2018 Elisseeff, Weston (br0070) 2001 Guo, Gu (br0100) 2011 Wu, Tian, Liu (br0380) 2018; 108 Wan, Xu (br0340) 2007 Huang, Li, Huang, Wu (br0140) 2017; 48 Ma, Shen (br0210) 2020 Prathibhamol, Jyothy, Noora (br0260) 2016 Zhu, Kwok, Zhou (br0440) 2018; 30 Kong, Ng, Zhou (br0180) 2011; 25 Zhang, Zhou (br0420) 2007; 40 He, Yang, Liu (br0110) 2014; 25 Wu, Liu, Wang, Hu, Ji (br0360) 2014 Bertsimas, Sethuraman (br0010) 2000 Wu, Lyu, Ghanem (br0370) 2015 Ding, Yang, Lan (br0060) 2018; 48 Gopal, Yang (br0080) 2010 Wu, Tian, Liu (br0390) 2018; 108 Tsoumakas, Dimou, Spyromitros, Mezaris, Kompatsiaris, Vlahavas (br0310) 2009 Boyd, Vandenberghe (br0040) 2001 Nath, Bhattacharyya (br0250) 2007 Varando, Bielza, Larrañaga (br0330) 2016; 68 Boutell, Luo, Shen, Brown (br0020) 2004; 37 Tang, Rajan, Narayanan (br0280) 2009 Tomás, Spolaôr, Cherman, Monard (br0300) 2014; 302 Zhang, Wu (br0410) 2014; 37 Boyd (10.1016/j.ijar.2022.02.002_br0040) 2001 He (10.1016/j.ijar.2022.02.002_br0120) 2019; 49 Wu (10.1016/j.ijar.2022.02.002_br0390) 2018; 108 Xu (10.1016/j.ijar.2022.02.002_br0400) 2014 Mitiche (10.1016/j.ijar.2022.02.002_br0240) 2018 Jiang (10.1016/j.ijar.2022.02.002_br0170) 2008 Wu (10.1016/j.ijar.2022.02.002_br0380) 2018; 108 Wu (10.1016/j.ijar.2022.02.002_br0370) 2015 Boutell (10.1016/j.ijar.2022.02.002_br0030) 2004; 37 Zhu (10.1016/j.ijar.2022.02.002_br0440) 2018; 30 Chen (10.1016/j.ijar.2022.02.002_br0050) 2016; 52 Tang (10.1016/j.ijar.2022.02.002_br0280) Gopal (10.1016/j.ijar.2022.02.002_br0080) 2010 Huang (10.1016/j.ijar.2022.02.002_br0130) 2016; 28 Wan (10.1016/j.ijar.2022.02.002_br0340) 2007 Teisseyre (10.1016/j.ijar.2022.02.002_br0290) 2021; 213 Wu (10.1016/j.ijar.2022.02.002_br0360) 2014 Zhang (10.1016/j.ijar.2022.02.002_br0410) 2014; 37 Zhang (10.1016/j.ijar.2022.02.002_br0420) 2007; 40 Mahalanobis (10.1016/j.ijar.2022.02.002_br0230) 1936 Tsoumakas (10.1016/j.ijar.2022.02.002_br0320) 2007 Elisseeff (10.1016/j.ijar.2022.02.002_br0070) 2001 Huang (10.1016/j.ijar.2022.02.002_br0150) 2012 Gu (10.1016/j.ijar.2022.02.002_br0090) 2016; 28 Guo (10.1016/j.ijar.2022.02.002_br0100) 2011 Isii (10.1016/j.ijar.2022.02.002_br0160) 1962; 14 Prathibhamol (10.1016/j.ijar.2022.02.002_br0260) 2016 Boutell (10.1016/j.ijar.2022.02.002_br0020) 2004; 37 Tomás (10.1016/j.ijar.2022.02.002_br0300) 2014; 302 Wang (10.1016/j.ijar.2022.02.002_br0350) Tsoumakas (10.1016/j.ijar.2022.02.002_br0310) 2009 Zhang (10.1016/j.ijar.2022.02.002_br0430) 2018; 103 Nath (10.1016/j.ijar.2022.02.002_br0250) 2007 Ma (10.1016/j.ijar.2022.02.002_br0210) 2020 Varando (10.1016/j.ijar.2022.02.002_br0330) 2016; 68 Kong (10.1016/j.ijar.2022.02.002_br0180) 2011; 25 Ding (10.1016/j.ijar.2022.02.002_br0060) 2018; 48 Lanckriet (10.1016/j.ijar.2022.02.002_br0200) 2002; 3 He (10.1016/j.ijar.2022.02.002_br0110) 2014; 25 Huang (10.1016/j.ijar.2022.02.002_br0140) 2017; 48 Read (10.1016/j.ijar.2022.02.002_br0270) 2011; 85 Bertsimas (10.1016/j.ijar.2022.02.002_br0010) 2000 Lanckriet (10.1016/j.ijar.2022.02.002_br0190) 2002 Ma (10.1016/j.ijar.2022.02.002_br0220) 2020; 187 |
| References_xml | – volume: 37 start-page: 107 year: 2014 end-page: 120 ident: br0410 article-title: Lift: multi-label learning with label-specific features publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 14 start-page: 185 year: 1962 end-page: 197 ident: br0160 article-title: On sharpness of Tchebycheff-type inequalities publication-title: Ann. Inst. Stat. Math. – start-page: 162 year: 2018 end-page: 166 ident: br0240 article-title: Naive Bayes multi-label classification approach for high-voltage condition monitoring publication-title: 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS) – start-page: 101 year: 2009 end-page: 116 ident: br0310 article-title: Correlation-based pruning of stacked binary relevance models for multi-label learning publication-title: Proceedings of the 1st International Workshop on Learning from Multi-Label Data – start-page: 1300 year: 2011 ident: br0100 article-title: Multi-label classification using conditional dependency networks publication-title: IJCAI Proceedings-International Joint Conference on Artificial Intelligence – start-page: 406 year: 2007 end-page: 417 ident: br0320 article-title: Random k-labelsets: an ensemble method for multilabel classification publication-title: European Conference on Machine Learning – year: 2009 ident: br0350 article-title: Image annotation using multi-label correlated Green's function – start-page: 1067 year: 2014 end-page: 1072 ident: br0400 article-title: Learning low-rank label correlations for multi-label classification with missing labels publication-title: 2014 IEEE International Conference on Data Mining – start-page: 525 year: 2012 end-page: 533 ident: br0150 article-title: Multi-label hypothesis reuse publication-title: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – start-page: 2708 year: 2016 end-page: 2712 ident: br0260 article-title: Multi label classification based on logistic regression (mlc-lr) publication-title: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI) – volume: 30 start-page: 1081 year: 2018 end-page: 1094 ident: br0440 article-title: Multi-label learning with global and local label correlation publication-title: IEEE Trans. Knowl. Data Eng. – year: 2020 ident: br0210 article-title: A novel twin minimax probability machine for classification and regression publication-title: Knowl.-Based Syst. – volume: 40 start-page: 2038 year: 2007 end-page: 2048 ident: br0420 article-title: Ml-knn: a lazy learning approach to multi-label learning publication-title: Pattern Recognit. – volume: 28 start-page: 1646 year: 2016 end-page: 1656 ident: br0090 article-title: Structural minimax probability machine publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 49 start-page: 1708 year: 2019 end-page: 1723 ident: br0120 article-title: Sparse and low-rank representation for multi-label classification publication-title: Appl. Intell. – start-page: 681 year: 2001 end-page: 687 ident: br0070 article-title: A kernel method for multi-labelled classification publication-title: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic – volume: 28 start-page: 3309 year: 2016 end-page: 3323 ident: br0130 article-title: Learning label-specific features and class-dependent labels for multi-label classification publication-title: IEEE Trans. Knowl. Data Eng. – year: 1936 ident: br0230 article-title: On the Generalized Distance in Statistics – volume: 52 start-page: 61 year: 2016 end-page: 74 ident: br0050 article-title: Mltsvm: a novel twin support vector machine to multi-label learning publication-title: Pattern Recognit. – volume: 108 start-page: 411 year: 2018 end-page: 423 ident: br0380 article-title: Cost-sensitive multi-label learning with positive and negative label pairwise correlations publication-title: Neural Netw. – volume: 108 start-page: 411 year: 2018 end-page: 423 ident: br0390 article-title: Cost-sensitive multi-label learning with positive and negative label pairwise correlations publication-title: Neural Netw. – volume: 37 start-page: 1757 year: 2004 end-page: 1771 ident: br0030 article-title: Learning multi-label scene classification publication-title: Pattern Recognit. – volume: 25 start-page: 704 year: 2011 end-page: 719 ident: br0180 article-title: Transductive multilabel learning via label set propagation publication-title: IEEE Trans. Knowl. Data Eng. – volume: 187 year: 2020 ident: br0220 article-title: Twin minimax probability extreme learning machine for pattern recognition publication-title: Knowl.-Based Syst. – volume: 48 start-page: 3577 year: 2018 end-page: 3590 ident: br0060 article-title: Multi-label imbalanced classification based on assessments of cost and value publication-title: Appl. Intell. – start-page: 1450 year: 2008 end-page: 1455 ident: br0170 article-title: Calibrated rank-svm for multi-label image categorization publication-title: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) – volume: 302 start-page: 155 year: 2014 end-page: 176 ident: br0300 article-title: A framework to generate synthetic multi-label datasets publication-title: Electron. Notes Theor. Comput. Sci. – start-page: 4157 year: 2015 end-page: 4165 ident: br0370 article-title: Ml-mg: multi-label learning with missing labels using a mixed graph publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 801 year: 2002 end-page: 807 ident: br0190 article-title: Minimax probability machine publication-title: Advances in Neural Information Processing Systems – start-page: 1964 year: 2014 end-page: 1968 ident: br0360 article-title: Multi-label learning with missing labels publication-title: 2014 22nd International Conference on Pattern Recognition – volume: 103 start-page: 394 year: 2018 end-page: 413 ident: br0430 article-title: A three-way selective ensemble model for multi-label classification publication-title: Int. J. Approx. Reason. – start-page: 1447 year: 2007 end-page: 1452 ident: br0340 article-title: A multi-label classification algorithm based on triple class support vector machine publication-title: 2007 International Conference on Wavelet Analysis and Pattern Recognition – volume: 68 start-page: 164 year: 2016 end-page: 178 ident: br0330 article-title: Decision functions for chain classifiers based on Bayesian networks for multi-label classification publication-title: Int. J. Approx. Reason. – volume: 3 start-page: 555 year: 2002 end-page: 582 ident: br0200 article-title: A robust minimax approach to classification publication-title: J. Mach. Learn. Res. – start-page: 315 year: 2010 end-page: 322 ident: br0080 article-title: Multilabel classification with meta-level features publication-title: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval – start-page: 469 year: 2000 end-page: 509 ident: br0010 article-title: Moment problems and semidefinite optimization publication-title: Handbook of Semidefinite Programming – year: 2001 ident: br0040 article-title: Convex Optimization – volume: 25 start-page: 1967 year: 2014 end-page: 1981 ident: br0110 article-title: Joint learning of multi-label classification and label correlations publication-title: J. Softw. – volume: 213 year: 2021 ident: br0290 article-title: Classifier chains for positive unlabelled multi-label learning publication-title: Knowl.-Based Syst. – volume: 48 start-page: 876 year: 2017 end-page: 889 ident: br0140 article-title: Joint feature selection and classification for multilabel learning publication-title: IEEE Trans. Cybern. – start-page: 35 year: 2007 end-page: 46 ident: br0250 article-title: Maximum margin classifiers with specified false positive and false negative error rates publication-title: Proceedings of the 2007 SIAM International Conference on Data Mining – volume: 85 start-page: 333 year: 2011 ident: br0270 article-title: Classifier chains for multi-label classification publication-title: Mach. Learn. – volume: 37 start-page: 1757 year: 2004 end-page: 1771 ident: br0020 article-title: Learning multi-label scene classification publication-title: Pattern Recognit. – year: 2009 ident: br0280 article-title: Large scale multi-label classification via Metalabeler – volume: 3 start-page: 555 year: 2002 ident: 10.1016/j.ijar.2022.02.002_br0200 article-title: A robust minimax approach to classification publication-title: J. Mach. Learn. Res. – volume: 85 start-page: 333 year: 2011 ident: 10.1016/j.ijar.2022.02.002_br0270 article-title: Classifier chains for multi-label classification publication-title: Mach. Learn. doi: 10.1007/s10994-011-5256-5 – start-page: 2708 year: 2016 ident: 10.1016/j.ijar.2022.02.002_br0260 article-title: Multi label classification based on logistic regression (mlc-lr) – start-page: 35 year: 2007 ident: 10.1016/j.ijar.2022.02.002_br0250 article-title: Maximum margin classifiers with specified false positive and false negative error rates – volume: 37 start-page: 1757 year: 2004 ident: 10.1016/j.ijar.2022.02.002_br0030 article-title: Learning multi-label scene classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2004.03.009 – start-page: 406 year: 2007 ident: 10.1016/j.ijar.2022.02.002_br0320 article-title: Random k-labelsets: an ensemble method for multilabel classification – volume: 108 start-page: 411 year: 2018 ident: 10.1016/j.ijar.2022.02.002_br0380 article-title: Cost-sensitive multi-label learning with positive and negative label pairwise correlations publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.09.003 – volume: 37 start-page: 1757 year: 2004 ident: 10.1016/j.ijar.2022.02.002_br0020 article-title: Learning multi-label scene classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2004.03.009 – volume: 28 start-page: 3309 year: 2016 ident: 10.1016/j.ijar.2022.02.002_br0130 article-title: Learning label-specific features and class-dependent labels for multi-label classification publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2608339 – start-page: 1450 year: 2008 ident: 10.1016/j.ijar.2022.02.002_br0170 article-title: Calibrated rank-svm for multi-label image categorization – start-page: 681 year: 2001 ident: 10.1016/j.ijar.2022.02.002_br0070 article-title: A kernel method for multi-labelled classification – start-page: 525 year: 2012 ident: 10.1016/j.ijar.2022.02.002_br0150 article-title: Multi-label hypothesis reuse – volume: 30 start-page: 1081 year: 2018 ident: 10.1016/j.ijar.2022.02.002_br0440 article-title: Multi-label learning with global and local label correlation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2785795 – volume: 213 year: 2021 ident: 10.1016/j.ijar.2022.02.002_br0290 article-title: Classifier chains for positive unlabelled multi-label learning publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106709 – volume: 103 start-page: 394 year: 2018 ident: 10.1016/j.ijar.2022.02.002_br0430 article-title: A three-way selective ensemble model for multi-label classification publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2018.10.009 – start-page: 315 year: 2010 ident: 10.1016/j.ijar.2022.02.002_br0080 article-title: Multilabel classification with meta-level features – volume: 187 year: 2020 ident: 10.1016/j.ijar.2022.02.002_br0220 article-title: Twin minimax probability extreme learning machine for pattern recognition publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.06.014 – volume: 302 start-page: 155 year: 2014 ident: 10.1016/j.ijar.2022.02.002_br0300 article-title: A framework to generate synthetic multi-label datasets publication-title: Electron. Notes Theor. Comput. Sci. doi: 10.1016/j.entcs.2014.01.025 – start-page: 4157 year: 2015 ident: 10.1016/j.ijar.2022.02.002_br0370 article-title: Ml-mg: multi-label learning with missing labels using a mixed graph – start-page: 1964 year: 2014 ident: 10.1016/j.ijar.2022.02.002_br0360 article-title: Multi-label learning with missing labels – volume: 28 start-page: 1646 year: 2016 ident: 10.1016/j.ijar.2022.02.002_br0090 article-title: Structural minimax probability machine publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2544779 – ident: 10.1016/j.ijar.2022.02.002_br0280 – volume: 40 start-page: 2038 year: 2007 ident: 10.1016/j.ijar.2022.02.002_br0420 article-title: Ml-knn: a lazy learning approach to multi-label learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2006.12.019 – year: 2020 ident: 10.1016/j.ijar.2022.02.002_br0210 article-title: A novel twin minimax probability machine for classification and regression publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105703 – volume: 48 start-page: 876 year: 2017 ident: 10.1016/j.ijar.2022.02.002_br0140 article-title: Joint feature selection and classification for multilabel learning publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2663838 – start-page: 1067 year: 2014 ident: 10.1016/j.ijar.2022.02.002_br0400 article-title: Learning low-rank label correlations for multi-label classification with missing labels – start-page: 101 year: 2009 ident: 10.1016/j.ijar.2022.02.002_br0310 article-title: Correlation-based pruning of stacked binary relevance models for multi-label learning – volume: 25 start-page: 704 year: 2011 ident: 10.1016/j.ijar.2022.02.002_br0180 article-title: Transductive multilabel learning via label set propagation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2011.141 – start-page: 469 year: 2000 ident: 10.1016/j.ijar.2022.02.002_br0010 article-title: Moment problems and semidefinite optimization – volume: 37 start-page: 107 year: 2014 ident: 10.1016/j.ijar.2022.02.002_br0410 article-title: Lift: multi-label learning with label-specific features publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2339815 – volume: 14 start-page: 185 year: 1962 ident: 10.1016/j.ijar.2022.02.002_br0160 article-title: On sharpness of Tchebycheff-type inequalities publication-title: Ann. Inst. Stat. Math. doi: 10.1007/BF02868641 – volume: 48 start-page: 3577 year: 2018 ident: 10.1016/j.ijar.2022.02.002_br0060 article-title: Multi-label imbalanced classification based on assessments of cost and value publication-title: Appl. Intell. doi: 10.1007/s10489-018-1156-8 – volume: 52 start-page: 61 year: 2016 ident: 10.1016/j.ijar.2022.02.002_br0050 article-title: Mltsvm: a novel twin support vector machine to multi-label learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.10.008 – volume: 25 start-page: 1967 year: 2014 ident: 10.1016/j.ijar.2022.02.002_br0110 article-title: Joint learning of multi-label classification and label correlations publication-title: J. Softw. – start-page: 162 year: 2018 ident: 10.1016/j.ijar.2022.02.002_br0240 article-title: Naive Bayes multi-label classification approach for high-voltage condition monitoring – volume: 68 start-page: 164 year: 2016 ident: 10.1016/j.ijar.2022.02.002_br0330 article-title: Decision functions for chain classifiers based on Bayesian networks for multi-label classification publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2015.06.006 – ident: 10.1016/j.ijar.2022.02.002_br0350 – volume: 108 start-page: 411 year: 2018 ident: 10.1016/j.ijar.2022.02.002_br0390 article-title: Cost-sensitive multi-label learning with positive and negative label pairwise correlations publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.09.003 – year: 2001 ident: 10.1016/j.ijar.2022.02.002_br0040 – volume: 49 start-page: 1708 year: 2019 ident: 10.1016/j.ijar.2022.02.002_br0120 article-title: Sparse and low-rank representation for multi-label classification publication-title: Appl. Intell. doi: 10.1007/s10489-018-1345-5 – start-page: 801 year: 2002 ident: 10.1016/j.ijar.2022.02.002_br0190 article-title: Minimax probability machine – year: 1936 ident: 10.1016/j.ijar.2022.02.002_br0230 – start-page: 1447 year: 2007 ident: 10.1016/j.ijar.2022.02.002_br0340 article-title: A multi-label classification algorithm based on triple class support vector machine – start-page: 1300 year: 2011 ident: 10.1016/j.ijar.2022.02.002_br0100 article-title: Multi-label classification using conditional dependency networks |
| SSID | ssj0006748 |
| Score | 2.362698 |
| Snippet | In this paper, we propose Minimax Probability Machine for Multi-label data classification and is termed as Multi-Label Minimax Probability Machine (MLMPM).... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Label correlation Minimax probability machine Multi-label classification Second order cone programming problem Weighted least squares |
| Title | Multi-label learning via minimax probability machine |
| URI | https://dx.doi.org/10.1016/j.ijar.2022.02.002 |
| Volume | 145 |
| WOSCitedRecordID | wos000782661100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4731 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006748 issn: 0888-613X databaseCode: AIEXJ dateStart: 20211212 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdbuoe97HvsGz_szXjYkmxJj2V0bB2UQTvIm5HkU5PQuKXJQvbf72TJjrONsg0GwQRj2Yru5_tQ7u5HyFvLnLHWyCwHgQFKY1ymVW6zEioOwlaVBt6RTYiTEzmdqi8xIXPV0QmItpXbrbr6r6LGcyhsXzr7F-Ieboon8DsKHY8odjz-keC7ktoMhQsXPSfEebqZ69R3EVnqrU_JMqE79_d02eVS7qUD7e8RjjpLdO3Ht3iLtada0atuI3f3PxF6kedz77C2AOnnGSx9TXHTUUapIMjVbGcEjnVoXnCql2amN-PNB4xbhySpsCPWV8XsJW2i4pIYknY8v2hjgmKVgmVcRI3fa15ejnRnMTLCoZ7zF_UedhoW7-YL7Xu5Uhr6rdKdMRtSDE_9LPwkqC9GYlTdJgdUlEpOyMHhp6Pp8WCvPd1KiDXCrGNpVcgC_PlJv3dfRi7J2QNyL8YSyWHAwENyC9pH5H7P05FEtf2Y8BEkkh4SCUIiiZBIRpBIIiSekK8fjs7ef8wiW0ZmWZ6vMwmlaqARPmaHqgTNMBIE4wppJDiLP91RUShuuMDX0pWiwci-cI0wBhhnlj0lk_ayhWckAa5d2VBFbQ680lI5S2XDGDo2rtINfU6KfhFqG1vJe0aTi7rPGVzUfuFqv3B1jp8cx6TDmKvQSOXGq8t-bevoCgYXr0Yo3DDuxT-Oe0nu7uD9ikzW19_gNbljN-v56vpNRMwP1TyE8g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-label+learning+via+minimax+probability+machine&rft.jtitle=International+journal+of+approximate+reasoning&rft.au=Rastogi+%28nee+Khemchandani%29%2C+Reshma&rft.au=Jain%2C+Sambhav&rft.date=2022-06-01&rft.pub=Elsevier+Inc&rft.issn=0888-613X&rft.eissn=1873-4731&rft.volume=145&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1016%2Fj.ijar.2022.02.002&rft.externalDocID=S0888613X22000329 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-613X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-613X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-613X&client=summon |