Metaheuristics exposed: Unmasking the design pitfalls of arithmetic optimization algorithm in benchmarking

This work unveils design flaws within most metaheuristics, with a specific focus on issues associated with the arithmetic optimization algorithm (AOA). Despite being a simple metaheuristic optimizer inspired by mathematical operations, AOA holds promise for addressing complex real-world applications...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 160; S. 111696
Hauptverfasser: Deng, Lingyun, Liu, Sanyang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.07.2024
Schlagworte:
ISSN:1568-4946, 1872-9681
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This work unveils design flaws within most metaheuristics, with a specific focus on issues associated with the arithmetic optimization algorithm (AOA). Despite being a simple metaheuristic optimizer inspired by mathematical operations, AOA holds promise for addressing complex real-world applications. However, a thorough analysis of its search mechanism reveals a heavy dependence on problem bounds for the quality of solutions obtained by AOA. Additionally, discrepancies between algorithm descriptions and implementations in AOA can mislead users and impede progress within the metaheuristic community. Experimental simulations conducted on various standard benchmarks including their shifted versions indicate a structural bias in AOA, leading to artificially high accuracy in fitting standard test functions but poor performance when applied to shifted benchmarks. Finally, we give a critical cause analysis and conclude this article by highlighting valuable research avenues in this field. •Defects of the arithmetic optimization algorithm (AOA) are revealed.•The search equation of AOA exhibits certain limitations.•AOA is structurally biased toward the origin of axes.
AbstractList This work unveils design flaws within most metaheuristics, with a specific focus on issues associated with the arithmetic optimization algorithm (AOA). Despite being a simple metaheuristic optimizer inspired by mathematical operations, AOA holds promise for addressing complex real-world applications. However, a thorough analysis of its search mechanism reveals a heavy dependence on problem bounds for the quality of solutions obtained by AOA. Additionally, discrepancies between algorithm descriptions and implementations in AOA can mislead users and impede progress within the metaheuristic community. Experimental simulations conducted on various standard benchmarks including their shifted versions indicate a structural bias in AOA, leading to artificially high accuracy in fitting standard test functions but poor performance when applied to shifted benchmarks. Finally, we give a critical cause analysis and conclude this article by highlighting valuable research avenues in this field. •Defects of the arithmetic optimization algorithm (AOA) are revealed.•The search equation of AOA exhibits certain limitations.•AOA is structurally biased toward the origin of axes.
ArticleNumber 111696
Author Liu, Sanyang
Deng, Lingyun
Author_xml – sequence: 1
  givenname: Lingyun
  orcidid: 0000-0002-3301-6426
  surname: Deng
  fullname: Deng, Lingyun
  email: lingyundeng@stu.xidian.edu.cn
– sequence: 2
  givenname: Sanyang
  surname: Liu
  fullname: Liu, Sanyang
  email: syliu@xidian.edu.cn
BookMark eNp9kMtOwzAQRS1UJErhB1j5B1LsJHUdxAZVvKQiNnRtufakmdLEkW0Q8PU4LSsWXc1Io3M195yTUec6IOSKsylnXFxvpzo4M81ZXk4556ISJ2TM5TzPKiH5KO0zIbOyKsUZOQ9hyxJU5XJMti8QdQMfHkNEEyh89S6AvaGrrtXhHbsNjQ1QCwE3He0x1nq3C9TVVHuMTQuJoq6P2OKPjug6qncbtz9R7OgaOtO02g9BF-Q0wQEu_-aErB7u3xZP2fL18Xlxt8xMwVjMpJ7XczDWCJCguVxLUci6KkFIZnU5k1DOeJ3bPLXRxbrKSymAV7pguraFZcWE5Idc410IHmrVe0w_fCvO1GBLbdVgSw221MFWguQ_yGDcF4pe4-44entAIZX6RPAqGEy9waIHE5V1eAz_BaFciu8
CitedBy_id crossref_primary_10_1007_s10586_025_05190_7
crossref_primary_10_1186_s40537_025_01260_0
crossref_primary_10_1016_j_jestch_2024_101935
crossref_primary_10_1038_s41598_025_11626_2
crossref_primary_10_1007_s12065_025_01030_0
crossref_primary_10_1016_j_swevo_2025_102063
crossref_primary_10_1038_s41598_025_08894_3
crossref_primary_10_1007_s12293_025_00465_3
crossref_primary_10_1007_s12559_025_10486_2
crossref_primary_10_1016_j_rineng_2025_105705
crossref_primary_10_1007_s10462_024_11069_7
crossref_primary_10_1007_s10586_024_04991_6
crossref_primary_10_1016_j_swevo_2024_101807
crossref_primary_10_1186_s40537_024_01055_9
crossref_primary_10_1007_s00500_025_10588_x
crossref_primary_10_1007_s10586_025_05273_5
crossref_primary_10_1007_s12065_024_01004_8
crossref_primary_10_1038_s41598_025_10289_3
crossref_primary_10_1038_s41598_025_97133_w
crossref_primary_10_1007_s12293_025_00469_z
crossref_primary_10_1038_s41598_025_89840_1
crossref_primary_10_3390_math13132158
Cites_doi 10.1016/j.ins.2012.05.009
10.1007/s11721-021-00202-9
10.1162/artl_a_00407
10.1016/j.knosys.2022.108833
10.1016/j.cor.2022.105747
10.1016/j.dib.2020.105792
10.1023/A:1008202821328
10.1007/s11721-019-00165-y
10.1007/s10489-021-02377-4
10.1016/j.knosys.2019.01.018
10.1016/j.swevo.2017.09.001
10.1016/0895-7177(93)90204-C
10.1016/j.eswa.2023.121544
10.1016/j.eswa.2021.116029
10.1109/ACCESS.2022.3212081
10.1007/s11047-012-9322-0
10.1016/j.ins.2009.03.004
10.4018/jamc.2010040104
10.1109/MCI.2006.329691
10.1016/j.enconman.2021.114972
10.1016/j.cma.2020.113609
10.1109/TCYB.2018.2817240
10.1111/itor.13176
10.1162/artl_a_00402
10.1016/j.asoc.2016.04.029
10.1016/j.swevo.2011.02.002
10.1109/ICNN.1995.488968
10.1007/s00500-014-1493-4
10.1504/IJBIC.2009.022775
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2024.111696
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2024_111696
S1568494624004708
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-8a7f7ecdc6e8ea18b8638f94e680da458e451f2d2494a3b92486e19a30afd3d03
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001240012200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 03:06:03 EST 2025
Tue Nov 18 22:28:06 EST 2025
Sat Jun 01 15:42:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Design flaw
Shifted benchmarks
Arithmetic optimization algorithm
Metaheuristics
Structural bias
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-8a7f7ecdc6e8ea18b8638f94e680da458e451f2d2494a3b92486e19a30afd3d03
ORCID 0000-0002-3301-6426
ParticipantIDs crossref_primary_10_1016_j_asoc_2024_111696
crossref_citationtrail_10_1016_j_asoc_2024_111696
elsevier_sciencedirect_doi_10_1016_j_asoc_2024_111696
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xu, Song, Xi, Zhou (b10) 2023
Tzanetos (b30) 2023; 29
Camacho-Villalón, Dorigo, Stützle (b28) 2019; 13
Kudela (b35) 2022
Nobile, Cazzaniga, Besozzi, Colombo, Mauri, Pasi (b33) 2018; 39
Črepinšek, Liu, Mernik, Mernik (b24) 2016; 20
Gauci, Dodd, Groß (b25) 2012; 11
Camacho-Villalón, Dorigo, Stützle (b18) 2022; 142
Črepinšek, Liu, Mernik (b23) 2012; 212
Derrac, García, Molina, Herrera (b34) 2011; 1
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference on Neural Networks, Vol. 4, 1995, pp. 1942–1948.
Abualigah, Diabat (b14) 2022
Tzanetos, Fister, Dounias (b17) 2020; 31
Hansen, Ostermeier (b1) 1996
Dorigo, Birattari, Stutzle (b3) 2006; 1
Camacho-Villalón, Dorigo, Stützle (b31) 2023; 30
Shah-Hosseini (b29) 2009; 1
Kharchouf, Herbazi, Chahboun (b6) 2022; 251
Li, Wang, Hao, Zhang, Wang (b12) 2022
Campelo, Aranha (b16) 2023; 29
Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (b9) 2021; 376
Castelli, Manzoni, Mariot, Nobile, Tangherloni (b21) 2022; 189
Khodadadi, Abualigah, El-Kenawy, Snasel, Mirjalili (b11) 2022; 10
Niu, Niu, Chang (b20) 2019; 171
Storn, Price (b4) 1997; 11
Abualigah, Almotairi, Al-qaness, Ewees, Yousri, Elaziz, Nadimi-Shahraki (b13) 2022; 248
Aranha, Camacho Villalón, Campelo, Dorigo, Ruiz, Sevaux, Sörensen, Stützle (b15) 2022; 16
Deng, Liu (b19) 2024; 237
Aliman, Abas, Najib, Aziz, Mohamad, Ibrahim (b27) 2016
Pickard, Carretero, Bhavsar (b22) 2016; 46
Wang, Ding, Xu (b7) 2022
Gao, Yang, Zhou, Pan, Suganthan (b8) 2018; 49
Ingber (b2) 1993; 18
Weyland (b32) 2010; 1
Rashedi, Nezamabadi-Pour, Saryazdi (b26) 2009; 179
Niu (10.1016/j.asoc.2024.111696_b20) 2019; 171
Kudela (10.1016/j.asoc.2024.111696_b35) 2022
Xu (10.1016/j.asoc.2024.111696_b10) 2023
Aranha (10.1016/j.asoc.2024.111696_b15) 2022; 16
Aliman (10.1016/j.asoc.2024.111696_b27) 2016
Dorigo (10.1016/j.asoc.2024.111696_b3) 2006; 1
Hansen (10.1016/j.asoc.2024.111696_b1) 1996
Derrac (10.1016/j.asoc.2024.111696_b34) 2011; 1
10.1016/j.asoc.2024.111696_b5
Abualigah (10.1016/j.asoc.2024.111696_b13) 2022; 248
Abualigah (10.1016/j.asoc.2024.111696_b14) 2022
Gauci (10.1016/j.asoc.2024.111696_b25) 2012; 11
Rashedi (10.1016/j.asoc.2024.111696_b26) 2009; 179
Deng (10.1016/j.asoc.2024.111696_b19) 2024; 237
Ingber (10.1016/j.asoc.2024.111696_b2) 1993; 18
Li (10.1016/j.asoc.2024.111696_b12) 2022
Abualigah (10.1016/j.asoc.2024.111696_b9) 2021; 376
Kharchouf (10.1016/j.asoc.2024.111696_b6) 2022; 251
Khodadadi (10.1016/j.asoc.2024.111696_b11) 2022; 10
Tzanetos (10.1016/j.asoc.2024.111696_b17) 2020; 31
Camacho-Villalón (10.1016/j.asoc.2024.111696_b18) 2022; 142
Črepinšek (10.1016/j.asoc.2024.111696_b24) 2016; 20
Črepinšek (10.1016/j.asoc.2024.111696_b23) 2012; 212
Shah-Hosseini (10.1016/j.asoc.2024.111696_b29) 2009; 1
Campelo (10.1016/j.asoc.2024.111696_b16) 2023; 29
Nobile (10.1016/j.asoc.2024.111696_b33) 2018; 39
Pickard (10.1016/j.asoc.2024.111696_b22) 2016; 46
Camacho-Villalón (10.1016/j.asoc.2024.111696_b31) 2023; 30
Castelli (10.1016/j.asoc.2024.111696_b21) 2022; 189
Camacho-Villalón (10.1016/j.asoc.2024.111696_b28) 2019; 13
Tzanetos (10.1016/j.asoc.2024.111696_b30) 2023; 29
Weyland (10.1016/j.asoc.2024.111696_b32) 2010; 1
Gao (10.1016/j.asoc.2024.111696_b8) 2018; 49
Wang (10.1016/j.asoc.2024.111696_b7) 2022
Storn (10.1016/j.asoc.2024.111696_b4) 1997; 11
References_xml – volume: 49
  start-page: 1944
  year: 2018
  end-page: 1955
  ident: b8
  article-title: Flexible job-shop rescheduling for new job insertion by using discrete jaya algorithm
  publication-title: IEEE Trans. Cybern.
– year: 2016
  ident: b27
  article-title: Gravitational search algorithm: R is better than R2?
  publication-title: ARPN J. Eng. Appl. Sci.
– volume: 30
  start-page: 2945
  year: 2023
  end-page: 2971
  ident: b31
  article-title: Exposing the grey wolf, moth-flame, whale, firefly, bat, and antlion algorithms: six misleading optimization techniques inspired by bestial metaphors
  publication-title: Int. Trans. Oper. Res.
– volume: 1
  start-page: 28
  year: 2006
  end-page: 39
  ident: b3
  article-title: Ant colony optimization
  publication-title: IEEE Comput. Intell. Mag.
– volume: 16
  start-page: 1
  year: 2022
  end-page: 6
  ident: b15
  article-title: Metaphor-based metaheuristics, a call for action: the elephant in the room
  publication-title: Swarm Intell.
– volume: 376
  year: 2021
  ident: b9
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 237
  year: 2024
  ident: b19
  article-title: Deficiencies of the whale optimization algorithm and its validation method
  publication-title: Expert Syst. Appl.
– volume: 1
  start-page: 50
  year: 2010
  end-page: 60
  ident: b32
  article-title: A rigorous analysis of the harmony search algorithm: How the research community can be misled by a “novel” methodology
  publication-title: Int. J. Appl. Metaheuristic Comput. (IJAMC)
– volume: 46
  start-page: 115
  year: 2016
  end-page: 127
  ident: b22
  article-title: On the convergence and origin bias of the teaching-learning-based-optimization algorithm
  publication-title: Appl. Soft Comput.
– volume: 142
  year: 2022
  ident: b18
  article-title: An analysis of why cuckoo search does not bring any novel ideas to optimization
  publication-title: Comput. Oper. Res.
– volume: 18
  start-page: 29
  year: 1993
  end-page: 57
  ident: b2
  article-title: Simulated annealing: Practice versus theory
  publication-title: Math. Comput. Modelling
– volume: 189
  year: 2022
  ident: b21
  article-title: Salp swarm optimization: a critical review
  publication-title: Expert Syst. Appl.
– volume: 20
  start-page: 223
  year: 2016
  end-page: 235
  ident: b24
  article-title: Is a comparison of results meaningful from the inexact replications of computational experiments?
  publication-title: Soft Comput.
– volume: 39
  start-page: 70
  year: 2018
  end-page: 85
  ident: b33
  article-title: Fuzzy self-tuning PSO: A settings-free algorithm for global optimization
  publication-title: Swarm Evol. Comput.
– start-page: 1
  year: 2022
  end-page: 40
  ident: b12
  article-title: Chaotic arithmetic optimization algorithm
  publication-title: Appl. Intell.
– start-page: 1
  year: 2023
  end-page: 35
  ident: b10
  article-title: Binary arithmetic optimization algorithm for feature selection
  publication-title: Soft Comput.
– volume: 13
  start-page: 173
  year: 2019
  end-page: 192
  ident: b28
  article-title: The intelligent water drops algorithm: why it cannot be considered a novel algorithm: A brief discussion on the use of metaphors in optimization
  publication-title: Swarm Intell.
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b26
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf. Sci.
– volume: 171
  start-page: 37
  year: 2019
  end-page: 43
  ident: b20
  article-title: The defect of the grey wolf optimization algorithm and its verification method
  publication-title: Knowl.-Based Syst.
– volume: 29
  start-page: 487
  year: 2023
  end-page: 511
  ident: b30
  article-title: Does the field of nature-inspired computing contribute to achieving lifelike features?
  publication-title: Artif. Life
– reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference on Neural Networks, Vol. 4, 1995, pp. 1942–1948.
– volume: 1
  start-page: 71
  year: 2009
  end-page: 79
  ident: b29
  article-title: The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm
  publication-title: Int. J. Bio-Inspir. Comput.
– start-page: 1
  year: 2022
  end-page: 8
  ident: b35
  article-title: A critical problem in benchmarking and analysis of evolutionary computation methods
  publication-title: Nat. Mach. Intell.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b34
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b4
  article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– volume: 11
  start-page: 719
  year: 2012
  end-page: 720
  ident: b25
  article-title: Why ‘gsa: a gravitational search algorithm’ is not genuinely based on the law of gravity
  publication-title: Nat. Comput.
– volume: 248
  year: 2022
  ident: b13
  article-title: Efficient text document clustering approach using multi-search arithmetic optimization algorithm
  publication-title: Knowl.-Based Syst.
– volume: 31
  year: 2020
  ident: b17
  article-title: A comprehensive database of nature-inspired algorithms
  publication-title: Data Brief
– volume: 29
  start-page: 421
  year: 2023
  end-page: 432
  ident: b16
  article-title: Lessons from the evolutionary computation bestiary
  publication-title: Artif. Life
– volume: 212
  start-page: 79
  year: 2012
  end-page: 93
  ident: b23
  article-title: A note on teaching–learning-based optimization algorithm
  publication-title: Inform. Sci.
– start-page: 312
  year: 1996
  end-page: 317
  ident: b1
  article-title: Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation
  publication-title: Proceedings of IEEE International Conference on Evolutionary Computation
– volume: 10
  start-page: 106673
  year: 2022
  end-page: 106698
  ident: b11
  article-title: An archive-based multi-objective arithmetic optimization algorithm for solving industrial engineering problems
  publication-title: IEEE Access
– start-page: 1
  year: 2022
  end-page: 42
  ident: b14
  article-title: Improved multi-core arithmetic optimization algorithm-based ensemble mutation for multidisciplinary applications
  publication-title: J. Intell. Manuf.
– volume: 251
  year: 2022
  ident: b6
  article-title: Parameter’s extraction of solar photovoltaic models using an improved differential evolution algorithm
  publication-title: Energy Convers. Manage.
– start-page: 1
  year: 2022
  end-page: 19
  ident: b7
  article-title: Particle swarm optimization service composition algorithm based on prior knowledge
  publication-title: J. Intell. Manuf.
– volume: 212
  start-page: 79
  year: 2012
  ident: 10.1016/j.asoc.2024.111696_b23
  article-title: A note on teaching–learning-based optimization algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2012.05.009
– volume: 16
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.asoc.2024.111696_b15
  article-title: Metaphor-based metaheuristics, a call for action: the elephant in the room
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-021-00202-9
– volume: 29
  start-page: 487
  issue: 4
  year: 2023
  ident: 10.1016/j.asoc.2024.111696_b30
  article-title: Does the field of nature-inspired computing contribute to achieving lifelike features?
  publication-title: Artif. Life
  doi: 10.1162/artl_a_00407
– volume: 248
  year: 2022
  ident: 10.1016/j.asoc.2024.111696_b13
  article-title: Efficient text document clustering approach using multi-search arithmetic optimization algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108833
– start-page: 1
  year: 2022
  ident: 10.1016/j.asoc.2024.111696_b35
  article-title: A critical problem in benchmarking and analysis of evolutionary computation methods
  publication-title: Nat. Mach. Intell.
– volume: 142
  year: 2022
  ident: 10.1016/j.asoc.2024.111696_b18
  article-title: An analysis of why cuckoo search does not bring any novel ideas to optimization
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2022.105747
– volume: 31
  year: 2020
  ident: 10.1016/j.asoc.2024.111696_b17
  article-title: A comprehensive database of nature-inspired algorithms
  publication-title: Data Brief
  doi: 10.1016/j.dib.2020.105792
– start-page: 1
  year: 2022
  ident: 10.1016/j.asoc.2024.111696_b14
  article-title: Improved multi-core arithmetic optimization algorithm-based ensemble mutation for multidisciplinary applications
  publication-title: J. Intell. Manuf.
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.asoc.2024.111696_b4
  article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– volume: 13
  start-page: 173
  year: 2019
  ident: 10.1016/j.asoc.2024.111696_b28
  article-title: The intelligent water drops algorithm: why it cannot be considered a novel algorithm: A brief discussion on the use of metaphors in optimization
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-019-00165-y
– year: 2016
  ident: 10.1016/j.asoc.2024.111696_b27
  article-title: Gravitational search algorithm: R is better than R2?
  publication-title: ARPN J. Eng. Appl. Sci.
– start-page: 1
  year: 2022
  ident: 10.1016/j.asoc.2024.111696_b12
  article-title: Chaotic arithmetic optimization algorithm
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02377-4
– volume: 171
  start-page: 37
  year: 2019
  ident: 10.1016/j.asoc.2024.111696_b20
  article-title: The defect of the grey wolf optimization algorithm and its verification method
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.01.018
– volume: 39
  start-page: 70
  year: 2018
  ident: 10.1016/j.asoc.2024.111696_b33
  article-title: Fuzzy self-tuning PSO: A settings-free algorithm for global optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.09.001
– volume: 18
  start-page: 29
  issue: 11
  year: 1993
  ident: 10.1016/j.asoc.2024.111696_b2
  article-title: Simulated annealing: Practice versus theory
  publication-title: Math. Comput. Modelling
  doi: 10.1016/0895-7177(93)90204-C
– volume: 237
  year: 2024
  ident: 10.1016/j.asoc.2024.111696_b19
  article-title: Deficiencies of the whale optimization algorithm and its validation method
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121544
– volume: 189
  year: 2022
  ident: 10.1016/j.asoc.2024.111696_b21
  article-title: Salp swarm optimization: a critical review
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116029
– volume: 10
  start-page: 106673
  year: 2022
  ident: 10.1016/j.asoc.2024.111696_b11
  article-title: An archive-based multi-objective arithmetic optimization algorithm for solving industrial engineering problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3212081
– volume: 11
  start-page: 719
  year: 2012
  ident: 10.1016/j.asoc.2024.111696_b25
  article-title: Why ‘gsa: a gravitational search algorithm’ is not genuinely based on the law of gravity
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-012-9322-0
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.asoc.2024.111696_b26
  article-title: GSA: a gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 1
  start-page: 50
  issue: 2
  year: 2010
  ident: 10.1016/j.asoc.2024.111696_b32
  article-title: A rigorous analysis of the harmony search algorithm: How the research community can be misled by a “novel” methodology
  publication-title: Int. J. Appl. Metaheuristic Comput. (IJAMC)
  doi: 10.4018/jamc.2010040104
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 10.1016/j.asoc.2024.111696_b3
  article-title: Ant colony optimization
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2006.329691
– volume: 251
  year: 2022
  ident: 10.1016/j.asoc.2024.111696_b6
  article-title: Parameter’s extraction of solar photovoltaic models using an improved differential evolution algorithm
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2021.114972
– volume: 376
  year: 2021
  ident: 10.1016/j.asoc.2024.111696_b9
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113609
– volume: 49
  start-page: 1944
  issue: 5
  year: 2018
  ident: 10.1016/j.asoc.2024.111696_b8
  article-title: Flexible job-shop rescheduling for new job insertion by using discrete jaya algorithm
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2817240
– volume: 30
  start-page: 2945
  issue: 6
  year: 2023
  ident: 10.1016/j.asoc.2024.111696_b31
  article-title: Exposing the grey wolf, moth-flame, whale, firefly, bat, and antlion algorithms: six misleading optimization techniques inspired by bestial metaphors
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/itor.13176
– start-page: 1
  year: 2022
  ident: 10.1016/j.asoc.2024.111696_b7
  article-title: Particle swarm optimization service composition algorithm based on prior knowledge
  publication-title: J. Intell. Manuf.
– start-page: 1
  year: 2023
  ident: 10.1016/j.asoc.2024.111696_b10
  article-title: Binary arithmetic optimization algorithm for feature selection
  publication-title: Soft Comput.
– start-page: 312
  year: 1996
  ident: 10.1016/j.asoc.2024.111696_b1
  article-title: Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation
– volume: 29
  start-page: 421
  issue: 4
  year: 2023
  ident: 10.1016/j.asoc.2024.111696_b16
  article-title: Lessons from the evolutionary computation bestiary
  publication-title: Artif. Life
  doi: 10.1162/artl_a_00402
– volume: 46
  start-page: 115
  year: 2016
  ident: 10.1016/j.asoc.2024.111696_b22
  article-title: On the convergence and origin bias of the teaching-learning-based-optimization algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.04.029
– volume: 1
  start-page: 3
  year: 2011
  ident: 10.1016/j.asoc.2024.111696_b34
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– ident: 10.1016/j.asoc.2024.111696_b5
  doi: 10.1109/ICNN.1995.488968
– volume: 20
  start-page: 223
  year: 2016
  ident: 10.1016/j.asoc.2024.111696_b24
  article-title: Is a comparison of results meaningful from the inexact replications of computational experiments?
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1493-4
– volume: 1
  start-page: 71
  issue: 1–2
  year: 2009
  ident: 10.1016/j.asoc.2024.111696_b29
  article-title: The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm
  publication-title: Int. J. Bio-Inspir. Comput.
  doi: 10.1504/IJBIC.2009.022775
SSID ssj0016928
Score 2.5398028
Snippet This work unveils design flaws within most metaheuristics, with a specific focus on issues associated with the arithmetic optimization algorithm (AOA). Despite...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111696
SubjectTerms Arithmetic optimization algorithm
Design flaw
Metaheuristics
Shifted benchmarks
Structural bias
Title Metaheuristics exposed: Unmasking the design pitfalls of arithmetic optimization algorithm in benchmarking
URI https://dx.doi.org/10.1016/j.asoc.2024.111696
Volume 160
WOSCitedRecordID wos001240012200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5ByoELb9Ty0h64RY789i63ChUBEhWHVsrNmtizTUJiR7WN0n_P2PtIWqCiBy5W5KzHTr5PX2YmszOMvVdR0HvNhYcKQi-WM-lBIgNPxRFAESgEJYZhE9npqZhO5XfTnqAZxglkVSW2W7n5r1DTOQK73zp7B7idUTpBrwl0OhLsdPwn4L9hC3PsbAdm3G7qBodJzufVGpofdn9UOdRujDeLVsFK91CmuLmdr_ttjeOapGRt9miOYXVRD2_12ZEZfdj5GoYc-75ra_3ZhoR9qFTvWruid5RRiwrFvhdX3a4OaNHpvHR1BWaxSUGEsStXdaqZCsLZ5BKtrOo5AUYYSVJTPbr2N83W6YPlBIiOk978ZLf4eoPsGz9crpzQVqot895G3tvItY377CDMEilG7OD4y8n0q_uDKZXD2F335GY_lS79u_kkf_ZZ9vyQsyfskQkg-LEG_im7h9Uz9tgO5-BGq5-z5XUecMODD9yxgBMLuGYBtyzgteI7FvB9FnDHAr6o-D4LXrDzTydnHz97ZrCGV0S-33oCMpVhURYpCoRAzASpsJIxpsIvIU4ExkmgwpJC8xiiGYXoIsVAQuSDKqPSj16yUVVXeMh4pHwMQ4UBUmhLsQGUZDMmHzyOsiQJkyMW2K8uL0zX-X74ySr_O2hHbOyu2eieK7euTiwiufEatTeYE8Fuue7Vne7ymj3cMf8NG7WXHb5lD4qf7aK5fGfY9QsrEJI-
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metaheuristics+exposed%3A+Unmasking+the+design+pitfalls+of+arithmetic+optimization+algorithm+in+benchmarking&rft.jtitle=Applied+soft+computing&rft.au=Deng%2C+Lingyun&rft.au=Liu%2C+Sanyang&rft.date=2024-07-01&rft.issn=1568-4946&rft.volume=160&rft.spage=111696&rft_id=info:doi/10.1016%2Fj.asoc.2024.111696&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2024_111696
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon