A many-objective evolutionary algorithm based on reference vector guided selection and two diversity and convergence enhancement strategies

Achieving the balance between convergence and diversity is a key and challenging issue in many-objective optimization. Reference vector guided selection is an exemplary method for decomposition-based many-objective evolutionary algorithms (MaOEAs). However, there are some problems with it such as in...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing Vol. 154; p. 111369
Main Authors: Yang, Lei, Zhang, Yuanye, Cao, Jiale, Li, Kangshun, Wang, Dongya
Format: Journal Article
Language:English
Published: Elsevier B.V 01.03.2024
Subjects:
ISSN:1568-4946, 1872-9681
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Achieving the balance between convergence and diversity is a key and challenging issue in many-objective optimization. Reference vector guided selection is an exemplary method for decomposition-based many-objective evolutionary algorithms (MaOEAs). However, there are some problems with it such as insufficient number of obtained solutions and inefficient convergence evaluation metric. Aiming at solving or alleviating these problems, this paper proposes a many-objective evolutionary algorithm based on reference vector guided selection and two diversity and convergence enhancement strategies. The proposed algorithm introduces two new strategies namely adaptive sparse region detection and convergence-only selection. The former is to adaptively detect sparse regions of current elite population, while the latter is to prevent the elimination of solutions with prominent convergence performance. Together with a newly proposed elite retention strategy, these two strategies can achieve diversity and convergence enhancement on the basis on reference vector guided selection. Besides, A new selection criterion for reference vector guided selection is proposed to better measure the convergence of solutions in high dimensionality. Experimental results on widely used test problem suites up to 15 objectives indicate that the proposed algorithm is highly competitive in comparison with seven state-of-the-art MaOEAs. •Two strategies based on reference vector guided selection for better performance.•An adaptive approach to detect sparse regions for diversity enhancement.•A method to preserve prominent solutions for convergence enhancement.•An elite retention strategy to fill vacancies in elite population.
AbstractList Achieving the balance between convergence and diversity is a key and challenging issue in many-objective optimization. Reference vector guided selection is an exemplary method for decomposition-based many-objective evolutionary algorithms (MaOEAs). However, there are some problems with it such as insufficient number of obtained solutions and inefficient convergence evaluation metric. Aiming at solving or alleviating these problems, this paper proposes a many-objective evolutionary algorithm based on reference vector guided selection and two diversity and convergence enhancement strategies. The proposed algorithm introduces two new strategies namely adaptive sparse region detection and convergence-only selection. The former is to adaptively detect sparse regions of current elite population, while the latter is to prevent the elimination of solutions with prominent convergence performance. Together with a newly proposed elite retention strategy, these two strategies can achieve diversity and convergence enhancement on the basis on reference vector guided selection. Besides, A new selection criterion for reference vector guided selection is proposed to better measure the convergence of solutions in high dimensionality. Experimental results on widely used test problem suites up to 15 objectives indicate that the proposed algorithm is highly competitive in comparison with seven state-of-the-art MaOEAs. •Two strategies based on reference vector guided selection for better performance.•An adaptive approach to detect sparse regions for diversity enhancement.•A method to preserve prominent solutions for convergence enhancement.•An elite retention strategy to fill vacancies in elite population.
ArticleNumber 111369
Author Wang, Dongya
Yang, Lei
Cao, Jiale
Li, Kangshun
Zhang, Yuanye
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0003-3143-6563
  surname: Yang
  fullname: Yang, Lei
  email: yanglei_s@scau.edu.cn
  organization: School of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
– sequence: 2
  givenname: Yuanye
  surname: Zhang
  fullname: Zhang, Yuanye
  organization: School of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
– sequence: 3
  givenname: Jiale
  surname: Cao
  fullname: Cao, Jiale
  organization: School of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
– sequence: 4
  givenname: Kangshun
  surname: Li
  fullname: Li, Kangshun
  organization: School of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
– sequence: 5
  givenname: Dongya
  surname: Wang
  fullname: Wang, Dongya
  organization: University of Exeter, College of Engineering, Mathematics and Physical Sciences, Exeter EX4 4QF, UK
BookMark eNp9kMtOAyEUhonRxFp9AVe8wIxcppRJ3DTGW2LiRteEgTMtkykYwJo-gy8t07py4epw-_7wfxfo1AcPCF1TUlNCxc1Q6xRMzQhrakopF-0JmlG5ZFUrJD0t64WQVdM24hxdpDSQArVMztD3Cm-131ehG8BktwMMuzB-Zhe8jnusx3WILm-2uNMJLA4eR-ghgjeAd4UIEa8_nS1XCcYpobzQ3uL8FbAtcTG5vD-cmODLdn0gwW90mVvwGaccdYa1g3SJzno9Jrj6nXP0_nD_dvdUvbw-Pt-tXirDCcmVNEBAt8IA50vbs46TJdCuEb2U3La2ASnkgnGuRd8xKxY9N1yW7sw0TdMTPkfsmGtiSKn0UR_RbUtdRYmadKpBTTrVpFMddRZI_oGMy3rqW_7vxv_R2yMKpdTOQVTJuMmDdbEoUza4__Afx1uW8Q
CitedBy_id crossref_primary_10_1016_j_ins_2024_121837
crossref_primary_10_3390_sym16111484
crossref_primary_10_1021_acs_iecr_4c03467
crossref_primary_10_3390_app142210309
crossref_primary_10_1016_j_swevo_2025_102006
crossref_primary_10_1177_02670844251340356
Cites_doi 10.1016/j.ins.2021.03.008
10.1109/TEVC.2013.2281535
10.1109/ACCESS.2020.3034754
10.1016/j.eswa.2020.113648
10.1109/TEVC.2005.861417
10.1109/TEVC.2018.2882166
10.1007/s10489-022-04115-w
10.1504/IJVD.2019.109869
10.1145/3395260.3395268
10.1109/TEVC.2015.2420112
10.1016/j.ins.2019.11.047
10.1007/s10462-022-10359-2
10.1109/TEVC.2016.2519378
10.1109/TEVC.2018.2866854
10.1109/MCI.2017.2742868
10.1162/EVCO_a_00009
10.1137/S1052623496307510
10.1109/TEVC.2013.2281533
10.28991/HIJ-2023-04-01-011
10.1109/TEVC.2015.2457245
10.1109/TEVC.2005.851275
10.1109/TCYB.2020.3020630
10.28991/ESJ-2022-06-04-014
10.1016/j.ins.2018.10.027
10.1109/TEVC.2016.2587749
10.1145/2739482.2768462
10.1109/TEVC.2020.2992387
10.1007/s40747-017-0039-7
10.1109/TCYB.2016.2638902
10.1145/3319619.3323377
10.1109/TEVC.2016.2587808
10.1016/j.ins.2018.06.063
10.1155/2021/8870356
10.1016/j.ins.2021.01.015
10.3390/e22101105
10.1162/evco_a_00269
10.1109/TEVC.2018.2791283
10.1016/j.swevo.2022.101180
10.1109/CEC.2019.8790214
10.1016/j.swevo.2021.100980
10.1016/j.swevo.2020.100776
10.1109/TCYB.2019.2899225
10.1109/TEVC.2020.2978158
10.1109/TEVC.2007.892759
10.1016/j.aim.2004.05.006
10.1109/TEVC.2007.910138
10.1109/TEVC.2020.2999100
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2024.111369
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2024_111369
S1568494624001431
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABMYL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-8ce0ea96ce337df2b307e1b46f883d9d4e8685233a6fb2d65f3c384942c444f03
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001197469700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:02:21 EST 2025
Tue Nov 18 22:14:30 EST 2025
Sat Mar 23 16:41:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Reference vector
Convergence and diversity enhancement
Many-objective optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-8ce0ea96ce337df2b307e1b46f883d9d4e8685233a6fb2d65f3c384942c444f03
ORCID 0000-0003-3143-6563
ParticipantIDs crossref_primary_10_1016_j_asoc_2024_111369
crossref_citationtrail_10_1016_j_asoc_2024_111369
elsevier_sciencedirect_doi_10_1016_j_asoc_2024_111369
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ishibuchi, Tsukamoto, Nojima (b9) 2008
Tian, Cheng, Zhang, Su, Jin (b48) 2018; 23
Deb, Jain (b42) 2013; 18
Qiu, Zhu, Wu, Fan, Suganthan (b13) 2021; 60
Dhiman, Kaur (b2) 2019; 80
While, Hingston, Barone, Huband (b15) 2006; 10
Xu, Zhang, Zeng, Nojima (b21) 2022; 75
Li, Yao (b36) 2020; 28
Zhu, Xu, Goodman (b14) 2015; 20
Deb, Agrawal (b44) 1995; 9
Nurhidayat, Pimpunchat, Noeiaghdam, Fernández-Gámiz (b4) 2022; 6
Purshouse, Fleming (b11) 2007; 11
Huband, Hingston, Barone, While (b54) 2006; 10
Blank, Deb, Dhebar, Bandaru, Seada (b41) 2020; 25
Qiu, Zhu, Yu, Fan, Huo (b29) 2021; 2021
J. Lin, S. Zheng, Y. Long, Improved reference vector guided differential evolution algorithm for many-objective optimization, in: Proceedings of the 2020 5th International Conference on Mathematics and Artificial Intelligence, 2020, pp. 43–49.
Aggarwal, Hinneburg, Keim (b46) 2001
Bader, Zitzler (b56) 2011; 19
Deb, Goyal (b45) 1996; 26
Das, Dennis (b40) 1998; 8
Li, Shang, Shen, Liu, Huang (b31) 2023; 53
Sun, Yen, Yi (b16) 2018; 23
Farina, Amato (b1) 2002
Yuan, Liu, Gu, Zhang, He (b18) 2020; 25
Liu, Han, Ling, Han, Jiang (b50) 2023; 83
Xiang, Zhou, Li, Chen (b10) 2016; 21
Mirkes, Allohibi, Gorban (b39) 2020; 22
Wagner, Beume, Naujoks (b8) 2007
Cai, Hu, Zhao, Zhang, Chen (b3) 2020; 159
Zhang, Gao, Li, Shen, Zhou, Tan (b34) 2021
Li, Yen, Sahoo, Chang, Gu (b19) 2021; 563
Liu, Wang, Huang (b22) 2020; 509
Khoa, Huynh (b5) 2022; 12
Luo, Huang, Yang, Li, Wang, Feng (b17) 2020; 514
Chen, Wu, Pedrycz, Suganthan, Xing, Zhu (b26) 2019; 51
Liu, Gong, Sun, Jin (b49) 2017; 47
Morales-Hernández, Van Nieuwenhuyse, Rojas Gonzalez (b6) 2023; 56
Zhang, Li (b20) 2007; 11
Zhang, Wang, Li, Hu, Li, Wu (b38) 2021; 563
Liu, Gu, Zhang (b25) 2013; 18
Cheng, Li, Tian, Zhang, Yang, Jin, Yao (b55) 2017; 3
Alexandrov, Kirichek, Kuklin, Chervyakov (b7) 2023; 4
H. Ishibuchi, H. Sato, Evolutionary many-objective optimization, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2019, pp. 614–661.
Ma, Yu, Li, Qi, Zhu (b35) 2020; 24
Hardin, Saff (b43) 2005; 193
de Farias, Araújo (b37) 2022; 68
Tian, Cheng, Zhang, Jin (b58) 2017; 12
Deb, Thiele, Laumanns, Zitzler (b53) 2005
Sun, Xue, Zhang, Yen (b51) 2018; 23
Liu, Jin, Heiderich, Rodemann, Yu (b47) 2022; 52
Bai, Zheng, Yu, Yang, Zou (b28) 2019; 478
Cheng, Jin, Olhofer, Sendhoff (b27) 2016; 20
Chen, Tian, Pedrycz, Wu, Wang, Wang (b52) 2019; 50
Q. Liu, Y. Jin, M. Heiderich, T. Rodemann, Adaptation of Reference Vectors for Evolutionary Many-objective Optimization of Problems with Irregular Pareto Fronts, in: 2019 IEEE Congress on Evolutionary Computation, CEC, 2019, pp. 1726–1733.
A.J. Nebro, J.J. Durillo, M. Vergne, Redesigning the jMetal multi-objective optimization framework, in: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, 2015, pp. 1093–1100.
Yuan, Xu, Wang, Yao (b12) 2015; 20
Ishibuchi, Setoguchi, Masuda, Nojima (b33) 2016; 21
Zhong, Hu, Lu, Wang, Liu, Chen (b23) 2020; 8
Yuan (10.1016/j.asoc.2024.111369_b12) 2015; 20
10.1016/j.asoc.2024.111369_b57
Das (10.1016/j.asoc.2024.111369_b40) 1998; 8
Nurhidayat (10.1016/j.asoc.2024.111369_b4) 2022; 6
Ma (10.1016/j.asoc.2024.111369_b35) 2020; 24
Bai (10.1016/j.asoc.2024.111369_b28) 2019; 478
Purshouse (10.1016/j.asoc.2024.111369_b11) 2007; 11
Zhang (10.1016/j.asoc.2024.111369_b34) 2021
Deb (10.1016/j.asoc.2024.111369_b44) 1995; 9
Tian (10.1016/j.asoc.2024.111369_b58) 2017; 12
Alexandrov (10.1016/j.asoc.2024.111369_b7) 2023; 4
Xiang (10.1016/j.asoc.2024.111369_b10) 2016; 21
Yuan (10.1016/j.asoc.2024.111369_b18) 2020; 25
Liu (10.1016/j.asoc.2024.111369_b22) 2020; 509
Deb (10.1016/j.asoc.2024.111369_b53) 2005
Bader (10.1016/j.asoc.2024.111369_b56) 2011; 19
Mirkes (10.1016/j.asoc.2024.111369_b39) 2020; 22
Liu (10.1016/j.asoc.2024.111369_b50) 2023; 83
While (10.1016/j.asoc.2024.111369_b15) 2006; 10
Li (10.1016/j.asoc.2024.111369_b31) 2023; 53
Qiu (10.1016/j.asoc.2024.111369_b13) 2021; 60
Qiu (10.1016/j.asoc.2024.111369_b29) 2021; 2021
Cai (10.1016/j.asoc.2024.111369_b3) 2020; 159
Morales-Hernández (10.1016/j.asoc.2024.111369_b6) 2023; 56
Li (10.1016/j.asoc.2024.111369_b19) 2021; 563
Zhu (10.1016/j.asoc.2024.111369_b14) 2015; 20
Sun (10.1016/j.asoc.2024.111369_b16) 2018; 23
Ishibuchi (10.1016/j.asoc.2024.111369_b9) 2008
Tian (10.1016/j.asoc.2024.111369_b48) 2018; 23
Liu (10.1016/j.asoc.2024.111369_b25) 2013; 18
Deb (10.1016/j.asoc.2024.111369_b45) 1996; 26
de Farias (10.1016/j.asoc.2024.111369_b37) 2022; 68
Xu (10.1016/j.asoc.2024.111369_b21) 2022; 75
Zhong (10.1016/j.asoc.2024.111369_b23) 2020; 8
Farina (10.1016/j.asoc.2024.111369_b1) 2002
Zhang (10.1016/j.asoc.2024.111369_b38) 2021; 563
Dhiman (10.1016/j.asoc.2024.111369_b2) 2019; 80
Sun (10.1016/j.asoc.2024.111369_b51) 2018; 23
Cheng (10.1016/j.asoc.2024.111369_b55) 2017; 3
10.1016/j.asoc.2024.111369_b30
Liu (10.1016/j.asoc.2024.111369_b47) 2022; 52
10.1016/j.asoc.2024.111369_b32
10.1016/j.asoc.2024.111369_b24
Chen (10.1016/j.asoc.2024.111369_b52) 2019; 50
Blank (10.1016/j.asoc.2024.111369_b41) 2020; 25
Zhang (10.1016/j.asoc.2024.111369_b20) 2007; 11
Khoa (10.1016/j.asoc.2024.111369_b5) 2022; 12
Wagner (10.1016/j.asoc.2024.111369_b8) 2007
Cheng (10.1016/j.asoc.2024.111369_b27) 2016; 20
Aggarwal (10.1016/j.asoc.2024.111369_b46) 2001
Luo (10.1016/j.asoc.2024.111369_b17) 2020; 514
Ishibuchi (10.1016/j.asoc.2024.111369_b33) 2016; 21
Hardin (10.1016/j.asoc.2024.111369_b43) 2005; 193
Li (10.1016/j.asoc.2024.111369_b36) 2020; 28
Deb (10.1016/j.asoc.2024.111369_b42) 2013; 18
Huband (10.1016/j.asoc.2024.111369_b54) 2006; 10
Liu (10.1016/j.asoc.2024.111369_b49) 2017; 47
Chen (10.1016/j.asoc.2024.111369_b26) 2019; 51
References_xml – volume: 509
  start-page: 400
  year: 2020
  end-page: 419
  ident: b22
  article-title: And: A many-objective evolutionary algorithm with angle-based selection and shift-based density estimation
  publication-title: Inform. Sci.
– volume: 28
  start-page: 227
  year: 2020
  end-page: 253
  ident: b36
  article-title: What weights work for you? Adapting weights for any Pareto front shape in decomposition-based evolutionary multiobjective optimisation
  publication-title: Evol. Comput.
– volume: 50
  start-page: 3367
  year: 2019
  end-page: 3380
  ident: b52
  article-title: Hyperplane assisted evolutionary algorithm for many-objective optimization problems
  publication-title: IEEE Trans. Cybern.
– volume: 75
  year: 2022
  ident: b21
  article-title: An adaptive convergence enhanced evolutionary algorithm for many-objective optimization problems
  publication-title: Swarm Evol. Comput.
– volume: 193
  start-page: 174
  year: 2005
  end-page: 204
  ident: b43
  article-title: Minimal Riesz energy point configurations for rectifiable d-dimensional manifolds
  publication-title: Adv. Math.
– volume: 60
  year: 2021
  ident: b13
  article-title: Evolutionary many-objective algorithm based on fractional dominance relation and improved objective space decomposition strategy
  publication-title: Swarm Evol. Comput.
– volume: 18
  start-page: 577
  year: 2013
  end-page: 601
  ident: b42
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– volume: 8
  start-page: 631
  year: 1998
  end-page: 657
  ident: b40
  article-title: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
– volume: 23
  start-page: 173
  year: 2018
  end-page: 187
  ident: b16
  article-title: IGD indicator-based evolutionary algorithm for many-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– year: 2021
  ident: b34
  article-title: Resetting weight vectors in MOEA/D for multiobjective optimization problems with discontinuous Pareto front
  publication-title: IEEE Trans. Cybern.
– volume: 25
  start-page: 75
  year: 2020
  end-page: 86
  ident: b18
  article-title: Investigating the properties of indicators and an evolutionary many-objective algorithm using promising regions
  publication-title: IEEE Trans. Evol. Comput.
– volume: 563
  start-page: 375
  year: 2021
  end-page: 400
  ident: b19
  article-title: On the estimation of pareto front and dimensional similarity in many-objective evolutionary algorithm
  publication-title: Inform. Sci.
– volume: 21
  start-page: 169
  year: 2016
  end-page: 190
  ident: b33
  article-title: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes
  publication-title: IEEE Trans. Evol. Comput.
– volume: 22
  start-page: 1105
  year: 2020
  ident: b39
  article-title: Fractional norms and quasinorms do not help to overcome the curse of dimensionality
  publication-title: Entropy
– volume: 24
  start-page: 634
  year: 2020
  end-page: 649
  ident: b35
  article-title: A survey of weight vector adjustment methods for decomposition-based multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 25
  start-page: 48
  year: 2020
  end-page: 60
  ident: b41
  article-title: Generating well-spaced points on a unit simplex for evolutionary many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 20
  start-page: 16
  year: 2015
  end-page: 37
  ident: b12
  article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 45
  year: 2011
  end-page: 76
  ident: b56
  article-title: Hype: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evol. Comput.
– volume: 10
  start-page: 29
  year: 2006
  end-page: 38
  ident: b15
  article-title: A faster algorithm for calculating hypervolume
  publication-title: IEEE Trans. Evol. Comput.
– volume: 8
  start-page: 197249
  year: 2020
  end-page: 197262
  ident: b23
  article-title: A two-stage adjustment strategy for space division based many-objective evolutionary optimization
  publication-title: IEEE Access
– start-page: 2419
  year: 2008
  end-page: 2426
  ident: b9
  article-title: Evolutionary many-objective optimization: A short review
  publication-title: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)
– volume: 80
  start-page: 257
  year: 2019
  end-page: 284
  ident: b2
  article-title: HKn-RVEA: a novel many-objective evolutionary algorithm for car side impact bar crashworthiness problem
  publication-title: Int. J. Veh. Des.
– volume: 47
  start-page: 2689
  year: 2017
  end-page: 2702
  ident: b49
  article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy
  publication-title: IEEE Trans. Cybern.
– volume: 9
  start-page: 115
  year: 1995
  end-page: 148
  ident: b44
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst.
– volume: 4
  start-page: 157
  year: 2023
  end-page: 173
  ident: b7
  article-title: Development of an algorithm for multicriteria optimization of deep learning neural networks
  publication-title: HighTech Innov. J.
– volume: 83
  year: 2023
  ident: b50
  article-title: A many-objective optimization evolutionary algorithm based on hyper-dominance degree
  publication-title: Swarm Evol. Comput.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b20
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 10
  start-page: 477
  year: 2006
  end-page: 506
  ident: b54
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
– volume: 12
  start-page: 13
  year: 2022
  ident: b5
  article-title: Predicting exchange rate under uirp framework with support vector regression
  publication-title: assessment
– volume: 18
  start-page: 450
  year: 2013
  end-page: 455
  ident: b25
  article-title: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 233
  year: 2002
  end-page: 238
  ident: b1
  article-title: On the optimal solution definition for many-criteria optimization problems
  publication-title: 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)
– volume: 23
  start-page: 331
  year: 2018
  end-page: 345
  ident: b48
  article-title: A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 53
  start-page: 12149
  year: 2023
  end-page: 12162
  ident: b31
  article-title: Combining modified inverted generational distance indicator with reference-vector-guided selection for many-objective optimization
  publication-title: Appl. Intell.
– volume: 478
  start-page: 186
  year: 2019
  end-page: 207
  ident: b28
  article-title: A Pareto-based many-objective evolutionary algorithm using space partitioning selection and angle-based truncation
  publication-title: Inform. Sci.
– reference: Q. Liu, Y. Jin, M. Heiderich, T. Rodemann, Adaptation of Reference Vectors for Evolutionary Many-objective Optimization of Problems with Irregular Pareto Fronts, in: 2019 IEEE Congress on Evolutionary Computation, CEC, 2019, pp. 1726–1733.
– volume: 159
  year: 2020
  ident: b3
  article-title: A hybrid recommendation system with many-objective evolutionary algorithm
  publication-title: Expert Syst. Appl.
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: b58
  article-title: Platemo: A MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput. Intell. Mag.
– volume: 52
  start-page: 2698
  year: 2022
  end-page: 2711
  ident: b47
  article-title: An adaptive reference vector-guided evolutionary algorithm using growing neural gas for many-objective optimization of irregular problems
  publication-title: IEEE Trans. Cybern.
– reference: J. Lin, S. Zheng, Y. Long, Improved reference vector guided differential evolution algorithm for many-objective optimization, in: Proceedings of the 2020 5th International Conference on Mathematics and Artificial Intelligence, 2020, pp. 43–49.
– volume: 6
  start-page: 866
  year: 2022
  end-page: 880
  ident: b4
  article-title: Comparisons of SVM kernels for insurance data clustering
  publication-title: Emerg. Sci. J.
– volume: 514
  start-page: 166
  year: 2020
  end-page: 202
  ident: b17
  article-title: A many-objective particle swarm optimizer based on indicator and direction vectors for many-objective optimization
  publication-title: Inform. Sci.
– volume: 68
  year: 2022
  ident: b37
  article-title: A decomposition-based many-objective evolutionary algorithm updating weights when required
  publication-title: Swarm Evol. Comput.
– volume: 2021
  year: 2021
  ident: b29
  article-title: An adaptive reference vector adjustment strategy and improved angle-penalized value method for RVEA
  publication-title: Complexity
– volume: 26
  start-page: 30
  year: 1996
  end-page: 45
  ident: b45
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: Comput. Sci. Inform.
– volume: 3
  start-page: 67
  year: 2017
  end-page: 81
  ident: b55
  article-title: A benchmark test suite for evolutionary many-objective optimization
  publication-title: Complex Intell. Syst.
– volume: 51
  start-page: 1507
  year: 2019
  end-page: 1522
  ident: b26
  article-title: An adaptive resource allocation strategy for objective space partition-based multiobjective optimization
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 11
  start-page: 770
  year: 2007
  end-page: 784
  ident: b11
  article-title: On the evolutionary optimization of many conflicting objectives
  publication-title: IEEE Trans. Evol. Comput.
– reference: A.J. Nebro, J.J. Durillo, M. Vergne, Redesigning the jMetal multi-objective optimization framework, in: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, 2015, pp. 1093–1100.
– volume: 23
  start-page: 748
  year: 2018
  end-page: 761
  ident: b51
  article-title: A new two-stage evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 105
  year: 2005
  end-page: 145
  ident: b53
  article-title: Scalable test problems for evolutionary multiobjective optimization
  publication-title: Evolutionary Multiobjective Optimization
– volume: 56
  start-page: 8043
  year: 2023
  end-page: 8093
  ident: b6
  article-title: A survey on multi-objective hyperparameter optimization algorithms for machine learning
  publication-title: Artif. Intell. Rev.
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: b27
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: H. Ishibuchi, H. Sato, Evolutionary many-objective optimization, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2019, pp. 614–661.
– volume: 20
  start-page: 299
  year: 2015
  end-page: 315
  ident: b14
  article-title: Generalization of Pareto-optimality for many-objective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 742
  year: 2007
  end-page: 756
  ident: b8
  article-title: Pareto-, aggregation-, and indicator-based methods in many-objective optimization
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– volume: 21
  start-page: 131
  year: 2016
  end-page: 152
  ident: b10
  article-title: A vector angle-based evolutionary algorithm for unconstrained many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 563
  start-page: 70
  year: 2021
  end-page: 90
  ident: b38
  article-title: Many-objective evolutionary algorithm with adaptive reference vector
  publication-title: Inform. Sci.
– start-page: 420
  year: 2001
  end-page: 434
  ident: b46
  article-title: On the surprising behavior of distance metrics in high dimensional space
  publication-title: International Conference on Database Theory
– volume: 563
  start-page: 375
  year: 2021
  ident: 10.1016/j.asoc.2024.111369_b19
  article-title: On the estimation of pareto front and dimensional similarity in many-objective evolutionary algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.03.008
– year: 2021
  ident: 10.1016/j.asoc.2024.111369_b34
  article-title: Resetting weight vectors in MOEA/D for multiobjective optimization problems with discontinuous Pareto front
  publication-title: IEEE Trans. Cybern.
– start-page: 2419
  year: 2008
  ident: 10.1016/j.asoc.2024.111369_b9
  article-title: Evolutionary many-objective optimization: A short review
– volume: 18
  start-page: 577
  issue: 4
  year: 2013
  ident: 10.1016/j.asoc.2024.111369_b42
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 8
  start-page: 197249
  year: 2020
  ident: 10.1016/j.asoc.2024.111369_b23
  article-title: A two-stage adjustment strategy for space division based many-objective evolutionary optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3034754
– volume: 159
  year: 2020
  ident: 10.1016/j.asoc.2024.111369_b3
  article-title: A hybrid recommendation system with many-objective evolutionary algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113648
– volume: 9
  start-page: 115
  issue: 2
  year: 1995
  ident: 10.1016/j.asoc.2024.111369_b44
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst.
– volume: 10
  start-page: 477
  issue: 5
  year: 2006
  ident: 10.1016/j.asoc.2024.111369_b54
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.861417
– volume: 23
  start-page: 748
  issue: 5
  year: 2018
  ident: 10.1016/j.asoc.2024.111369_b51
  article-title: A new two-stage evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2882166
– volume: 53
  start-page: 12149
  issue: 10
  year: 2023
  ident: 10.1016/j.asoc.2024.111369_b31
  article-title: Combining modified inverted generational distance indicator with reference-vector-guided selection for many-objective optimization
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-04115-w
– volume: 80
  start-page: 257
  issue: 2–4
  year: 2019
  ident: 10.1016/j.asoc.2024.111369_b2
  article-title: HKn-RVEA: a novel many-objective evolutionary algorithm for car side impact bar crashworthiness problem
  publication-title: Int. J. Veh. Des.
  doi: 10.1504/IJVD.2019.109869
– ident: 10.1016/j.asoc.2024.111369_b30
  doi: 10.1145/3395260.3395268
– start-page: 742
  year: 2007
  ident: 10.1016/j.asoc.2024.111369_b8
  article-title: Pareto-, aggregation-, and indicator-based methods in many-objective optimization
– volume: 20
  start-page: 16
  issue: 1
  year: 2015
  ident: 10.1016/j.asoc.2024.111369_b12
  article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2420112
– volume: 514
  start-page: 166
  year: 2020
  ident: 10.1016/j.asoc.2024.111369_b17
  article-title: A many-objective particle swarm optimizer based on indicator and direction vectors for many-objective optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.11.047
– volume: 56
  start-page: 8043
  issue: 8
  year: 2023
  ident: 10.1016/j.asoc.2024.111369_b6
  article-title: A survey on multi-objective hyperparameter optimization algorithms for machine learning
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10359-2
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 10.1016/j.asoc.2024.111369_b27
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2519378
– volume: 51
  start-page: 1507
  issue: 3
  year: 2019
  ident: 10.1016/j.asoc.2024.111369_b26
  article-title: An adaptive resource allocation strategy for objective space partition-based multiobjective optimization
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 23
  start-page: 331
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2024.111369_b48
  article-title: A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2866854
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2024.111369_b58
  article-title: Platemo: A MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2742868
– volume: 12
  start-page: 13
  year: 2022
  ident: 10.1016/j.asoc.2024.111369_b5
  article-title: Predicting exchange rate under uirp framework with support vector regression
  publication-title: assessment
– volume: 19
  start-page: 45
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2024.111369_b56
  article-title: Hype: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00009
– volume: 8
  start-page: 631
  issue: 3
  year: 1998
  ident: 10.1016/j.asoc.2024.111369_b40
  article-title: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496307510
– volume: 18
  start-page: 450
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2024.111369_b25
  article-title: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281533
– start-page: 420
  year: 2001
  ident: 10.1016/j.asoc.2024.111369_b46
  article-title: On the surprising behavior of distance metrics in high dimensional space
– volume: 4
  start-page: 157
  issue: 1
  year: 2023
  ident: 10.1016/j.asoc.2024.111369_b7
  article-title: Development of an algorithm for multicriteria optimization of deep learning neural networks
  publication-title: HighTech Innov. J.
  doi: 10.28991/HIJ-2023-04-01-011
– volume: 20
  start-page: 299
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2024.111369_b14
  article-title: Generalization of Pareto-optimality for many-objective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2457245
– volume: 10
  start-page: 29
  issue: 1
  year: 2006
  ident: 10.1016/j.asoc.2024.111369_b15
  article-title: A faster algorithm for calculating hypervolume
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.851275
– volume: 52
  start-page: 2698
  issue: 5
  year: 2022
  ident: 10.1016/j.asoc.2024.111369_b47
  article-title: An adaptive reference vector-guided evolutionary algorithm using growing neural gas for many-objective optimization of irregular problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3020630
– volume: 6
  start-page: 866
  issue: 4
  year: 2022
  ident: 10.1016/j.asoc.2024.111369_b4
  article-title: Comparisons of SVM kernels for insurance data clustering
  publication-title: Emerg. Sci. J.
  doi: 10.28991/ESJ-2022-06-04-014
– volume: 478
  start-page: 186
  year: 2019
  ident: 10.1016/j.asoc.2024.111369_b28
  article-title: A Pareto-based many-objective evolutionary algorithm using space partitioning selection and angle-based truncation
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.10.027
– volume: 21
  start-page: 169
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2024.111369_b33
  article-title: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2587749
– ident: 10.1016/j.asoc.2024.111369_b57
  doi: 10.1145/2739482.2768462
– volume: 25
  start-page: 48
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2024.111369_b41
  article-title: Generating well-spaced points on a unit simplex for evolutionary many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.2992387
– start-page: 105
  year: 2005
  ident: 10.1016/j.asoc.2024.111369_b53
  article-title: Scalable test problems for evolutionary multiobjective optimization
– volume: 3
  start-page: 67
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2024.111369_b55
  article-title: A benchmark test suite for evolutionary many-objective optimization
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-017-0039-7
– volume: 47
  start-page: 2689
  issue: 9
  year: 2017
  ident: 10.1016/j.asoc.2024.111369_b49
  article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2638902
– ident: 10.1016/j.asoc.2024.111369_b24
  doi: 10.1145/3319619.3323377
– volume: 21
  start-page: 131
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2024.111369_b10
  article-title: A vector angle-based evolutionary algorithm for unconstrained many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2587808
– volume: 83
  year: 2023
  ident: 10.1016/j.asoc.2024.111369_b50
  article-title: A many-objective optimization evolutionary algorithm based on hyper-dominance degree
  publication-title: Swarm Evol. Comput.
– volume: 509
  start-page: 400
  year: 2020
  ident: 10.1016/j.asoc.2024.111369_b22
  article-title: And: A many-objective evolutionary algorithm with angle-based selection and shift-based density estimation
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.06.063
– volume: 2021
  year: 2021
  ident: 10.1016/j.asoc.2024.111369_b29
  article-title: An adaptive reference vector adjustment strategy and improved angle-penalized value method for RVEA
  publication-title: Complexity
  doi: 10.1155/2021/8870356
– volume: 563
  start-page: 70
  year: 2021
  ident: 10.1016/j.asoc.2024.111369_b38
  article-title: Many-objective evolutionary algorithm with adaptive reference vector
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.01.015
– volume: 22
  start-page: 1105
  issue: 10
  year: 2020
  ident: 10.1016/j.asoc.2024.111369_b39
  article-title: Fractional norms and quasinorms do not help to overcome the curse of dimensionality
  publication-title: Entropy
  doi: 10.3390/e22101105
– volume: 28
  start-page: 227
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2024.111369_b36
  article-title: What weights work for you? Adapting weights for any Pareto front shape in decomposition-based evolutionary multiobjective optimisation
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00269
– volume: 23
  start-page: 173
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2024.111369_b16
  article-title: IGD indicator-based evolutionary algorithm for many-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2791283
– volume: 75
  year: 2022
  ident: 10.1016/j.asoc.2024.111369_b21
  article-title: An adaptive convergence enhanced evolutionary algorithm for many-objective optimization problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101180
– ident: 10.1016/j.asoc.2024.111369_b32
  doi: 10.1109/CEC.2019.8790214
– volume: 68
  year: 2022
  ident: 10.1016/j.asoc.2024.111369_b37
  article-title: A decomposition-based many-objective evolutionary algorithm updating weights when required
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100980
– volume: 60
  year: 2021
  ident: 10.1016/j.asoc.2024.111369_b13
  article-title: Evolutionary many-objective algorithm based on fractional dominance relation and improved objective space decomposition strategy
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100776
– volume: 50
  start-page: 3367
  issue: 7
  year: 2019
  ident: 10.1016/j.asoc.2024.111369_b52
  article-title: Hyperplane assisted evolutionary algorithm for many-objective optimization problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2899225
– volume: 24
  start-page: 634
  issue: 4
  year: 2020
  ident: 10.1016/j.asoc.2024.111369_b35
  article-title: A survey of weight vector adjustment methods for decomposition-based multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.2978158
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.asoc.2024.111369_b20
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 193
  start-page: 174
  issue: 1
  year: 2005
  ident: 10.1016/j.asoc.2024.111369_b43
  article-title: Minimal Riesz energy point configurations for rectifiable d-dimensional manifolds
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2004.05.006
– start-page: 233
  year: 2002
  ident: 10.1016/j.asoc.2024.111369_b1
  article-title: On the optimal solution definition for many-criteria optimization problems
– volume: 11
  start-page: 770
  issue: 6
  year: 2007
  ident: 10.1016/j.asoc.2024.111369_b11
  article-title: On the evolutionary optimization of many conflicting objectives
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.910138
– volume: 25
  start-page: 75
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2024.111369_b18
  article-title: Investigating the properties of indicators and an evolutionary many-objective algorithm using promising regions
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.2999100
– volume: 26
  start-page: 30
  year: 1996
  ident: 10.1016/j.asoc.2024.111369_b45
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: Comput. Sci. Inform.
SSID ssj0016928
Score 2.441454
Snippet Achieving the balance between convergence and diversity is a key and challenging issue in many-objective optimization. Reference vector guided selection is an...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111369
SubjectTerms Convergence and diversity enhancement
Many-objective optimization
Reference vector
Title A many-objective evolutionary algorithm based on reference vector guided selection and two diversity and convergence enhancement strategies
URI https://dx.doi.org/10.1016/j.asoc.2024.111369
Volume 154
WOSCitedRecordID wos001197469700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqXQ5ceCOWl3zgFmWVxE5iH6vVIkDVCokFlVOU2M62VUlWTRqW38CZ_8s4dtywRStA4hJVbtxpPV9nJuNvPAi9IqWiYShSX4B38mmZMJ8pKfwiEKGIeSxZX5X2aZaenbH5nL-fTH4MtTDdOq0qdnXFL_-rqmEMlK1LZ_9C3e5DYQBeg9LhCmqH6x8pfqoZqd_8ulgZW-apzsrTBLl8fVFvlu3ii6f9l9R7Ba7TiNf1KXzvYruU8FbTt8gZ6Mrt19qTjsRhquGqztRugoxqoeHTMwuadjh-Yhz5DuFuA3a_J7Jv28FraqNj09YztdxLZX_ewu9x-DvJzV4RLKQbmxlKAtzfLLbVOJER0R2Ty2TX9ipsjEEG9FBu05TKjLE08nliWr04K27Oot7zCCY5sTrOAezHWqx2EsS0h7l20vYHLUzL0rxaiCPhofowSmMOxvJw-vZ0_s5tTyW8b9rrvpytxjLEweuSfh_xjKKY83vojn38wFMDm_tooqoH6O7Q2gNbS_8QfZ_iX1GExyjCDkW4RxGuK-xQhA2KsEERdijCgBkMKMIORf3ICEV4hCK8Q9Ej9PH16fnJG9_27fAFCYLWZ0IFKueJUISksowK8CMqLGhSMkYkl1SxhMURIXlSFpFM4pIIohc-EpTSMiCP0UFVV-oJwoyXEFFGEMOnIZUy5npjmiQiShUvZVgcoXBY20zYQ-11b5V1NrAXV5nWR6b1kRl9HCHPzbk0R7rceHc8qCyzQakJNjNA2A3znv7jvGfo9u7P8RwdtJuteoFuia5dNpuXFog_Abo0t3c
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+many-objective+evolutionary+algorithm+based+on+reference+vector+guided+selection+and+two+diversity+and+convergence+enhancement+strategies&rft.jtitle=Applied+soft+computing&rft.au=Yang%2C+Lei&rft.au=Zhang%2C+Yuanye&rft.au=Cao%2C+Jiale&rft.au=Li%2C+Kangshun&rft.date=2024-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=154&rft_id=info:doi/10.1016%2Fj.asoc.2024.111369&rft.externalDocID=S1568494624001431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon