Metaheuristics exposed: Unmasking the design pitfalls of arithmetic optimization algorithm in benchmarking
This work unveils design flaws within most metaheuristics, with a specific focus on issues associated with the arithmetic optimization algorithm (AOA). Despite being a simple metaheuristic optimizer inspired by mathematical operations, AOA holds promise for addressing complex real-world applications...
Uloženo v:
| Vydáno v: | Applied soft computing Ročník 160; s. 111696 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.07.2024
|
| Témata: | |
| ISSN: | 1568-4946, 1872-9681 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This work unveils design flaws within most metaheuristics, with a specific focus on issues associated with the arithmetic optimization algorithm (AOA). Despite being a simple metaheuristic optimizer inspired by mathematical operations, AOA holds promise for addressing complex real-world applications. However, a thorough analysis of its search mechanism reveals a heavy dependence on problem bounds for the quality of solutions obtained by AOA. Additionally, discrepancies between algorithm descriptions and implementations in AOA can mislead users and impede progress within the metaheuristic community. Experimental simulations conducted on various standard benchmarks including their shifted versions indicate a structural bias in AOA, leading to artificially high accuracy in fitting standard test functions but poor performance when applied to shifted benchmarks. Finally, we give a critical cause analysis and conclude this article by highlighting valuable research avenues in this field.
•Defects of the arithmetic optimization algorithm (AOA) are revealed.•The search equation of AOA exhibits certain limitations.•AOA is structurally biased toward the origin of axes. |
|---|---|
| AbstractList | This work unveils design flaws within most metaheuristics, with a specific focus on issues associated with the arithmetic optimization algorithm (AOA). Despite being a simple metaheuristic optimizer inspired by mathematical operations, AOA holds promise for addressing complex real-world applications. However, a thorough analysis of its search mechanism reveals a heavy dependence on problem bounds for the quality of solutions obtained by AOA. Additionally, discrepancies between algorithm descriptions and implementations in AOA can mislead users and impede progress within the metaheuristic community. Experimental simulations conducted on various standard benchmarks including their shifted versions indicate a structural bias in AOA, leading to artificially high accuracy in fitting standard test functions but poor performance when applied to shifted benchmarks. Finally, we give a critical cause analysis and conclude this article by highlighting valuable research avenues in this field.
•Defects of the arithmetic optimization algorithm (AOA) are revealed.•The search equation of AOA exhibits certain limitations.•AOA is structurally biased toward the origin of axes. |
| ArticleNumber | 111696 |
| Author | Liu, Sanyang Deng, Lingyun |
| Author_xml | – sequence: 1 givenname: Lingyun orcidid: 0000-0002-3301-6426 surname: Deng fullname: Deng, Lingyun email: lingyundeng@stu.xidian.edu.cn – sequence: 2 givenname: Sanyang surname: Liu fullname: Liu, Sanyang email: syliu@xidian.edu.cn |
| BookMark | eNp9kMtOwzAQRS1UJErhB1j5B1LsJHUdxAZVvKQiNnRtufakmdLEkW0Q8PU4LSsWXc1Io3M195yTUec6IOSKsylnXFxvpzo4M81ZXk4556ISJ2TM5TzPKiH5KO0zIbOyKsUZOQ9hyxJU5XJMti8QdQMfHkNEEyh89S6AvaGrrtXhHbsNjQ1QCwE3He0x1nq3C9TVVHuMTQuJoq6P2OKPjug6qncbtz9R7OgaOtO02g9BF-Q0wQEu_-aErB7u3xZP2fL18Xlxt8xMwVjMpJ7XczDWCJCguVxLUci6KkFIZnU5k1DOeJ3bPLXRxbrKSymAV7pguraFZcWE5Idc410IHmrVe0w_fCvO1GBLbdVgSw221MFWguQ_yGDcF4pe4-44entAIZX6RPAqGEy9waIHE5V1eAz_BaFciu8 |
| CitedBy_id | crossref_primary_10_1007_s10586_025_05190_7 crossref_primary_10_1186_s40537_025_01260_0 crossref_primary_10_1016_j_jestch_2024_101935 crossref_primary_10_1038_s41598_025_11626_2 crossref_primary_10_1007_s12065_025_01030_0 crossref_primary_10_1016_j_swevo_2025_102063 crossref_primary_10_1038_s41598_025_08894_3 crossref_primary_10_1007_s12293_025_00465_3 crossref_primary_10_1007_s12559_025_10486_2 crossref_primary_10_1016_j_rineng_2025_105705 crossref_primary_10_1007_s10462_024_11069_7 crossref_primary_10_1007_s10586_024_04991_6 crossref_primary_10_1016_j_swevo_2024_101807 crossref_primary_10_1186_s40537_024_01055_9 crossref_primary_10_1007_s00500_025_10588_x crossref_primary_10_1007_s10586_025_05273_5 crossref_primary_10_1007_s12065_024_01004_8 crossref_primary_10_1038_s41598_025_10289_3 crossref_primary_10_1038_s41598_025_97133_w crossref_primary_10_1007_s12293_025_00469_z crossref_primary_10_1038_s41598_025_89840_1 crossref_primary_10_3390_math13132158 |
| Cites_doi | 10.1016/j.ins.2012.05.009 10.1007/s11721-021-00202-9 10.1162/artl_a_00407 10.1016/j.knosys.2022.108833 10.1016/j.cor.2022.105747 10.1016/j.dib.2020.105792 10.1023/A:1008202821328 10.1007/s11721-019-00165-y 10.1007/s10489-021-02377-4 10.1016/j.knosys.2019.01.018 10.1016/j.swevo.2017.09.001 10.1016/0895-7177(93)90204-C 10.1016/j.eswa.2023.121544 10.1016/j.eswa.2021.116029 10.1109/ACCESS.2022.3212081 10.1007/s11047-012-9322-0 10.1016/j.ins.2009.03.004 10.4018/jamc.2010040104 10.1109/MCI.2006.329691 10.1016/j.enconman.2021.114972 10.1016/j.cma.2020.113609 10.1109/TCYB.2018.2817240 10.1111/itor.13176 10.1162/artl_a_00402 10.1016/j.asoc.2016.04.029 10.1016/j.swevo.2011.02.002 10.1109/ICNN.1995.488968 10.1007/s00500-014-1493-4 10.1504/IJBIC.2009.022775 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2024.111696 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2024_111696 S1568494624004708 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-8a7f7ecdc6e8ea18b8638f94e680da458e451f2d2494a3b92486e19a30afd3d03 |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001240012200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Sat Nov 29 03:06:03 EST 2025 Tue Nov 18 22:28:06 EST 2025 Sat Jun 01 15:42:29 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Design flaw Shifted benchmarks Arithmetic optimization algorithm Metaheuristics Structural bias |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-8a7f7ecdc6e8ea18b8638f94e680da458e451f2d2494a3b92486e19a30afd3d03 |
| ORCID | 0000-0002-3301-6426 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2024_111696 crossref_citationtrail_10_1016_j_asoc_2024_111696 elsevier_sciencedirect_doi_10_1016_j_asoc_2024_111696 |
| PublicationCentury | 2000 |
| PublicationDate | July 2024 2024-07-00 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Xu, Song, Xi, Zhou (b10) 2023 Tzanetos (b30) 2023; 29 Camacho-Villalón, Dorigo, Stützle (b28) 2019; 13 Kudela (b35) 2022 Nobile, Cazzaniga, Besozzi, Colombo, Mauri, Pasi (b33) 2018; 39 Črepinšek, Liu, Mernik, Mernik (b24) 2016; 20 Gauci, Dodd, Groß (b25) 2012; 11 Camacho-Villalón, Dorigo, Stützle (b18) 2022; 142 Črepinšek, Liu, Mernik (b23) 2012; 212 Derrac, García, Molina, Herrera (b34) 2011; 1 J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference on Neural Networks, Vol. 4, 1995, pp. 1942–1948. Abualigah, Diabat (b14) 2022 Tzanetos, Fister, Dounias (b17) 2020; 31 Hansen, Ostermeier (b1) 1996 Dorigo, Birattari, Stutzle (b3) 2006; 1 Camacho-Villalón, Dorigo, Stützle (b31) 2023; 30 Shah-Hosseini (b29) 2009; 1 Kharchouf, Herbazi, Chahboun (b6) 2022; 251 Li, Wang, Hao, Zhang, Wang (b12) 2022 Campelo, Aranha (b16) 2023; 29 Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (b9) 2021; 376 Castelli, Manzoni, Mariot, Nobile, Tangherloni (b21) 2022; 189 Khodadadi, Abualigah, El-Kenawy, Snasel, Mirjalili (b11) 2022; 10 Niu, Niu, Chang (b20) 2019; 171 Storn, Price (b4) 1997; 11 Abualigah, Almotairi, Al-qaness, Ewees, Yousri, Elaziz, Nadimi-Shahraki (b13) 2022; 248 Aranha, Camacho Villalón, Campelo, Dorigo, Ruiz, Sevaux, Sörensen, Stützle (b15) 2022; 16 Deng, Liu (b19) 2024; 237 Aliman, Abas, Najib, Aziz, Mohamad, Ibrahim (b27) 2016 Pickard, Carretero, Bhavsar (b22) 2016; 46 Wang, Ding, Xu (b7) 2022 Gao, Yang, Zhou, Pan, Suganthan (b8) 2018; 49 Ingber (b2) 1993; 18 Weyland (b32) 2010; 1 Rashedi, Nezamabadi-Pour, Saryazdi (b26) 2009; 179 Niu (10.1016/j.asoc.2024.111696_b20) 2019; 171 Kudela (10.1016/j.asoc.2024.111696_b35) 2022 Xu (10.1016/j.asoc.2024.111696_b10) 2023 Aranha (10.1016/j.asoc.2024.111696_b15) 2022; 16 Aliman (10.1016/j.asoc.2024.111696_b27) 2016 Dorigo (10.1016/j.asoc.2024.111696_b3) 2006; 1 Hansen (10.1016/j.asoc.2024.111696_b1) 1996 Derrac (10.1016/j.asoc.2024.111696_b34) 2011; 1 10.1016/j.asoc.2024.111696_b5 Abualigah (10.1016/j.asoc.2024.111696_b13) 2022; 248 Abualigah (10.1016/j.asoc.2024.111696_b14) 2022 Gauci (10.1016/j.asoc.2024.111696_b25) 2012; 11 Rashedi (10.1016/j.asoc.2024.111696_b26) 2009; 179 Deng (10.1016/j.asoc.2024.111696_b19) 2024; 237 Ingber (10.1016/j.asoc.2024.111696_b2) 1993; 18 Li (10.1016/j.asoc.2024.111696_b12) 2022 Abualigah (10.1016/j.asoc.2024.111696_b9) 2021; 376 Kharchouf (10.1016/j.asoc.2024.111696_b6) 2022; 251 Khodadadi (10.1016/j.asoc.2024.111696_b11) 2022; 10 Tzanetos (10.1016/j.asoc.2024.111696_b17) 2020; 31 Camacho-Villalón (10.1016/j.asoc.2024.111696_b18) 2022; 142 Črepinšek (10.1016/j.asoc.2024.111696_b24) 2016; 20 Črepinšek (10.1016/j.asoc.2024.111696_b23) 2012; 212 Shah-Hosseini (10.1016/j.asoc.2024.111696_b29) 2009; 1 Campelo (10.1016/j.asoc.2024.111696_b16) 2023; 29 Nobile (10.1016/j.asoc.2024.111696_b33) 2018; 39 Pickard (10.1016/j.asoc.2024.111696_b22) 2016; 46 Camacho-Villalón (10.1016/j.asoc.2024.111696_b31) 2023; 30 Castelli (10.1016/j.asoc.2024.111696_b21) 2022; 189 Camacho-Villalón (10.1016/j.asoc.2024.111696_b28) 2019; 13 Tzanetos (10.1016/j.asoc.2024.111696_b30) 2023; 29 Weyland (10.1016/j.asoc.2024.111696_b32) 2010; 1 Gao (10.1016/j.asoc.2024.111696_b8) 2018; 49 Wang (10.1016/j.asoc.2024.111696_b7) 2022 Storn (10.1016/j.asoc.2024.111696_b4) 1997; 11 |
| References_xml | – volume: 49 start-page: 1944 year: 2018 end-page: 1955 ident: b8 article-title: Flexible job-shop rescheduling for new job insertion by using discrete jaya algorithm publication-title: IEEE Trans. Cybern. – year: 2016 ident: b27 article-title: Gravitational search algorithm: R is better than R2? publication-title: ARPN J. Eng. Appl. Sci. – volume: 30 start-page: 2945 year: 2023 end-page: 2971 ident: b31 article-title: Exposing the grey wolf, moth-flame, whale, firefly, bat, and antlion algorithms: six misleading optimization techniques inspired by bestial metaphors publication-title: Int. Trans. Oper. Res. – volume: 1 start-page: 28 year: 2006 end-page: 39 ident: b3 article-title: Ant colony optimization publication-title: IEEE Comput. Intell. Mag. – volume: 16 start-page: 1 year: 2022 end-page: 6 ident: b15 article-title: Metaphor-based metaheuristics, a call for action: the elephant in the room publication-title: Swarm Intell. – volume: 376 year: 2021 ident: b9 article-title: The arithmetic optimization algorithm publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 237 year: 2024 ident: b19 article-title: Deficiencies of the whale optimization algorithm and its validation method publication-title: Expert Syst. Appl. – volume: 1 start-page: 50 year: 2010 end-page: 60 ident: b32 article-title: A rigorous analysis of the harmony search algorithm: How the research community can be misled by a “novel” methodology publication-title: Int. J. Appl. Metaheuristic Comput. (IJAMC) – volume: 46 start-page: 115 year: 2016 end-page: 127 ident: b22 article-title: On the convergence and origin bias of the teaching-learning-based-optimization algorithm publication-title: Appl. Soft Comput. – volume: 142 year: 2022 ident: b18 article-title: An analysis of why cuckoo search does not bring any novel ideas to optimization publication-title: Comput. Oper. Res. – volume: 18 start-page: 29 year: 1993 end-page: 57 ident: b2 article-title: Simulated annealing: Practice versus theory publication-title: Math. Comput. Modelling – volume: 189 year: 2022 ident: b21 article-title: Salp swarm optimization: a critical review publication-title: Expert Syst. Appl. – volume: 20 start-page: 223 year: 2016 end-page: 235 ident: b24 article-title: Is a comparison of results meaningful from the inexact replications of computational experiments? publication-title: Soft Comput. – volume: 39 start-page: 70 year: 2018 end-page: 85 ident: b33 article-title: Fuzzy self-tuning PSO: A settings-free algorithm for global optimization publication-title: Swarm Evol. Comput. – start-page: 1 year: 2022 end-page: 40 ident: b12 article-title: Chaotic arithmetic optimization algorithm publication-title: Appl. Intell. – start-page: 1 year: 2023 end-page: 35 ident: b10 article-title: Binary arithmetic optimization algorithm for feature selection publication-title: Soft Comput. – volume: 13 start-page: 173 year: 2019 end-page: 192 ident: b28 article-title: The intelligent water drops algorithm: why it cannot be considered a novel algorithm: A brief discussion on the use of metaphors in optimization publication-title: Swarm Intell. – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b26 article-title: GSA: a gravitational search algorithm publication-title: Inf. Sci. – volume: 171 start-page: 37 year: 2019 end-page: 43 ident: b20 article-title: The defect of the grey wolf optimization algorithm and its verification method publication-title: Knowl.-Based Syst. – volume: 29 start-page: 487 year: 2023 end-page: 511 ident: b30 article-title: Does the field of nature-inspired computing contribute to achieving lifelike features? publication-title: Artif. Life – reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference on Neural Networks, Vol. 4, 1995, pp. 1942–1948. – volume: 1 start-page: 71 year: 2009 end-page: 79 ident: b29 article-title: The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm publication-title: Int. J. Bio-Inspir. Comput. – start-page: 1 year: 2022 end-page: 8 ident: b35 article-title: A critical problem in benchmarking and analysis of evolutionary computation methods publication-title: Nat. Mach. Intell. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b34 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b4 article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. – volume: 11 start-page: 719 year: 2012 end-page: 720 ident: b25 article-title: Why ‘gsa: a gravitational search algorithm’ is not genuinely based on the law of gravity publication-title: Nat. Comput. – volume: 248 year: 2022 ident: b13 article-title: Efficient text document clustering approach using multi-search arithmetic optimization algorithm publication-title: Knowl.-Based Syst. – volume: 31 year: 2020 ident: b17 article-title: A comprehensive database of nature-inspired algorithms publication-title: Data Brief – volume: 29 start-page: 421 year: 2023 end-page: 432 ident: b16 article-title: Lessons from the evolutionary computation bestiary publication-title: Artif. Life – volume: 212 start-page: 79 year: 2012 end-page: 93 ident: b23 article-title: A note on teaching–learning-based optimization algorithm publication-title: Inform. Sci. – start-page: 312 year: 1996 end-page: 317 ident: b1 article-title: Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation publication-title: Proceedings of IEEE International Conference on Evolutionary Computation – volume: 10 start-page: 106673 year: 2022 end-page: 106698 ident: b11 article-title: An archive-based multi-objective arithmetic optimization algorithm for solving industrial engineering problems publication-title: IEEE Access – start-page: 1 year: 2022 end-page: 42 ident: b14 article-title: Improved multi-core arithmetic optimization algorithm-based ensemble mutation for multidisciplinary applications publication-title: J. Intell. Manuf. – volume: 251 year: 2022 ident: b6 article-title: Parameter’s extraction of solar photovoltaic models using an improved differential evolution algorithm publication-title: Energy Convers. Manage. – start-page: 1 year: 2022 end-page: 19 ident: b7 article-title: Particle swarm optimization service composition algorithm based on prior knowledge publication-title: J. Intell. Manuf. – volume: 212 start-page: 79 year: 2012 ident: 10.1016/j.asoc.2024.111696_b23 article-title: A note on teaching–learning-based optimization algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2012.05.009 – volume: 16 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.asoc.2024.111696_b15 article-title: Metaphor-based metaheuristics, a call for action: the elephant in the room publication-title: Swarm Intell. doi: 10.1007/s11721-021-00202-9 – volume: 29 start-page: 487 issue: 4 year: 2023 ident: 10.1016/j.asoc.2024.111696_b30 article-title: Does the field of nature-inspired computing contribute to achieving lifelike features? publication-title: Artif. Life doi: 10.1162/artl_a_00407 – volume: 248 year: 2022 ident: 10.1016/j.asoc.2024.111696_b13 article-title: Efficient text document clustering approach using multi-search arithmetic optimization algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108833 – start-page: 1 year: 2022 ident: 10.1016/j.asoc.2024.111696_b35 article-title: A critical problem in benchmarking and analysis of evolutionary computation methods publication-title: Nat. Mach. Intell. – volume: 142 year: 2022 ident: 10.1016/j.asoc.2024.111696_b18 article-title: An analysis of why cuckoo search does not bring any novel ideas to optimization publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2022.105747 – volume: 31 year: 2020 ident: 10.1016/j.asoc.2024.111696_b17 article-title: A comprehensive database of nature-inspired algorithms publication-title: Data Brief doi: 10.1016/j.dib.2020.105792 – start-page: 1 year: 2022 ident: 10.1016/j.asoc.2024.111696_b14 article-title: Improved multi-core arithmetic optimization algorithm-based ensemble mutation for multidisciplinary applications publication-title: J. Intell. Manuf. – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.asoc.2024.111696_b4 article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – volume: 13 start-page: 173 year: 2019 ident: 10.1016/j.asoc.2024.111696_b28 article-title: The intelligent water drops algorithm: why it cannot be considered a novel algorithm: A brief discussion on the use of metaphors in optimization publication-title: Swarm Intell. doi: 10.1007/s11721-019-00165-y – year: 2016 ident: 10.1016/j.asoc.2024.111696_b27 article-title: Gravitational search algorithm: R is better than R2? publication-title: ARPN J. Eng. Appl. Sci. – start-page: 1 year: 2022 ident: 10.1016/j.asoc.2024.111696_b12 article-title: Chaotic arithmetic optimization algorithm publication-title: Appl. Intell. doi: 10.1007/s10489-021-02377-4 – volume: 171 start-page: 37 year: 2019 ident: 10.1016/j.asoc.2024.111696_b20 article-title: The defect of the grey wolf optimization algorithm and its verification method publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.01.018 – volume: 39 start-page: 70 year: 2018 ident: 10.1016/j.asoc.2024.111696_b33 article-title: Fuzzy self-tuning PSO: A settings-free algorithm for global optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.09.001 – volume: 18 start-page: 29 issue: 11 year: 1993 ident: 10.1016/j.asoc.2024.111696_b2 article-title: Simulated annealing: Practice versus theory publication-title: Math. Comput. Modelling doi: 10.1016/0895-7177(93)90204-C – volume: 237 year: 2024 ident: 10.1016/j.asoc.2024.111696_b19 article-title: Deficiencies of the whale optimization algorithm and its validation method publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121544 – volume: 189 year: 2022 ident: 10.1016/j.asoc.2024.111696_b21 article-title: Salp swarm optimization: a critical review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116029 – volume: 10 start-page: 106673 year: 2022 ident: 10.1016/j.asoc.2024.111696_b11 article-title: An archive-based multi-objective arithmetic optimization algorithm for solving industrial engineering problems publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3212081 – volume: 11 start-page: 719 year: 2012 ident: 10.1016/j.asoc.2024.111696_b25 article-title: Why ‘gsa: a gravitational search algorithm’ is not genuinely based on the law of gravity publication-title: Nat. Comput. doi: 10.1007/s11047-012-9322-0 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.asoc.2024.111696_b26 article-title: GSA: a gravitational search algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 1 start-page: 50 issue: 2 year: 2010 ident: 10.1016/j.asoc.2024.111696_b32 article-title: A rigorous analysis of the harmony search algorithm: How the research community can be misled by a “novel” methodology publication-title: Int. J. Appl. Metaheuristic Comput. (IJAMC) doi: 10.4018/jamc.2010040104 – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 10.1016/j.asoc.2024.111696_b3 article-title: Ant colony optimization publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2006.329691 – volume: 251 year: 2022 ident: 10.1016/j.asoc.2024.111696_b6 article-title: Parameter’s extraction of solar photovoltaic models using an improved differential evolution algorithm publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2021.114972 – volume: 376 year: 2021 ident: 10.1016/j.asoc.2024.111696_b9 article-title: The arithmetic optimization algorithm publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113609 – volume: 49 start-page: 1944 issue: 5 year: 2018 ident: 10.1016/j.asoc.2024.111696_b8 article-title: Flexible job-shop rescheduling for new job insertion by using discrete jaya algorithm publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2817240 – volume: 30 start-page: 2945 issue: 6 year: 2023 ident: 10.1016/j.asoc.2024.111696_b31 article-title: Exposing the grey wolf, moth-flame, whale, firefly, bat, and antlion algorithms: six misleading optimization techniques inspired by bestial metaphors publication-title: Int. Trans. Oper. Res. doi: 10.1111/itor.13176 – start-page: 1 year: 2022 ident: 10.1016/j.asoc.2024.111696_b7 article-title: Particle swarm optimization service composition algorithm based on prior knowledge publication-title: J. Intell. Manuf. – start-page: 1 year: 2023 ident: 10.1016/j.asoc.2024.111696_b10 article-title: Binary arithmetic optimization algorithm for feature selection publication-title: Soft Comput. – start-page: 312 year: 1996 ident: 10.1016/j.asoc.2024.111696_b1 article-title: Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation – volume: 29 start-page: 421 issue: 4 year: 2023 ident: 10.1016/j.asoc.2024.111696_b16 article-title: Lessons from the evolutionary computation bestiary publication-title: Artif. Life doi: 10.1162/artl_a_00402 – volume: 46 start-page: 115 year: 2016 ident: 10.1016/j.asoc.2024.111696_b22 article-title: On the convergence and origin bias of the teaching-learning-based-optimization algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.04.029 – volume: 1 start-page: 3 year: 2011 ident: 10.1016/j.asoc.2024.111696_b34 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – ident: 10.1016/j.asoc.2024.111696_b5 doi: 10.1109/ICNN.1995.488968 – volume: 20 start-page: 223 year: 2016 ident: 10.1016/j.asoc.2024.111696_b24 article-title: Is a comparison of results meaningful from the inexact replications of computational experiments? publication-title: Soft Comput. doi: 10.1007/s00500-014-1493-4 – volume: 1 start-page: 71 issue: 1–2 year: 2009 ident: 10.1016/j.asoc.2024.111696_b29 article-title: The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm publication-title: Int. J. Bio-Inspir. Comput. doi: 10.1504/IJBIC.2009.022775 |
| SSID | ssj0016928 |
| Score | 2.5398028 |
| Snippet | This work unveils design flaws within most metaheuristics, with a specific focus on issues associated with the arithmetic optimization algorithm (AOA). Despite... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 111696 |
| SubjectTerms | Arithmetic optimization algorithm Design flaw Metaheuristics Shifted benchmarks Structural bias |
| Title | Metaheuristics exposed: Unmasking the design pitfalls of arithmetic optimization algorithm in benchmarking |
| URI | https://dx.doi.org/10.1016/j.asoc.2024.111696 |
| Volume | 160 |
| WOSCitedRecordID | wos001240012200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5tAEF61Tg-99F0lfWkPvVlYYJZlt7eoStVWatRDIvmGBhhiuzZYASrn33dgd7GTtlFz6AGE8DJgz6ePmfE8GHuviiICmYGXYpB7QobopVmhPFAijQT4AaDqh03Ep6dqNtPfbXuCuh8nEJel2m715r-qms6RsrvS2TuoexBKJ-iYlE57Ujvt_0nx37CBObauAzNuN1WN_STn83IN9Q9XH5X3uRvjzaIpYGV6KJPf3MzXXVnjuCIqWdsazTGsLqr-oy46ktKXna-hj7Hvm7bOnq2J2PtM9bZxKzpDGQ2pkO97cdXu8oAWrYlLl1dgF9sQxFQM6aoDa0rlCW1jiY5WzZwAS4xEqdKMrv2Ns034YDkBguOkEz_ZLb7eIPvGi2tIJ3SZasukk5F0MhIj4z47mMaRViN2cPzlZPZ1-INJ6n7s7vDktp7KpP7dfJI_2yx7dsjZE_bIOhD82Cj-KbuH5TP22A3n4Jarn7PldRxwi4MPfEABJxRwgwLuUMCrgu9QwPdRwAcU8EXJ91Hwgp1_Ojn7-NmzgzW8LPT9xlMQFzFmeSZRIQQqVcTChRYolZ-DiBSKKCimObnmAsKUXHQlMdAQ-lDkYe6HL9morEo8ZFyKGEQQZOjjVKRaatpScsG1nOZKRPkRC9xPl2S263w3_GSV_F1pR2w8XLMxPVduXR05jSTWajTWYEIAu-W6V3e6y2v2cIf8N2zUXLb4lj3IfjaL-vKdRdcvMy2S0g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metaheuristics+exposed%3A+Unmasking+the+design+pitfalls+of+arithmetic+optimization+algorithm+in+benchmarking&rft.jtitle=Applied+soft+computing&rft.au=Deng%2C+Lingyun&rft.au=Liu%2C+Sanyang&rft.date=2024-07-01&rft.issn=1568-4946&rft.volume=160&rft.spage=111696&rft_id=info:doi/10.1016%2Fj.asoc.2024.111696&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2024_111696 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |