Assessment of tunnel blasting-induced overbreak: A novel metaheuristic-based random forest approach

[Display omitted] •Three hybrid RF models were developed to predict blast-induced overbreak.•The RF-TSA model outperformed other predictive RF models in estimating overbreak.•The blast design parameters showed a deep impact on the overbreak generation.•The PF was selected as the most influential fac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Tunnelling and underground space technology Ročník 133; s. 104979
Hlavní autoři: He, Biao, Armaghani, Danial Jahed, Lai, Sai Hin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.03.2023
Témata:
ISSN:0886-7798, 1878-4364
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] •Three hybrid RF models were developed to predict blast-induced overbreak.•The RF-TSA model outperformed other predictive RF models in estimating overbreak.•The blast design parameters showed a deep impact on the overbreak generation.•The PF was selected as the most influential factor in the overbreak generation. Overbreak is a detrimental phenomenon caused by tunnel blasting, which can lead to increased time and cost in the construction schedule. It is very important to establish a model that can accurately predict the overbreak caused by tunnel blasting. To achieve this goal, the random forest (RF) is an ensemble machine learning model optimised by three metaheuristic algorithms to predicted overbreak, i.e. the grey wolf optimiser (GWO), the whale optimisation algorithm (WOA), and the tunicate swarm algorithm (TSA). The primary roles of GWO, WOA, and TSA are to search for the optimal hyper-parameters of the RF model in the solution space. To create the models above, 523 data samples were taken from a highway tunnel in China. The established database comprised seven predictors or inputs, including the number of holes, hole depth, total charge, advance length, rock mass rating, tunnel cross-sectional area, and powder factor. Three hybrid RF-based models (RF-GWO, RF-WOA, and RF-TSA) were constructed to predict overbreak. Subsequently, the performance levels of the developed hybrid models were evaluated according to four indices: the coefficient of determination, the root mean square error, the variance accounted for, and the A-20 index. The results showed that the TSA optimisation algorithm was better than the other two algorithms (WOA and GWO) at finding the best hyper-parameters for the RF model. Moreover, the results of comparative analysis with the single RF model confirmed that the proposed RF-TSA model is a strong solution with high accuracy for tackling the overbreak issues. The results of this study showed that the developed models can provide more accurate overbreak values compared to the intelligent techniques available in the literature; they can be used in practice and similar projects.
AbstractList [Display omitted] •Three hybrid RF models were developed to predict blast-induced overbreak.•The RF-TSA model outperformed other predictive RF models in estimating overbreak.•The blast design parameters showed a deep impact on the overbreak generation.•The PF was selected as the most influential factor in the overbreak generation. Overbreak is a detrimental phenomenon caused by tunnel blasting, which can lead to increased time and cost in the construction schedule. It is very important to establish a model that can accurately predict the overbreak caused by tunnel blasting. To achieve this goal, the random forest (RF) is an ensemble machine learning model optimised by three metaheuristic algorithms to predicted overbreak, i.e. the grey wolf optimiser (GWO), the whale optimisation algorithm (WOA), and the tunicate swarm algorithm (TSA). The primary roles of GWO, WOA, and TSA are to search for the optimal hyper-parameters of the RF model in the solution space. To create the models above, 523 data samples were taken from a highway tunnel in China. The established database comprised seven predictors or inputs, including the number of holes, hole depth, total charge, advance length, rock mass rating, tunnel cross-sectional area, and powder factor. Three hybrid RF-based models (RF-GWO, RF-WOA, and RF-TSA) were constructed to predict overbreak. Subsequently, the performance levels of the developed hybrid models were evaluated according to four indices: the coefficient of determination, the root mean square error, the variance accounted for, and the A-20 index. The results showed that the TSA optimisation algorithm was better than the other two algorithms (WOA and GWO) at finding the best hyper-parameters for the RF model. Moreover, the results of comparative analysis with the single RF model confirmed that the proposed RF-TSA model is a strong solution with high accuracy for tackling the overbreak issues. The results of this study showed that the developed models can provide more accurate overbreak values compared to the intelligent techniques available in the literature; they can be used in practice and similar projects.
ArticleNumber 104979
Author Armaghani, Danial Jahed
He, Biao
Lai, Sai Hin
Author_xml – sequence: 1
  givenname: Biao
  surname: He
  fullname: He, Biao
  email: s2005282@siswa.um.edu.my
  organization: Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
– sequence: 2
  givenname: Danial Jahed
  surname: Armaghani
  fullname: Armaghani, Danial Jahed
  email: danial.jahedarmaghani@uts.edu.au
  organization: School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
– sequence: 3
  givenname: Sai Hin
  surname: Lai
  fullname: Lai, Sai Hin
  email: laish@um.edu.my
  organization: Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
BookMark eNp9kM1KAzEURoMo2FZfwFVeYGqSSWYScVOKf1Bwo-uQydyxqTNJSTIF394pdeWiq8t3-c6Fe-bo0gcPCN1RsqSEVve7ZR5TXjLC2LTgqlYXaEZlLQteVvwSzYiUVVHXSl6jeUo7QohgTM2QXaUEKQ3gMw4dzqP30OOmNyk7_1U4344WWhwOEJsI5vsBr7CfUo8HyGYLY3RT0xaNSVMtGt-GAXchQsrY7PcxGLu9QVed6RPc_s0F-nx--li_Fpv3l7f1alPYkpBcSAFAmQCpGG-g5NzymtCaC9F2jemo6tqWESpV3TSi6XglK2mlVEbUggAl5QLJ010bQ0oROm1dNtkFn6NxvaZEH2XpnT7K0kdZ-iRrQtk_dB_dYOLPeejxBMH01MFB1Mk68JMvF8Fm3QZ3Dv8FbEyHpQ
CitedBy_id crossref_primary_10_1002_fsn3_70107
crossref_primary_10_1016_j_ijhydene_2024_09_054
crossref_primary_10_1016_j_jer_2024_05_009
crossref_primary_10_3390_app13031345
crossref_primary_10_1007_s10064_023_03154_y
crossref_primary_10_1016_j_jocs_2024_102266
crossref_primary_10_1007_s10462_025_11266_y
crossref_primary_10_1007_s11831_025_10228_5
crossref_primary_10_1016_j_eiar_2023_107229
crossref_primary_10_1016_j_tust_2024_105727
crossref_primary_10_1007_s10064_025_04216_z
crossref_primary_10_1016_j_sna_2023_114973
crossref_primary_10_1016_j_powtec_2025_120638
crossref_primary_10_1111_exsy_70080
crossref_primary_10_1016_j_tust_2024_105586
crossref_primary_10_1080_15376494_2023_2224782
crossref_primary_10_1007_s00500_023_09613_8
crossref_primary_10_1016_j_trgeo_2024_101228
crossref_primary_10_3390_su15054230
crossref_primary_10_1061_JPSEA2_PSENG_1559
crossref_primary_10_1016_j_eswa_2024_125909
crossref_primary_10_1016_j_aei_2025_103227
crossref_primary_10_3390_app15115996
crossref_primary_10_1016_j_geoen_2023_212518
crossref_primary_10_1007_s42461_024_00976_6
crossref_primary_10_1016_j_simpat_2023_102854
crossref_primary_10_1080_17538947_2025_2459317
crossref_primary_10_1007_s00603_024_04055_6
crossref_primary_10_3389_fevo_2023_1255384
crossref_primary_10_1007_s13369_023_08360_0
crossref_primary_10_1007_s40948_024_00912_4
crossref_primary_10_1061_JCEMD4_COENG_15907
crossref_primary_10_1007_s00603_024_03947_x
crossref_primary_10_3390_electronics13234755
crossref_primary_10_3390_machines13090758
crossref_primary_10_1016_j_envsoft_2024_106058
crossref_primary_10_1007_s10064_023_03138_y
crossref_primary_10_1007_s42461_025_01311_3
crossref_primary_10_3390_math11102358
crossref_primary_10_3390_math11143064
crossref_primary_10_1007_s00603_023_03522_w
crossref_primary_10_1007_s11771_024_5680_x
crossref_primary_10_3390_buildings14113505
crossref_primary_10_32604_cmes_2023_046025
crossref_primary_10_3390_app13021208
crossref_primary_10_1007_s40948_025_00963_1
crossref_primary_10_3390_buildings13092278
crossref_primary_10_1016_j_tust_2023_105508
crossref_primary_10_3390_f14091864
crossref_primary_10_1007_s10462_024_10772_9
crossref_primary_10_1016_j_isci_2025_111924
crossref_primary_10_1016_j_compgeo_2023_105557
crossref_primary_10_1016_j_swevo_2024_101532
crossref_primary_10_1155_2024_9217395
crossref_primary_10_3390_infrastructures8080125
crossref_primary_10_1016_j_tust_2025_106997
crossref_primary_10_1007_s10462_024_10898_w
crossref_primary_10_1007_s41660_025_00483_1
crossref_primary_10_3390_geosciences15020047
crossref_primary_10_3390_buildings14123998
crossref_primary_10_1007_s00521_025_11321_3
crossref_primary_10_1109_TEM_2023_3348991
crossref_primary_10_1016_j_mtcomm_2023_106403
crossref_primary_10_1038_s41598_024_85042_3
crossref_primary_10_1007_s10668_025_06635_0
crossref_primary_10_1061_IJGNAI_GMENG_9531
crossref_primary_10_1007_s42461_024_01074_3
crossref_primary_10_1007_s00202_023_02084_y
Cites_doi 10.1016/j.tust.2020.103475
10.1109/ACCESS.2021.3072336
10.1007/s00603-019-01947-w
10.1016/j.advengsoft.2016.01.008
10.1016/j.asoc.2010.06.003
10.1016/j.beproc.2011.09.006
10.1007/s10064-020-02064-7
10.1007/978-3-642-31537-4_13
10.1142/9789812839640_0029
10.1016/j.trgeo.2021.100588
10.1155/2013/706491
10.1016/j.undsp.2020.05.005
10.1007/s00603-021-02723-5
10.1016/j.asoc.2021.107504
10.1016/j.tust.2019.103060
10.2307/1379766
10.1007/s10706-021-01834-8
10.1038/s42254-021-00314-5
10.1109/TKDE.2017.2720168
10.1016/j.ijmst.2015.05.012
10.1016/j.advengsoft.2013.12.007
10.1007/s00366-018-0658-7
10.1016/j.tust.2018.05.023
10.1145/3447814
10.1088/1755-1315/833/1/012165
10.1080/10618600.2014.907095
10.1016/j.tust.2017.09.007
10.1007/s40948-015-0009-8
10.1007/978-3-642-58069-7_38
10.1061/9780784480106.014
10.1016/j.enggeo.2007.10.009
10.1016/j.tust.2016.12.009
10.1016/j.tust.2021.104017
10.1016/S1003-6326(13)62487-5
10.1016/j.eswa.2019.113134
10.1016/j.gsf.2020.03.007
10.1016/j.elerap.2018.10.004
10.1016/j.jrmge.2013.11.001
10.1016/j.ijmst.2018.04.013
10.1007/BF00421946
10.1525/bio.2013.63.2.5
10.1007/s10064-017-1116-2
10.1016/j.trgeo.2022.100745
10.1007/BF00421947
10.1016/j.tust.2013.06.003
10.1007/s11053-021-09929-y
10.1023/A:1010933404324
10.1016/j.ijmst.2015.03.018
10.1016/j.ijrmms.2014.03.003
10.1016/j.tust.2014.04.009
10.1007/s10706-017-0336-3
10.1002/widm.8
10.1016/0148-9062(71)90018-0
10.1016/j.engappai.2020.103541
10.1198/016214504000001466
10.1016/j.tust.2020.103493
10.1016/j.tust.2018.07.023
10.1080/17480930.2019.1709012
10.1007/s00521-010-0457-6
10.1016/j.tust.2011.09.004
10.1109/ACCESS.2021.3056407
10.1016/j.engappai.2020.104015
10.1016/j.tust.2008.08.002
10.1007/s00366-017-0520-3
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.tust.2022.104979
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-4364
ExternalDocumentID 10_1016_j_tust_2022_104979
S0886779822006204
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-85ee125e8924be344c47017455dfbaf19fdd201897bb5bf46868c889a5750e103
ISICitedReferencesCount 81
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000989243700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0886-7798
IngestDate Sat Nov 29 07:14:54 EST 2025
Tue Nov 18 21:26:35 EST 2025
Fri Feb 23 02:39:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Tunicate swarm algorithm
Tunnel blasting
Overbreak: random forest
Metaheuristic algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-85ee125e8924be344c47017455dfbaf19fdd201897bb5bf46868c889a5750e103
ParticipantIDs crossref_citationtrail_10_1016_j_tust_2022_104979
crossref_primary_10_1016_j_tust_2022_104979
elsevier_sciencedirect_doi_10_1016_j_tust_2022_104979
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Tunnelling and underground space technology
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ibarra, Maerz, Franklin (b0115) 1996; 14
Zhou, Qiu, Zhu, Armaghani, Li, Nguyen, Yagiz (b0375) 2021; 97
Soroush, Mehdi, Arash (b0300) 2015; 25
Cui, Sheng, Zhang, min, Liu, H. (b0050) 2021; 80
Saadat, Khandelwal, Monjezi (b0290) 2014; 6
Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (b0140) 2021; 3
Yang, Li, Jie, Zhang (b0330) 2018; 81
Beni, Wang (b0025) 1993
Yang, Zeng, Lan, Zhou (b0335) 2014; 69
Armaghani, Harandizadeh, Momeni, Maizir, Zhou (b0010) 2021
Yagiz, Yazitova, Karahan (b0315) 2020; 34
Xu, Zhou, Asteris, Armaghani, Tahir (b0310) 2019; 9
Goldbogen, Friedlaender, Calambokidis, McKenna, Simon, Nowacek (b0090) 2013; 63
Armaghani, Mohamad, Narayanasamy, Narita, Yagiz (b0015) 2017; 63
Li, Zhou, Armaghani, Li (b0185) 2021; 6
Du, Liu, Zhou, Khandelwal (b0070) 2022; 39
Zhang, Hu, Liu, Tan (b0360) 2020; 103
Ye, Dong, an, Ma, D. (b0340) 2018; 32
Jang, Topal (b0125) 2013; 38
Karpatne, Atluri, Faghmous, Steinbach, Banerjee, Ganguly, Shekhar, Samatova, Kumar (b0145) 2017; 29
Koopialipoor, Jahed Armaghani, Haghighi, Ghaleini (b0170) 2019; 78
Dong, L.J., Li, X.B., Peng, K., 2013. Prediction of rockburst classification using Random Forest. Trans. Nonferrous Met. Soc. China (English Ed.) 23, 472–477. <https://doi.org/10.1016/S1003-6326(13)62487-5>.
Breiman (b0035) 2001; 45
Chen, Qiu, Zhao, Rai, Ai, Wang (b0040) 2021; 115
Friedman (b0100) 2001; 34
Liu, Liu (b0210) 2017; 70
Hong, Dong, Chen, Wei (b0105) 2011; 11
Kohestani, Bazargan-Lari, Asgari-Marnani (b0160) 2017; 5
Mohammadi, Hossaini, Mirzapour, Hajiantilaki (b0245) 2015; 25
Liu, Yang, Li (b0205) 2020; 145
Zhou, Zhu, Qiu, Armaghani, Zhou, Yong (b0385) 2022; 7
Khandelwal, Rai, Shrivastva (b0155) 2015; 1
Oshiro, T.M., Perez, P.S., 2012. How Many Trees in a Random Forest? 7376. <https://doi.org/10.1007/978-3-642-31537-4>.
Yang, Wang, Song (b0325) 2020
Zorlu, Gokceoglu, Ocakoglu, Nefeslioglu, Acikalin (b0390) 2008; 96
Chen, Chen, Wu, Dai, Xv, Wu (b0045) 2022; 10
Kumar, Mishra, Choudhary (b0175) 2021; 2
Lin (b0195) 1998
Daraei, Zare (b0055) 2018; 28
Muro, Escobedo, Spector, Coppinger (b0265) 2011; 88
Ramulu, Chakraborty, Sitharam (b0285) 2009; 24
Yu, Monjezi, Mohammed, Dehghani, Armaghani, Ulrikh (b0350) 2021; 13
Zhou, Dai, Khandelwal, Monjezi, Yu, Qiu (b0370) 2021; 30
Kutter, Fairhurst (b0180) 1971; 8
Kaur, Awasthi, Sangal, Dhiman (b0150) 2020; 90
Weinan, E., Han, J., Zhang, L., 2020. Integrating Machine Learning with Physics-Based Modeling 1–23.
Zhou, J., Shi, X., Du, K., Qiu, X., Li, X., Mitri, H.S., 2016. Development of Ground Movements Due to a Shield Tunnelling Prediction Model Using Random Forests 108–115. <https://doi.org/10.1061/9780784480106.014>.
Koopialipoor, Ghaleini, Haghighi, Kanagarajan, Maarefvand, Mohamad (b0165) 2019; 35
Mottahedi, Sereshki, Ataei (b0250) 2018; 34
Goldstein, Kapelner, Bleich, Pitkin (b0095) 2015; 24
Jang, Kawamura, Shinji (b0120) 2019; 92
Li, Liu, Tseng, Zheng, Lim (b0190) 2021; 108
Jia, Willard, Karpatne, Read, Zwart, Steinbach, Kumar (b0130) 2021; 2
Mirjalili, Lewis (b0230) 2016; 95
Agrawal, Abutarboush, Ganesh, Mohamed (b0005) 2021; 9
Watkins, Schevill (b0305) 1979; 60
Mohammadi, Barati, Chamzini (b0240) 2018; 36
Loh (b0215) 2011; 1
Maerz, Ibarra, Franklin (b0220) 1996; 14
Asteris, P.G., Mamou, A., Hajihassani, M., Hasanipanah, M., Koopialipoor, M., Le, T.-T., Kardani, N., Armaghani, D.J., 2021. Soft computing based closed form equations correlating L and N-type Schmidt hammer rebound numbers of rocks. Transp. Geotech. 100588.
Ekeberg, Holmes, Paraskevopoulou (b0080) 2021; 833
Yilmaz, Unlu (b0345) 2014; 43
Zhang, Zhou, Armaghani, Tahir, Pham, Huynh (b0355) 2020; 10
Yang, Song, Zhou (b0320) 2022; 55
Shaorui, Jiaming, Jihong (b9000) 2013; 2013
Zhang, Wu, Zhong, Li, Wang (b0365) 2021; 12
Liu, Yang, Karekal (b0200) 2020; 53
Karir, D., Ray, A., Bharati, A.K., Chaturvedi, U., Rai, R., Khandelwal, M., 2022. Stability prediction of a natural and man-made slope using various machine learning algorithms. Transp. Geotech. 100745.
Mei, Zhang, Xu, Zhu, Wang (b0225) 2021; 39
Mirjalili, Mirjalili, Lewis (b0235) 2014; 69
Foderà, Voza, Barovero, Tinti, Boldini (b0085) 2020; 105
Sim, Gan, Chang (b0295) 2005; 100
Mottahedi, Sereshki, Ataei (b0255) 2018; 80
Houssein, Helmy, Elngar, Abdelminaam, Shaban (b0110) 2021; 9
Dey, Murthy (b0060) 2012; 28
Bhatnagar, Khandelwal (b0030) 2012; 21
Kaur (10.1016/j.tust.2022.104979_b0150) 2020; 90
Ekeberg (10.1016/j.tust.2022.104979_b0080) 2021; 833
Koopialipoor (10.1016/j.tust.2022.104979_b0170) 2019; 78
Foderà (10.1016/j.tust.2022.104979_b0085) 2020; 105
Kohestani (10.1016/j.tust.2022.104979_b0160) 2017; 5
Dey (10.1016/j.tust.2022.104979_b0060) 2012; 28
Yilmaz (10.1016/j.tust.2022.104979_b0345) 2014; 43
Zhang (10.1016/j.tust.2022.104979_b0365) 2021; 12
Goldstein (10.1016/j.tust.2022.104979_b0095) 2015; 24
Zhou (10.1016/j.tust.2022.104979_b0375) 2021; 97
Ramulu (10.1016/j.tust.2022.104979_b0285) 2009; 24
Mohammadi (10.1016/j.tust.2022.104979_b0245) 2015; 25
Yagiz (10.1016/j.tust.2022.104979_b0315) 2020; 34
10.1016/j.tust.2022.104979_b0270
Muro (10.1016/j.tust.2022.104979_b0265) 2011; 88
Yu (10.1016/j.tust.2022.104979_b0350) 2021; 13
10.1016/j.tust.2022.104979_b0075
Mottahedi (10.1016/j.tust.2022.104979_b0255) 2018; 80
Armaghani (10.1016/j.tust.2022.104979_b0015) 2017; 63
Sim (10.1016/j.tust.2022.104979_b0295) 2005; 100
Soroush (10.1016/j.tust.2022.104979_b0300) 2015; 25
Armaghani (10.1016/j.tust.2022.104979_b0010) 2021
Karpatne (10.1016/j.tust.2022.104979_b0145) 2017; 29
Koopialipoor (10.1016/j.tust.2022.104979_b0165) 2019; 35
Maerz (10.1016/j.tust.2022.104979_b0220) 1996; 14
Chen (10.1016/j.tust.2022.104979_b0045) 2022; 10
Li (10.1016/j.tust.2022.104979_b0185) 2021; 6
Liu (10.1016/j.tust.2022.104979_b0200) 2020; 53
Yang (10.1016/j.tust.2022.104979_b0330) 2018; 81
Kumar (10.1016/j.tust.2022.104979_b0175) 2021; 2
Zhang (10.1016/j.tust.2022.104979_b0355) 2020; 10
Cui (10.1016/j.tust.2022.104979_b0050) 2021; 80
Agrawal (10.1016/j.tust.2022.104979_b0005) 2021; 9
Ibarra (10.1016/j.tust.2022.104979_b0115) 1996; 14
Daraei (10.1016/j.tust.2022.104979_b0055) 2018; 28
10.1016/j.tust.2022.104979_b0135
Ye (10.1016/j.tust.2022.104979_b0340) 2018; 32
Bhatnagar (10.1016/j.tust.2022.104979_b0030) 2012; 21
Chen (10.1016/j.tust.2022.104979_b0040) 2021; 115
Khandelwal (10.1016/j.tust.2022.104979_b0155) 2015; 1
Zorlu (10.1016/j.tust.2022.104979_b0390) 2008; 96
Friedman (10.1016/j.tust.2022.104979_b0100) 2001; 34
Liu (10.1016/j.tust.2022.104979_b0210) 2017; 70
Watkins (10.1016/j.tust.2022.104979_b0305) 1979; 60
Loh (10.1016/j.tust.2022.104979_b0215) 2011; 1
Jang (10.1016/j.tust.2022.104979_b0120) 2019; 92
Xu (10.1016/j.tust.2022.104979_b0310) 2019; 9
Zhang (10.1016/j.tust.2022.104979_b0360) 2020; 103
Mei (10.1016/j.tust.2022.104979_b0225) 2021; 39
Zhou (10.1016/j.tust.2022.104979_b0385) 2022; 7
Du (10.1016/j.tust.2022.104979_b0070) 2022; 39
Yang (10.1016/j.tust.2022.104979_b0320) 2022; 55
Mirjalili (10.1016/j.tust.2022.104979_b0235) 2014; 69
Jang (10.1016/j.tust.2022.104979_b0125) 2013; 38
Saadat (10.1016/j.tust.2022.104979_b0290) 2014; 6
Shaorui (10.1016/j.tust.2022.104979_b9000) 2013; 2013
Houssein (10.1016/j.tust.2022.104979_b0110) 2021; 9
Kutter (10.1016/j.tust.2022.104979_b0180) 1971; 8
Jia (10.1016/j.tust.2022.104979_b0130) 2021; 2
Lin (10.1016/j.tust.2022.104979_b0195) 1998
Li (10.1016/j.tust.2022.104979_b0190) 2021; 108
Breiman (10.1016/j.tust.2022.104979_b0035) 2001; 45
Mottahedi (10.1016/j.tust.2022.104979_b0250) 2018; 34
Yang (10.1016/j.tust.2022.104979_b0335) 2014; 69
Mohammadi (10.1016/j.tust.2022.104979_b0240) 2018; 36
Yang (10.1016/j.tust.2022.104979_b0325) 2020
Goldbogen (10.1016/j.tust.2022.104979_b0090) 2013; 63
Beni (10.1016/j.tust.2022.104979_b0025) 1993
Mirjalili (10.1016/j.tust.2022.104979_b0230) 2016; 95
Zhou (10.1016/j.tust.2022.104979_b0370) 2021; 30
Liu (10.1016/j.tust.2022.104979_b0205) 2020; 145
10.1016/j.tust.2022.104979_b0380
Hong (10.1016/j.tust.2022.104979_b0105) 2011; 11
10.1016/j.tust.2022.104979_b0020
Karniadakis (10.1016/j.tust.2022.104979_b0140) 2021; 3
10.1016/j.tust.2022.104979_b0065
References_xml – volume: 34
  start-page: 45
  year: 2018
  end-page: 58
  ident: b0250
  article-title: Development of overbreak prediction models in drill and blast tunneling using soft computing methods
  publication-title: Eng. Comput.
– volume: 60
  start-page: 155
  year: 1979
  end-page: 163
  ident: b0305
  article-title: Aerial observation of feeding behavior in four baleen whales: eubalaena glacialis, balaenoptera borealis, megaptera novaeangliae, and balaenoptera physalus
  publication-title: J. Mammal.
– volume: 1
  start-page: 14
  year: 2011
  end-page: 23
  ident: b0215
  article-title: Classification and regression trees
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
– reference: Karir, D., Ray, A., Bharati, A.K., Chaturvedi, U., Rai, R., Khandelwal, M., 2022. Stability prediction of a natural and man-made slope using various machine learning algorithms. Transp. Geotech. 100745.
– volume: 38
  start-page: 161
  year: 2013
  end-page: 169
  ident: b0125
  article-title: Optimizing overbreak prediction based on geological parameters comparing multiple regression analysis and artificial neural network
  publication-title: Tunn. Undergr. Sp. Technol.
– start-page: 317
  year: 1998
  end-page: 327
  ident: b0195
  article-title: An introduction of the chinese standard for engineering classification of rock masses (GB50218-94)
  publication-title: Adv. rock Mech.
– volume: 24
  start-page: 208
  year: 2009
  end-page: 221
  ident: b0285
  article-title: Damage assessment of basaltic rock mass due to repeated blasting in a railway tunnelling project - a case study
  publication-title: Tunn. Undergr. Sp. Technol.
– volume: 10
  year: 2020
  ident: b0355
  article-title: A combination of feature selection and random forest techniques to solve a problem related to blast-induced ground vibration
  publication-title: Appl. Sci.
– volume: 8
  start-page: 181
  year: 1971
  end-page: 202
  ident: b0180
  article-title: On the fracture process in blasting
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 53
  start-page: 799
  year: 2020
  end-page: 813
  ident: b0200
  article-title: Effect of water content on argillization of mudstone during the tunnelling process
  publication-title: Rock Mech. Rock Eng.
– start-page: 703
  year: 1993
  end-page: 712
  ident: b0025
  article-title: Swarm intelligence in cellular robotic systems
  publication-title: Robot. Biol. Syst. Towar. a New Bionics?
– reference: Asteris, P.G., Mamou, A., Hajihassani, M., Hasanipanah, M., Koopialipoor, M., Le, T.-T., Kardani, N., Armaghani, D.J., 2021. Soft computing based closed form equations correlating L and N-type Schmidt hammer rebound numbers of rocks. Transp. Geotech. 100588.
– volume: 145
  year: 2020
  ident: b0205
  article-title: A multiple search strategies based grey wolf optimizer for solving multi-objective optimization problems
  publication-title: Expert Syst. Appl.
– volume: 833
  year: 2021
  ident: b0080
  article-title: A quantitative approach to predict tunnel overbreak based on the Q-system
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
– volume: 78
  start-page: 981
  year: 2019
  end-page: 990
  ident: b0170
  article-title: A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels
  publication-title: Bull. Eng. Geol. Environ.
– volume: 35
  start-page: 1191
  year: 2019
  end-page: 1202
  ident: b0165
  article-title: Overbreak prediction and optimization in tunnel using neural network and bee colony techniques
  publication-title: Eng. Comput.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 19
  ident: b0310
  article-title: Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate
  publication-title: Appl. Sci.
– volume: 36
  start-page: 425
  year: 2018
  end-page: 437
  ident: b0240
  article-title: Prediction of blast-induced overbreak based on geo-mechanical parameters, blasting factors and the area of tunnel face
  publication-title: Geotech. Geol. Eng.
– volume: 63
  start-page: 29
  year: 2017
  end-page: 43
  ident: b0015
  article-title: Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition
  publication-title: Tunn. Undergr. Sp. Technol.
– volume: 21
  start-page: 763
  year: 2012
  end-page: 770
  ident: b0030
  article-title: An intelligent approach to evaluate drilling performance
  publication-title: Neural Comput. Appl.
– volume: 80
  start-page: 2249
  year: 2021
  end-page: 2260
  ident: b0050
  article-title: A modified rock mass classification considering seismic effects in the basic quality (BQ) system
  publication-title: Bull. Eng. Geol. Environ.
– volume: 13
  year: 2021
  ident: b0350
  article-title: Optimized support vector machines combined with evolutionary random forest for prediction of back-break caused by blasting operation
  publication-title: Sustain.
– volume: 34
  year: 2001
  ident: b0100
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 32
  start-page: 23
  year: 2018
  end-page: 36
  ident: b0340
  article-title: Loan evaluation in P2P lending based on Random Forest optimized by genetic algorithm with profit score
  publication-title: Electron. Commer. Res. Appl.
– reference: Oshiro, T.M., Perez, P.S., 2012. How Many Trees in a Random Forest? 7376. <https://doi.org/10.1007/978-3-642-31537-4>.
– volume: 14
  start-page: 307
  year: 1996
  end-page: 323
  ident: b0220
  article-title: Overbreak and underbreak in underground openings Part 1: Measurement using the light sectioning method and digital image processing
  publication-title: Geotech. Geol. Eng.
– volume: 70
  start-page: 363
  year: 2017
  end-page: 374
  ident: b0210
  article-title: Optimization of smooth blasting parameters for mountain tunnel construction with specified control indices based on a GA and ISVR coupling algorithm
  publication-title: Tunn. Undergr. Sp. Technol.
– volume: 39
  start-page: 5309
  year: 2021
  end-page: 5323
  ident: b0225
  article-title: Optimization methods of blasting parameters of large cross-section tunnel in horizontal layered rock mass
  publication-title: Geotech. Geol. Eng.
– volume: 25
  start-page: 439
  year: 2015
  end-page: 445
  ident: b0245
  article-title: Use of fuzzy set theory for minimizing overbreak in underground blasting operations – a case study of Alborz Tunnel
  publication-title: Iran. Int. J. Min. Sci. Technol.
– reference: Weinan, E., Han, J., Zhang, L., 2020. Integrating Machine Learning with Physics-Based Modeling 1–23.
– volume: 25
  start-page: 595
  year: 2015
  end-page: 599
  ident: b0300
  article-title: Trend analysis and comparison of basic parameters for tunnel blast design models
  publication-title: Int. J. Min. Sci. Technol.
– volume: 28
  start-page: 49
  year: 2012
  end-page: 56
  ident: b0060
  article-title: Prediction of blast-induced overbreak from uncontrolled burn-cut blasting in tunnels driven through medium rock class
  publication-title: Tunn. Undergr. Sp. Technol.
– volume: 81
  start-page: 112
  year: 2018
  end-page: 120
  ident: b0330
  article-title: Effects of joints on the cutting behavior of disc cutter running on the jointed rock mass
  publication-title: Tunn. Undergr. Sp. Technol.
– volume: 39
  start-page: 433
  year: 2022
  end-page: 452
  ident: b0070
  article-title: Investigating the slurry fluidity and strength characteristics of cemented backfill and strength prediction models by developing hybrid GA-SVR and PSO-SVR
  publication-title: Min. Metall. Explor.
– volume: 100
  start-page: 642
  year: 2005
  end-page: 652
  ident: b0295
  article-title: Outlier labeling with boxplot procedures
  publication-title: J. Am. Stat. Assoc.
– volume: 103
  year: 2020
  ident: b0360
  article-title: TBM performance prediction with Bayesian optimization and automated machine learning
  publication-title: Tunn. Undergr. Sp. Technol.
– volume: 69
  start-page: 59
  year: 2014
  end-page: 66
  ident: b0335
  article-title: Analysis of the excavation damaged zone around a tunnel accounting for geostress and unloading
  publication-title: Int. J. Rock Mech. Min. Sci.
– reference: Dong, L.J., Li, X.B., Peng, K., 2013. Prediction of rockburst classification using Random Forest. Trans. Nonferrous Met. Soc. China (English Ed.) 23, 472–477. <https://doi.org/10.1016/S1003-6326(13)62487-5>.
– volume: 88
  start-page: 192
  year: 2011
  end-page: 197
  ident: b0265
  article-title: Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations
  publication-title: Behav. Process.
– volume: 6
  start-page: 67
  year: 2014
  end-page: 76
  ident: b0290
  article-title: An ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine
  publication-title: Iran. J. Rock Mech. Geotech. Eng.
– volume: 92
  year: 2019
  ident: b0120
  article-title: An empirical approach of overbreak resistance factor for tunnel blasting
  publication-title: Tunn. Undergr. Sp. Technol.
– volume: 6
  start-page: 379
  year: 2021
  end-page: 395
  ident: b0185
  article-title: Stability analysis of underground mine hard rock pillars via combination of finite difference methods, neural networks, and Monte Carlo simulation techniques
  publication-title: Undergr. Sp.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0230
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 96
  start-page: 141
  year: 2008
  end-page: 158
  ident: b0390
  article-title: Prediction of uniaxial compressive strength of sandstones using petrography-based models
  publication-title: Eng. Geol.
– volume: 108
  year: 2021
  ident: b0190
  article-title: Improved tunicate swarm algorithm: solving the dynamic economic emission dispatch problems
  publication-title: Appl. Soft Comput.
– volume: 97
  year: 2021
  ident: b0375
  article-title: Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate
  publication-title: Eng. Appl. Artif. Intell.
– volume: 30
  start-page: 4753
  year: 2021
  end-page: 4771
  ident: b0370
  article-title: Performance of hybrid SCA-RF and HHO-RF models for predicting backbreak in open-pit mine blasting operations
  publication-title: Nat. Resour. Res.
– volume: 55
  start-page: 1499
  year: 2022
  end-page: 1516
  ident: b0320
  article-title: Automated recognition model of geomechanical information based on operational data of tunneling boring machines
  publication-title: Rock Mech. Rock Eng.
– volume: 7
  year: 2022
  ident: b0385
  article-title: Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm
  publication-title: Acta Geotech.
– volume: 14
  start-page: 325
  year: 1996
  end-page: 340
  ident: b0115
  article-title: Overbreak and underbreak in underground openings Part 2: Causes and implications
  publication-title: Geotech. Geol. Eng.
– volume: 90
  year: 2020
  ident: b0150
  article-title: Tunicate Swarm Algorithm: a new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: 115
  year: 2021
  ident: b0040
  article-title: Experimental and numerical investigation on overbreak control considering the influence of initial support in tunnels
  publication-title: Tunn. Undergr. Sp. Technol.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0235
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 12
  start-page: 469
  year: 2021
  end-page: 477
  ident: b0365
  article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
  publication-title: Geosci. Front.
– volume: 1
  start-page: 69
  year: 2015
  end-page: 77
  ident: b0155
  article-title: Evaluation of dump slope stability of a coal mine using artificial neural network
  publication-title: Geomech. Geophys. Geo-Energy Geo-Resources
– volume: 9
  start-page: 56066
  year: 2021
  end-page: 56092
  ident: b0110
  article-title: An improved tunicate swarm algorithm for global optimization and image segmentation
  publication-title: IEEE Access
– volume: 2
  year: 2021
  ident: b0175
  article-title: Prediction of back break in blasting using random decision trees
  publication-title: Eng. Comput.
– volume: 24
  start-page: 44
  year: 2015
  end-page: 65
  ident: b0095
  article-title: Peeking inside the black box: visualizing statistical learning with plots of individual conditional expectation
  publication-title: J. Comput. Graph. Stat.
– volume: 43
  start-page: 113
  year: 2014
  end-page: 122
  ident: b0345
  article-title: An application of the modified Holmberg-Persson approach for tunnel blasting design
  publication-title: Tunn. Undergr. Sp. Technol.
– volume: 10
  year: 2022
  ident: b0045
  article-title: Optimization of genetic algorithm through use of back propagation neural network in forecasting smooth wall blasting parameters
  publication-title: Mathematics
– volume: 105
  year: 2020
  ident: b0085
  article-title: Factors influencing overbreak volumes in drill-and-blast tunnel excavation. A statistical analysis applied to the case study of the Brenner Base Tunnel – BBT
  publication-title: Tunn. Undergr. Sp. Technol.
– volume: 9
  start-page: 26766
  year: 2021
  end-page: 26791
  ident: b0005
  article-title: Metaheuristic algorithms on feature selection: a survey of one decade of research (2009–2019)
  publication-title: IEEE Access
– year: 2021
  ident: b0010
  article-title: An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile bearing capacity
  publication-title: Artif. Intell. Rev.
– volume: 80
  start-page: 1
  year: 2018
  end-page: 9
  ident: b0255
  article-title: Overbreak prediction in underground excavations using hybrid ANFIS-PSO model
  publication-title: Tunn. Undergr. Sp. Technol.
– volume: 63
  start-page: 90
  year: 2013
  end-page: 100
  ident: b0090
  article-title: Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology
  publication-title: Bioscience
– volume: 3
  start-page: 422
  year: 2021
  end-page: 440
  ident: b0140
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0035
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 2
  start-page: 1
  year: 2021
  end-page: 26
  ident: b0130
  article-title: Physics-guided machine learning for scientific discovery: an application in simulating lake temperature profiles
  publication-title: ACM/IMS Trans. Data Sci.
– year: 2020
  ident: b0325
  article-title: A new hybrid grey wolf optimizer-feature weighted-multiple kernel-support vector regression technique to predict TBM performance
  publication-title: Eng. Comput.
– volume: 2013
  year: 2013
  ident: b9000
  article-title: Predictions of overbreak blocks in tunnels based on the wavelet neural network method and the geological statistics theory
  publication-title: Math. Probl. Eng.
– volume: 29
  start-page: 2318
  year: 2017
  end-page: 2331
  ident: b0145
  article-title: Theory-guided data science: a new paradigm for scientific discovery from data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 28
  start-page: 679
  year: 2018
  end-page: 684
  ident: b0055
  article-title: Prediction of overbreak depth in Ghalaje road tunnel using strength factor
  publication-title: Int. J. Min. Sci. Technol.
– volume: 5
  start-page: 127
  year: 2017
  end-page: 135
  ident: b0160
  article-title: Prediction of maximum surface settlement caused by earth pressure balance shield tunneling using random forest
  publication-title: J. AI Data Min.
– volume: 34
  start-page: 672
  year: 2020
  end-page: 685
  ident: b0315
  article-title: Application of differential evolution algorithm and comparing its performance with literature to predict rock brittleness for excavatability
  publication-title: Int. J. Mining Reclam. Environ.
– reference: Zhou, J., Shi, X., Du, K., Qiu, X., Li, X., Mitri, H.S., 2016. Development of Ground Movements Due to a Shield Tunnelling Prediction Model Using Random Forests 108–115. <https://doi.org/10.1061/9780784480106.014>.
– volume: 11
  start-page: 1881
  year: 2011
  end-page: 1890
  ident: b0105
  article-title: SVR with hybrid chaotic genetic algorithms for tourism demand forecasting
  publication-title: Appl. Soft Comput. J.
– volume: 10
  year: 2022
  ident: 10.1016/j.tust.2022.104979_b0045
  article-title: Optimization of genetic algorithm through use of back propagation neural network in forecasting smooth wall blasting parameters
  publication-title: Mathematics
– volume: 105
  year: 2020
  ident: 10.1016/j.tust.2022.104979_b0085
  article-title: Factors influencing overbreak volumes in drill-and-blast tunnel excavation. A statistical analysis applied to the case study of the Brenner Base Tunnel – BBT
  publication-title: Tunn. Undergr. Sp. Technol.
  doi: 10.1016/j.tust.2020.103475
– volume: 9
  start-page: 56066
  year: 2021
  ident: 10.1016/j.tust.2022.104979_b0110
  article-title: An improved tunicate swarm algorithm for global optimization and image segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3072336
– volume: 53
  start-page: 799
  year: 2020
  ident: 10.1016/j.tust.2022.104979_b0200
  article-title: Effect of water content on argillization of mudstone during the tunnelling process
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-019-01947-w
– volume: 39
  start-page: 433
  year: 2022
  ident: 10.1016/j.tust.2022.104979_b0070
  article-title: Investigating the slurry fluidity and strength characteristics of cemented backfill and strength prediction models by developing hybrid GA-SVR and PSO-SVR
  publication-title: Min. Metall. Explor.
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.tust.2022.104979_b0230
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 11
  start-page: 1881
  year: 2011
  ident: 10.1016/j.tust.2022.104979_b0105
  article-title: SVR with hybrid chaotic genetic algorithms for tourism demand forecasting
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2010.06.003
– volume: 5
  start-page: 127
  year: 2017
  ident: 10.1016/j.tust.2022.104979_b0160
  article-title: Prediction of maximum surface settlement caused by earth pressure balance shield tunneling using random forest
  publication-title: J. AI Data Min.
– volume: 88
  start-page: 192
  year: 2011
  ident: 10.1016/j.tust.2022.104979_b0265
  article-title: Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations
  publication-title: Behav. Process.
  doi: 10.1016/j.beproc.2011.09.006
– volume: 80
  start-page: 2249
  year: 2021
  ident: 10.1016/j.tust.2022.104979_b0050
  article-title: A modified rock mass classification considering seismic effects in the basic quality (BQ) system
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-020-02064-7
– ident: 10.1016/j.tust.2022.104979_b0270
  doi: 10.1007/978-3-642-31537-4_13
– volume: 13
  year: 2021
  ident: 10.1016/j.tust.2022.104979_b0350
  article-title: Optimized support vector machines combined with evolutionary random forest for prediction of back-break caused by blasting operation
  publication-title: Sustain.
– start-page: 317
  year: 1998
  ident: 10.1016/j.tust.2022.104979_b0195
  article-title: An introduction of the chinese standard for engineering classification of rock masses (GB50218-94)
  publication-title: Adv. rock Mech.
  doi: 10.1142/9789812839640_0029
– ident: 10.1016/j.tust.2022.104979_b0020
  doi: 10.1016/j.trgeo.2021.100588
– volume: 2013
  year: 2013
  ident: 10.1016/j.tust.2022.104979_b9000
  article-title: Predictions of overbreak blocks in tunnels based on the wavelet neural network method and the geological statistics theory
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2013/706491
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.tust.2022.104979_b0310
  article-title: Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate
  publication-title: Appl. Sci.
– volume: 6
  start-page: 379
  year: 2021
  ident: 10.1016/j.tust.2022.104979_b0185
  article-title: Stability analysis of underground mine hard rock pillars via combination of finite difference methods, neural networks, and Monte Carlo simulation techniques
  publication-title: Undergr. Sp.
  doi: 10.1016/j.undsp.2020.05.005
– volume: 55
  start-page: 1499
  year: 2022
  ident: 10.1016/j.tust.2022.104979_b0320
  article-title: Automated recognition model of geomechanical information based on operational data of tunneling boring machines
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-021-02723-5
– volume: 108
  year: 2021
  ident: 10.1016/j.tust.2022.104979_b0190
  article-title: Improved tunicate swarm algorithm: solving the dynamic economic emission dispatch problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107504
– volume: 7
  year: 2022
  ident: 10.1016/j.tust.2022.104979_b0385
  article-title: Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm
  publication-title: Acta Geotech.
– volume: 92
  year: 2019
  ident: 10.1016/j.tust.2022.104979_b0120
  article-title: An empirical approach of overbreak resistance factor for tunnel blasting
  publication-title: Tunn. Undergr. Sp. Technol.
  doi: 10.1016/j.tust.2019.103060
– volume: 60
  start-page: 155
  year: 1979
  ident: 10.1016/j.tust.2022.104979_b0305
  article-title: Aerial observation of feeding behavior in four baleen whales: eubalaena glacialis, balaenoptera borealis, megaptera novaeangliae, and balaenoptera physalus
  publication-title: J. Mammal.
  doi: 10.2307/1379766
– volume: 39
  start-page: 5309
  year: 2021
  ident: 10.1016/j.tust.2022.104979_b0225
  article-title: Optimization methods of blasting parameters of large cross-section tunnel in horizontal layered rock mass
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-021-01834-8
– volume: 3
  start-page: 422
  year: 2021
  ident: 10.1016/j.tust.2022.104979_b0140
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00314-5
– volume: 29
  start-page: 2318
  year: 2017
  ident: 10.1016/j.tust.2022.104979_b0145
  article-title: Theory-guided data science: a new paradigm for scientific discovery from data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2720168
– volume: 25
  start-page: 595
  year: 2015
  ident: 10.1016/j.tust.2022.104979_b0300
  article-title: Trend analysis and comparison of basic parameters for tunnel blast design models
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2015.05.012
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.tust.2022.104979_b0235
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 35
  start-page: 1191
  year: 2019
  ident: 10.1016/j.tust.2022.104979_b0165
  article-title: Overbreak prediction and optimization in tunnel using neural network and bee colony techniques
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-018-0658-7
– volume: 80
  start-page: 1
  year: 2018
  ident: 10.1016/j.tust.2022.104979_b0255
  article-title: Overbreak prediction in underground excavations using hybrid ANFIS-PSO model
  publication-title: Tunn. Undergr. Sp. Technol.
  doi: 10.1016/j.tust.2018.05.023
– volume: 2
  start-page: 1
  year: 2021
  ident: 10.1016/j.tust.2022.104979_b0130
  article-title: Physics-guided machine learning for scientific discovery: an application in simulating lake temperature profiles
  publication-title: ACM/IMS Trans. Data Sci.
  doi: 10.1145/3447814
– volume: 833
  year: 2021
  ident: 10.1016/j.tust.2022.104979_b0080
  article-title: A quantitative approach to predict tunnel overbreak based on the Q-system
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/833/1/012165
– volume: 24
  start-page: 44
  year: 2015
  ident: 10.1016/j.tust.2022.104979_b0095
  article-title: Peeking inside the black box: visualizing statistical learning with plots of individual conditional expectation
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2014.907095
– volume: 70
  start-page: 363
  year: 2017
  ident: 10.1016/j.tust.2022.104979_b0210
  article-title: Optimization of smooth blasting parameters for mountain tunnel construction with specified control indices based on a GA and ISVR coupling algorithm
  publication-title: Tunn. Undergr. Sp. Technol.
  doi: 10.1016/j.tust.2017.09.007
– volume: 1
  start-page: 69
  year: 2015
  ident: 10.1016/j.tust.2022.104979_b0155
  article-title: Evaluation of dump slope stability of a coal mine using artificial neural network
  publication-title: Geomech. Geophys. Geo-Energy Geo-Resources
  doi: 10.1007/s40948-015-0009-8
– year: 2021
  ident: 10.1016/j.tust.2022.104979_b0010
  article-title: An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile bearing capacity
  publication-title: Artif. Intell. Rev.
– start-page: 703
  year: 1993
  ident: 10.1016/j.tust.2022.104979_b0025
  article-title: Swarm intelligence in cellular robotic systems
  publication-title: Robot. Biol. Syst. Towar. a New Bionics?
  doi: 10.1007/978-3-642-58069-7_38
– volume: 2
  year: 2021
  ident: 10.1016/j.tust.2022.104979_b0175
  article-title: Prediction of back break in blasting using random decision trees
  publication-title: Eng. Comput.
– ident: 10.1016/j.tust.2022.104979_b0380
  doi: 10.1061/9780784480106.014
– volume: 96
  start-page: 141
  year: 2008
  ident: 10.1016/j.tust.2022.104979_b0390
  article-title: Prediction of uniaxial compressive strength of sandstones using petrography-based models
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2007.10.009
– volume: 63
  start-page: 29
  year: 2017
  ident: 10.1016/j.tust.2022.104979_b0015
  article-title: Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition
  publication-title: Tunn. Undergr. Sp. Technol.
  doi: 10.1016/j.tust.2016.12.009
– volume: 115
  year: 2021
  ident: 10.1016/j.tust.2022.104979_b0040
  article-title: Experimental and numerical investigation on overbreak control considering the influence of initial support in tunnels
  publication-title: Tunn. Undergr. Sp. Technol.
  doi: 10.1016/j.tust.2021.104017
– ident: 10.1016/j.tust.2022.104979_b0065
  doi: 10.1016/S1003-6326(13)62487-5
– volume: 145
  year: 2020
  ident: 10.1016/j.tust.2022.104979_b0205
  article-title: A multiple search strategies based grey wolf optimizer for solving multi-objective optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.113134
– volume: 12
  start-page: 469
  year: 2021
  ident: 10.1016/j.tust.2022.104979_b0365
  article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.03.007
– volume: 32
  start-page: 23
  year: 2018
  ident: 10.1016/j.tust.2022.104979_b0340
  article-title: Loan evaluation in P2P lending based on Random Forest optimized by genetic algorithm with profit score
  publication-title: Electron. Commer. Res. Appl.
  doi: 10.1016/j.elerap.2018.10.004
– volume: 6
  start-page: 67
  year: 2014
  ident: 10.1016/j.tust.2022.104979_b0290
  article-title: An ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine
  publication-title: Iran. J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2013.11.001
– volume: 28
  start-page: 679
  year: 2018
  ident: 10.1016/j.tust.2022.104979_b0055
  article-title: Prediction of overbreak depth in Ghalaje road tunnel using strength factor
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2018.04.013
– volume: 14
  start-page: 307
  year: 1996
  ident: 10.1016/j.tust.2022.104979_b0220
  article-title: Overbreak and underbreak in underground openings Part 1: Measurement using the light sectioning method and digital image processing
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/BF00421946
– volume: 63
  start-page: 90
  year: 2013
  ident: 10.1016/j.tust.2022.104979_b0090
  article-title: Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology
  publication-title: Bioscience
  doi: 10.1525/bio.2013.63.2.5
– volume: 78
  start-page: 981
  year: 2019
  ident: 10.1016/j.tust.2022.104979_b0170
  article-title: A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-017-1116-2
– ident: 10.1016/j.tust.2022.104979_b0135
  doi: 10.1016/j.trgeo.2022.100745
– volume: 14
  start-page: 325
  year: 1996
  ident: 10.1016/j.tust.2022.104979_b0115
  article-title: Overbreak and underbreak in underground openings Part 2: Causes and implications
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/BF00421947
– volume: 38
  start-page: 161
  year: 2013
  ident: 10.1016/j.tust.2022.104979_b0125
  article-title: Optimizing overbreak prediction based on geological parameters comparing multiple regression analysis and artificial neural network
  publication-title: Tunn. Undergr. Sp. Technol.
  doi: 10.1016/j.tust.2013.06.003
– volume: 30
  start-page: 4753
  year: 2021
  ident: 10.1016/j.tust.2022.104979_b0370
  article-title: Performance of hybrid SCA-RF and HHO-RF models for predicting backbreak in open-pit mine blasting operations
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-021-09929-y
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.tust.2022.104979_b0035
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 25
  start-page: 439
  year: 2015
  ident: 10.1016/j.tust.2022.104979_b0245
  article-title: Use of fuzzy set theory for minimizing overbreak in underground blasting operations – a case study of Alborz Tunnel
  publication-title: Iran. Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2015.03.018
– volume: 69
  start-page: 59
  year: 2014
  ident: 10.1016/j.tust.2022.104979_b0335
  article-title: Analysis of the excavation damaged zone around a tunnel accounting for geostress and unloading
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2014.03.003
– volume: 43
  start-page: 113
  year: 2014
  ident: 10.1016/j.tust.2022.104979_b0345
  article-title: An application of the modified Holmberg-Persson approach for tunnel blasting design
  publication-title: Tunn. Undergr. Sp. Technol.
  doi: 10.1016/j.tust.2014.04.009
– volume: 36
  start-page: 425
  year: 2018
  ident: 10.1016/j.tust.2022.104979_b0240
  article-title: Prediction of blast-induced overbreak based on geo-mechanical parameters, blasting factors and the area of tunnel face
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-017-0336-3
– volume: 1
  start-page: 14
  year: 2011
  ident: 10.1016/j.tust.2022.104979_b0215
  article-title: Classification and regression trees
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.8
– volume: 8
  start-page: 181
  year: 1971
  ident: 10.1016/j.tust.2022.104979_b0180
  article-title: On the fracture process in blasting
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/0148-9062(71)90018-0
– ident: 10.1016/j.tust.2022.104979_b0075
– volume: 90
  year: 2020
  ident: 10.1016/j.tust.2022.104979_b0150
  article-title: Tunicate Swarm Algorithm: a new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103541
– volume: 10
  year: 2020
  ident: 10.1016/j.tust.2022.104979_b0355
  article-title: A combination of feature selection and random forest techniques to solve a problem related to blast-induced ground vibration
  publication-title: Appl. Sci.
– volume: 100
  start-page: 642
  year: 2005
  ident: 10.1016/j.tust.2022.104979_b0295
  article-title: Outlier labeling with boxplot procedures
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214504000001466
– volume: 34
  year: 2001
  ident: 10.1016/j.tust.2022.104979_b0100
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 103
  year: 2020
  ident: 10.1016/j.tust.2022.104979_b0360
  article-title: TBM performance prediction with Bayesian optimization and automated machine learning
  publication-title: Tunn. Undergr. Sp. Technol.
  doi: 10.1016/j.tust.2020.103493
– volume: 81
  start-page: 112
  year: 2018
  ident: 10.1016/j.tust.2022.104979_b0330
  article-title: Effects of joints on the cutting behavior of disc cutter running on the jointed rock mass
  publication-title: Tunn. Undergr. Sp. Technol.
  doi: 10.1016/j.tust.2018.07.023
– volume: 34
  start-page: 672
  year: 2020
  ident: 10.1016/j.tust.2022.104979_b0315
  article-title: Application of differential evolution algorithm and comparing its performance with literature to predict rock brittleness for excavatability
  publication-title: Int. J. Mining Reclam. Environ.
  doi: 10.1080/17480930.2019.1709012
– year: 2020
  ident: 10.1016/j.tust.2022.104979_b0325
  article-title: A new hybrid grey wolf optimizer-feature weighted-multiple kernel-support vector regression technique to predict TBM performance
  publication-title: Eng. Comput.
– volume: 21
  start-page: 763
  year: 2012
  ident: 10.1016/j.tust.2022.104979_b0030
  article-title: An intelligent approach to evaluate drilling performance
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-010-0457-6
– volume: 28
  start-page: 49
  year: 2012
  ident: 10.1016/j.tust.2022.104979_b0060
  article-title: Prediction of blast-induced overbreak from uncontrolled burn-cut blasting in tunnels driven through medium rock class
  publication-title: Tunn. Undergr. Sp. Technol.
  doi: 10.1016/j.tust.2011.09.004
– volume: 9
  start-page: 26766
  year: 2021
  ident: 10.1016/j.tust.2022.104979_b0005
  article-title: Metaheuristic algorithms on feature selection: a survey of one decade of research (2009–2019)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3056407
– volume: 97
  year: 2021
  ident: 10.1016/j.tust.2022.104979_b0375
  article-title: Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.104015
– volume: 24
  start-page: 208
  year: 2009
  ident: 10.1016/j.tust.2022.104979_b0285
  article-title: Damage assessment of basaltic rock mass due to repeated blasting in a railway tunnelling project - a case study
  publication-title: Tunn. Undergr. Sp. Technol.
  doi: 10.1016/j.tust.2008.08.002
– volume: 34
  start-page: 45
  year: 2018
  ident: 10.1016/j.tust.2022.104979_b0250
  article-title: Development of overbreak prediction models in drill and blast tunneling using soft computing methods
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-017-0520-3
SSID ssj0005229
Score 2.5876167
Snippet [Display omitted] •Three hybrid RF models were developed to predict blast-induced overbreak.•The RF-TSA model outperformed other predictive RF models in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104979
SubjectTerms Metaheuristic algorithms
Overbreak: random forest
Tunicate swarm algorithm
Tunnel blasting
Title Assessment of tunnel blasting-induced overbreak: A novel metaheuristic-based random forest approach
URI https://dx.doi.org/10.1016/j.tust.2022.104979
Volume 133
WOSCitedRecordID wos000989243700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-4364
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005229
  issn: 0886-7798
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBeh3cP2MPbJuq5DD3szLv6QbalvaenI9lAGzSBvRpbkNV3qlMwp3X_fO5_tmLSUbbAXk5jIMrpfTnen-90x9ikJXZYqK_ygELEvQqN96bCQayhNGRhbSBc0zSayszM5m6lvo9Hvjgtzs8iqSt7equv_Kmq4B8JG6uxfiLt_KNyAzyB0uILY4fpHgh_3tTab8_81JrJ4BRjJmODsgwu-xiN_zNwEb1j_JGp6Bd-RRlLrC7em4s0-bnDWg73MLq8wGxH2j74E-dCmnTZTLDq2I7LSVkgWwYg8eOTOq--F7ydNGPV4rpcDwOkfF9RgquG9Y3wSXsb2GUPUN_tcz71JWy28DVZE8SZbiyJoHYtmk7JEii4FK5-6UR86UsQSACNiqnDea2qqmXFP61MA4vKwRpYKTBvhybWiJjVb1bTPcTKcK8JYSoSVZHejLFGgEHfHX05nXwf5QU2Lu_7lWsYVJQduz_SwVTOwVKYv2PPWxeBjgsZLNnLVK_ZsUHjyNTMbkPBlyQkkfBskvAfJER_zBiL8AYhwgggniPAOIm_Y98-n05OJ37bb8E0cBLUvE-fA3HUSXPLCxUIYkYG-Fkliy0KXoSqtBXNRqqwokqIUqUylkVJpsPgDFwbxW7ZTLSv3jvEsAk8AnqeEKURqhdTwp5dxGSCNW1u5x8JuuXLT1qLHliiLvEs6vMxxiXNc4pyWeI95_ZhrqsTy6K-TTgp5a0uSjZgDaB4Z9_4fx-2zpxu8f2A79WrtDtgTc1PPf60-tti6A7w1nD8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+tunnel+blasting-induced+overbreak%3A+A+novel+metaheuristic-based+random+forest+approach&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=He%2C+Biao&rft.au=Armaghani%2C+Danial+Jahed&rft.au=Lai%2C+Sai+Hin&rft.date=2023-03-01&rft.pub=Elsevier+Ltd&rft.issn=0886-7798&rft.eissn=1878-4364&rft.volume=133&rft_id=info:doi/10.1016%2Fj.tust.2022.104979&rft.externalDocID=S0886779822006204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon