Application of a modified iterative learning control algorithm for superconducting radio-frequency cavities

Transient beam loading, which causes cavity gradient fluctuation, is becoming a major concern for the stable operation of the high current superconducting radio-frequency (SRF) accelerators. Iterative learning control (ILC) is an effective algorithm aiming to improve systems operated in repetitive m...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Ročník 1026; s. 166237
Hlavní autori: Xu, Chengye, Zhu, Zhenglong, Qiu, Feng, Jiang, Tiancai, Chen, Qi, Gao, Zheng, Ma, Jinying, Shi, Longbo, Jiang, Guodong, Xue, Zongheng, Jin, Kean, Sun, Liepeng, Wang, Zhijun, Huang, Guirong, He, Yuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.03.2022
Predmet:
ISSN:0168-9002, 1872-9576
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Transient beam loading, which causes cavity gradient fluctuation, is becoming a major concern for the stable operation of the high current superconducting radio-frequency (SRF) accelerators. Iterative learning control (ILC) is an effective algorithm aiming to improve systems operated in repetitive mode. This ILC technique was successfully introduced to the low-level radio-frequency (LLRF) control in accelerators to compensate for the field fluctuation caused by repetitively pulsed beam. The modern LLRF system prefers to use the FPGA-based hardware platform to realize a real-time control framework. However, considering the algorithm complexity and the hardware cost, the ILC algorithm is usually implemented outside FPGA. This practice would decrease the real-time ability of the control system. In this paper, we present a modified ILC algorithm that can be implemented inside FPGA. The key idea of our method is to simplify the beam profile using a rectangular pulse. The method was demonstrated in the SRF cavities at Chinese Accelerator driven system Front-end demo SRF linac (CAFe). The experimental results in the CAFe beam-commissioning confirmed that the beam-induced gradient fluctuation is successfully suppressed.
AbstractList Transient beam loading, which causes cavity gradient fluctuation, is becoming a major concern for the stable operation of the high current superconducting radio-frequency (SRF) accelerators. Iterative learning control (ILC) is an effective algorithm aiming to improve systems operated in repetitive mode. This ILC technique was successfully introduced to the low-level radio-frequency (LLRF) control in accelerators to compensate for the field fluctuation caused by repetitively pulsed beam. The modern LLRF system prefers to use the FPGA-based hardware platform to realize a real-time control framework. However, considering the algorithm complexity and the hardware cost, the ILC algorithm is usually implemented outside FPGA. This practice would decrease the real-time ability of the control system. In this paper, we present a modified ILC algorithm that can be implemented inside FPGA. The key idea of our method is to simplify the beam profile using a rectangular pulse. The method was demonstrated in the SRF cavities at Chinese Accelerator driven system Front-end demo SRF linac (CAFe). The experimental results in the CAFe beam-commissioning confirmed that the beam-induced gradient fluctuation is successfully suppressed.
ArticleNumber 166237
Author Zhu, Zhenglong
Gao, Zheng
Jiang, Guodong
Jin, Kean
Xu, Chengye
Wang, Zhijun
Chen, Qi
Sun, Liepeng
Xue, Zongheng
Ma, Jinying
He, Yuan
Shi, Longbo
Huang, Guirong
Qiu, Feng
Jiang, Tiancai
Author_xml – sequence: 1
  givenname: Chengye
  surname: Xu
  fullname: Xu, Chengye
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 2
  givenname: Zhenglong
  surname: Zhu
  fullname: Zhu, Zhenglong
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 3
  givenname: Feng
  surname: Qiu
  fullname: Qiu, Feng
  email: qiufeng@impcas.ac.cn
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 4
  givenname: Tiancai
  surname: Jiang
  fullname: Jiang, Tiancai
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 5
  givenname: Qi
  surname: Chen
  fullname: Chen, Qi
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 6
  givenname: Zheng
  surname: Gao
  fullname: Gao, Zheng
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 7
  givenname: Jinying
  surname: Ma
  fullname: Ma, Jinying
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 8
  givenname: Longbo
  surname: Shi
  fullname: Shi, Longbo
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 9
  givenname: Guodong
  surname: Jiang
  fullname: Jiang, Guodong
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 10
  givenname: Zongheng
  surname: Xue
  fullname: Xue, Zongheng
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 11
  givenname: Kean
  surname: Jin
  fullname: Jin, Kean
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 12
  givenname: Liepeng
  surname: Sun
  fullname: Sun, Liepeng
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 13
  givenname: Zhijun
  surname: Wang
  fullname: Wang, Zhijun
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 14
  givenname: Guirong
  surname: Huang
  fullname: Huang, Guirong
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 15
  givenname: Yuan
  surname: He
  fullname: He, Yuan
  organization: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
BookMark eNp9kMtOwzAQRS1UJNrCD7DyDyTYTuM4Epuq4iVVYgNry0zsMiWNg-NW6t_jUFYs6s1InntGOndGJp3vLCG3nOWccXm3zTvcmVwwwXMupSiqCzLlqhJZXVZyQqYppLKaMXFFZsOwZenVlZqSr2Xftwgmou-od9TQnW_QoW0oRhvS_8HS1prQYbeh4LsYfEtNu_EB4-eOOh_osO9tSKtmD3FMBdOgz1yw33vbwZGCOWBEO1yTS2fawd78zTl5f3x4Wz1n69enl9VynUHBWMyUNIsSOEsS0hWNqF3Feb2QwIxw4IpKgWBQl9w52VhVKikMK_mHACgXgvFiTtTpLgQ_DME6DRh_DWMw2GrO9Fia3uqxND2Wpk-lJVT8Q_uQMuF4Hro_QTZJHdAGPQAmc9tgsBB14_Ec_gNL4oou
CitedBy_id crossref_primary_10_1007_s41365_025_01685_5
crossref_primary_10_1007_s41365_023_01215_1
crossref_primary_10_3390_electronics12071556
crossref_primary_10_1109_TNS_2023_3237837
crossref_primary_10_1088_1748_0221_17_11_T11002
crossref_primary_10_1016_j_nima_2022_166769
Cites_doi 10.1016/j.nima.2019.162612
10.1007/s41365-021-00894-y
10.1103/PhysRevAccelBeams.23.113002
10.1016/j.nima.2016.10.055
10.1088/1674-1137/40/5/057005
10.1016/S0168-9002(01)01514-5
10.1002/rob.4620010203
10.1016/j.nima.2014.08.014
10.1103/PhysRevAccelBeams.21.032003
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.nima.2021.166237
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1872-9576
ExternalDocumentID 10_1016_j_nima_2021_166237
S0168900221010809
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HME
IHE
J1W
KOM
LZ4
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SHN
SPC
SPCBC
SPD
SSQ
T5K
TN5
~02
~G-
29N
3O-
53G
5VS
6TJ
8WZ
9DU
A6W
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AGHFR
AGQPQ
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HX~
HZ~
H~9
R2-
SEW
SSZ
VOH
WUQ
~HD
ID FETCH-LOGICAL-c300t-86a45c102376f3d29f711946c0a2fcf378c20c951ff6de85862a051b2cc542013
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000791839900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-9002
IngestDate Sat Nov 29 07:27:19 EST 2025
Tue Nov 18 22:36:34 EST 2025
Fri Feb 23 02:41:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CAFe
CiADS
Superconducting
Iterative learning control (ILC)
Low-level radio-frequency (LLRF)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-86a45c102376f3d29f711946c0a2fcf378c20c951ff6de85862a051b2cc542013
ParticipantIDs crossref_citationtrail_10_1016_j_nima_2021_166237
crossref_primary_10_1016_j_nima_2021_166237
elsevier_sciencedirect_doi_10_1016_j_nima_2021_166237
PublicationCentury 2000
PublicationDate 2022-03-01
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Arimoto, Kawamura, Miyazaki (b13) 1984; 1
Li (b14) 2019; 945
Uchiyama (b12) 1978; 14
W.L. Zhan, Accelerator driven sustainable fission energy, in: Proceedings of 7th International Particle Accelerator Conference, IPAC2016, Busan, Korea, 2016, pp. 4271–4275
Schmidt (b11) 2010
Qiu (b21) 2018; 21
Z. Wang, et al., The status of CiADS superconducting linac, in: Proceedings of 10th International Particle Accelerator Conference, IPAC2019, Melbourne, Australia, 2019, pp. 994–997
Gao (b8) 2016; 40
Wangler (b5) 2008
Qiu (b16) 2021; 32
R. Amin, et al., RF pulse flattening in the SwissFEL facility based on modelfree iterative learning control, in: Proceedings of the 36th International Free Electron Laser Conference, (FEL2014), Geneva, Switzerland, 2014, pp. 824–827
.
Qin (b3) 2020; 23
Elmar (b19) 2007; 10
Qiu (b7) 2021; 24
Schilcher (b18) 1998
Schilcher (b17) 2007
Qiu (b6) 2015; 18
Franklin (b20) 2002
Liu (b4) 2017; 843
Fang (b9) 2014; 767
Kwon (b10) 2002; 482
Qiu (10.1016/j.nima.2021.166237_b6) 2015; 18
Schilcher (10.1016/j.nima.2021.166237_b17) 2007
Qiu (10.1016/j.nima.2021.166237_b21) 2018; 21
Li (10.1016/j.nima.2021.166237_b14) 2019; 945
10.1016/j.nima.2021.166237_b1
Qiu (10.1016/j.nima.2021.166237_b16) 2021; 32
10.1016/j.nima.2021.166237_b2
Uchiyama (10.1016/j.nima.2021.166237_b12) 1978; 14
Liu (10.1016/j.nima.2021.166237_b4) 2017; 843
Gao (10.1016/j.nima.2021.166237_b8) 2016; 40
Schilcher (10.1016/j.nima.2021.166237_b18) 1998
Fang (10.1016/j.nima.2021.166237_b9) 2014; 767
Kwon (10.1016/j.nima.2021.166237_b10) 2002; 482
Qin (10.1016/j.nima.2021.166237_b3) 2020; 23
10.1016/j.nima.2021.166237_b15
Franklin (10.1016/j.nima.2021.166237_b20) 2002
Qiu (10.1016/j.nima.2021.166237_b7) 2021; 24
Wangler (10.1016/j.nima.2021.166237_b5) 2008
Schmidt (10.1016/j.nima.2021.166237_b11) 2010
Elmar (10.1016/j.nima.2021.166237_b19) 2007; 10
Arimoto (10.1016/j.nima.2021.166237_b13) 1984; 1
References_xml – volume: 945
  year: 2019
  ident: b14
  article-title: Iterative learning control-based adaptive beam loading compensation implementations in the J-PARC Linac
  publication-title: Nucl. Instrum. Methods Phys. Res. A
– volume: 767
  start-page: 135
  year: 2014
  end-page: 145
  ident: b9
  article-title: Auto-tuning systems for J-PARC LINAC RF cavities
  publication-title: Nucl. Instrum. Methods Phys. Res. A
– reference: Z. Wang, et al., The status of CiADS superconducting linac, in: Proceedings of 10th International Particle Accelerator Conference, IPAC2019, Melbourne, Australia, 2019, pp. 994–997,
– volume: 24
  year: 2021
  ident: b7
  article-title: Application of disturbance observer-based control on pulsed superconducting radio frequency cavities
  publication-title: Phys. Rev. Accel. Beams
– year: 1998
  ident: b18
  article-title: Vector Sum Control of Pulsed Accelerating Fields in Lorentz Force Detuned Superconducting Cavities
– volume: 843
  start-page: 11
  year: 2017
  end-page: 17
  ident: b4
  article-title: Physics design of the CiADS 25MeV demo facility
  publication-title: Nucl. Instrum. Methods Phys. Res. A
– volume: 32
  start-page: 1
  year: 2021
  end-page: 12
  ident: b16
  article-title: Combined disturbance-observer-based control and iterative learning control design for pulsed superconducting radio frequency cavities
  publication-title: Nucl. Sci. Tech.
– reference: .
– start-page: 249
  year: 2007
  ident: b17
  article-title: Digital signal processing in RF applications
  publication-title: Proceedings of CERN Accelerator School on Digital Processing
– year: 2010
  ident: b11
  article-title: RF System Modeling and Controller Design for the European XFEL
– volume: 40
  year: 2016
  ident: b8
  article-title: Study on transient beam loading compensation for china ADS proton linac injector II
  publication-title: Chin. Phys. C
– reference: W.L. Zhan, Accelerator driven sustainable fission energy, in: Proceedings of 7th International Particle Accelerator Conference, IPAC2016, Busan, Korea, 2016, pp. 4271–4275,
– volume: 10
  year: 2007
  ident: b19
  article-title: High gain proportional RF control stability at TESLA cavities
  publication-title: Phys. Rev. ST Accel. Beams
– year: 2002
  ident: b20
  article-title: Feedback Control of Dynamic Systems, Vol.4
– year: 2008
  ident: b5
  article-title: RF Linear Accelerators
– volume: 23
  year: 2020
  ident: b3
  article-title: Transfer line including vacuum differential system for a high-power windowless target
  publication-title: Phys. Rev. Accel. Beams
– volume: 14
  start-page: 706
  year: 1978
  end-page: 712
  ident: b12
  article-title: Formation of high speed motion pattern of mechanical arm by trial (in Japanese)
  publication-title: Trans. Soc. Inst. Control Eng.
– reference: R. Amin, et al., RF pulse flattening in the SwissFEL facility based on modelfree iterative learning control, in: Proceedings of the 36th International Free Electron Laser Conference, (FEL2014), Geneva, Switzerland, 2014, pp. 824–827,
– volume: 1
  start-page: 123
  year: 1984
  end-page: 140
  ident: b13
  article-title: Bettering operation of robots by learning
  publication-title: J. Robot. Syst.
– volume: 21
  year: 2018
  ident: b21
  article-title: Real-time cavity simulator-based low-level radio-frequency test bench and applications for accelerators
  publication-title: Phys. Rev. Accel. Beams
– volume: 482
  start-page: 12
  year: 2002
  end-page: 31
  ident: b10
  article-title: SNS superconducting RF cavity modeling-iterative learning control
  publication-title: Nucl. Instrum. Methods Phys. Res. A
– volume: 18
  year: 2015
  ident: b6
  article-title: Application of disturbance observer-based control in low level radio-frequency system in a compact energy recovery linac at KEK
  publication-title: Phys. Rev. Accel. Beams
– start-page: 249
  year: 2007
  ident: 10.1016/j.nima.2021.166237_b17
  article-title: Digital signal processing in RF applications
– volume: 945
  year: 2019
  ident: 10.1016/j.nima.2021.166237_b14
  article-title: Iterative learning control-based adaptive beam loading compensation implementations in the J-PARC Linac
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2019.162612
– volume: 32
  start-page: 1
  issue: 6
  year: 2021
  ident: 10.1016/j.nima.2021.166237_b16
  article-title: Combined disturbance-observer-based control and iterative learning control design for pulsed superconducting radio frequency cavities
  publication-title: Nucl. Sci. Tech.
  doi: 10.1007/s41365-021-00894-y
– year: 2002
  ident: 10.1016/j.nima.2021.166237_b20
– volume: 23
  year: 2020
  ident: 10.1016/j.nima.2021.166237_b3
  article-title: Transfer line including vacuum differential system for a high-power windowless target
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.23.113002
– volume: 843
  start-page: 11
  year: 2017
  ident: 10.1016/j.nima.2021.166237_b4
  article-title: Physics design of the CiADS 25MeV demo facility
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2016.10.055
– volume: 40
  issue: 5
  year: 2016
  ident: 10.1016/j.nima.2021.166237_b8
  article-title: Study on transient beam loading compensation for china ADS proton linac injector II
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/40/5/057005
– ident: 10.1016/j.nima.2021.166237_b15
– ident: 10.1016/j.nima.2021.166237_b2
– volume: 482
  start-page: 12
  issue: 1–2
  year: 2002
  ident: 10.1016/j.nima.2021.166237_b10
  article-title: SNS superconducting RF cavity modeling-iterative learning control
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/S0168-9002(01)01514-5
– volume: 1
  start-page: 123
  issue: 2
  year: 1984
  ident: 10.1016/j.nima.2021.166237_b13
  article-title: Bettering operation of robots by learning
  publication-title: J. Robot. Syst.
  doi: 10.1002/rob.4620010203
– ident: 10.1016/j.nima.2021.166237_b1
– volume: 10
  year: 2007
  ident: 10.1016/j.nima.2021.166237_b19
  article-title: High gain proportional RF control stability at TESLA cavities
  publication-title: Phys. Rev. ST Accel. Beams
– volume: 18
  year: 2015
  ident: 10.1016/j.nima.2021.166237_b6
  article-title: Application of disturbance observer-based control in low level radio-frequency system in a compact energy recovery linac at KEK
  publication-title: Phys. Rev. Accel. Beams
– volume: 24
  issue: 320
  year: 2021
  ident: 10.1016/j.nima.2021.166237_b7
  article-title: Application of disturbance observer-based control on pulsed superconducting radio frequency cavities
  publication-title: Phys. Rev. Accel. Beams
– volume: 767
  start-page: 135
  year: 2014
  ident: 10.1016/j.nima.2021.166237_b9
  article-title: Auto-tuning systems for J-PARC LINAC RF cavities
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2014.08.014
– year: 1998
  ident: 10.1016/j.nima.2021.166237_b18
– volume: 21
  year: 2018
  ident: 10.1016/j.nima.2021.166237_b21
  article-title: Real-time cavity simulator-based low-level radio-frequency test bench and applications for accelerators
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.21.032003
– year: 2010
  ident: 10.1016/j.nima.2021.166237_b11
– year: 2008
  ident: 10.1016/j.nima.2021.166237_b5
– volume: 14
  start-page: 706
  year: 1978
  ident: 10.1016/j.nima.2021.166237_b12
  article-title: Formation of high speed motion pattern of mechanical arm by trial (in Japanese)
  publication-title: Trans. Soc. Inst. Control Eng.
SSID ssj0000978
Score 2.414055
Snippet Transient beam loading, which causes cavity gradient fluctuation, is becoming a major concern for the stable operation of the high current superconducting...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 166237
SubjectTerms CAFe
CiADS
Iterative learning control (ILC)
Low-level radio-frequency (LLRF)
Superconducting
Title Application of a modified iterative learning control algorithm for superconducting radio-frequency cavities
URI https://dx.doi.org/10.1016/j.nima.2021.166237
Volume 1026
WOSCitedRecordID wos000791839900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1872-9576
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000978
  issn: 0168-9002
  databaseCode: AIEXJ
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFLa6skl7mdhNY4PJD3tDQbk4Fz9WCLTxUCGtkypeIseJwSwkVQkV_Oz9A45vaagYGg97iarTxHV7vtrHx5-_g9C3mLGAMV54gSCpRygpvawIEi8o_EKQuEiLuNTFJtLpNJvP6elo9MedhVnVadNkt7d08V9dDTZwtjo6-wx3942CAV6D0-EKbofrPzl-st6SNocfr9pSChVpGgVlRRWqXULEMdVZfd4uZXdxpWmH1zeLaglvKS1YqWsRlbL1xNLQru_2OVtpIdZhZDtVwshMk9s7Jcig6DUKVqZEtWGra0yofQontPyzMpXKJ3qI4hzmQL3tr8GlD4EqNYXO1nErq64y1YG0wqwFFnwx6JdcDCk88xtDJaia87seuWcX2nqmrHVrZ2yV85XaDk7sTSfSptFnOucjh7kRWFb35DCXLk1gOPf9h-O9Hw6H7CCBCDB9dDYxiY3Lg0ZqiaowOFjf_FC6e2NK7YmOjkN3mas2ctVGbtp4gbbCNKbZGG1NfhzNT9bhAzXhg-u6PellSImbPXk8mhpESLNt9MYubfDEQPItGlXNO_Tq1Dj9Pfo9ACZuBWbYARP3wMQOmNgCE_fAxABMvAFMvAFM7ID5Af06PpodfvdsqQ-PR77feVnCSMyVjEiaiKgMqUiDgJKE-ywUXERpxkOfw2pAiKSsshjW4QymkyLkPCYQw0Yf0bhpm-oTwkrfN6IipgmlhAhCRQRrDoiEBfidlMUOCtxPlnOrg6_KsdT53521g_b7ZxZGBebJu2PnidzGsSY-zQFYTzz3-Vmf8gW9XkN-F43hv13toZd81cnr5VeLqntT9sU6
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+a+modified+iterative+learning+control+algorithm+for+superconducting+radio-frequency+cavities&rft.jtitle=Nuclear+instruments+%26+methods+in+physics+research.+Section+A%2C+Accelerators%2C+spectrometers%2C+detectors+and+associated+equipment&rft.au=Xu%2C+Chengye&rft.au=Zhu%2C+Zhenglong&rft.au=Qiu%2C+Feng&rft.au=Jiang%2C+Tiancai&rft.date=2022-03-01&rft.issn=0168-9002&rft.volume=1026&rft.spage=166237&rft_id=info:doi/10.1016%2Fj.nima.2021.166237&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nima_2021_166237
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9002&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9002&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9002&client=summon