A varied density-based clustering algorithm
Discovering clusters of different sizes, shapes, and densities is a challenging duty. DBSCAN can find clusters of different shapes and sizes. But it has trouble finding clusters of different densities because it depends on a global value for its parameter Eps. Several methods have been proposed to t...
Uloženo v:
| Vydáno v: | Journal of computational science Ročník 66; s. 101925 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.01.2023
|
| Témata: | |
| ISSN: | 1877-7503, 1877-7511 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Discovering clusters of different sizes, shapes, and densities is a challenging duty. DBSCAN can find clusters of different shapes and sizes. But it has trouble finding clusters of different densities because it depends on a global value for its parameter Eps. Several methods have been proposed to tackle this problem, each method has its drawbacks. This paper introduces a new stand-alone method to discover clusters of different densities. The proposed method depends on the k-nearest neighbors to compute the local density of each object as the sum of distances to its k1-nearest neighbors, where 0 < k1 < k, it starts from any object. This object is called a cluster initiator. Any object that is reachable from a cluster initiator and has a local density similar to the local density of the cluster initiator is assigned the same cluster. So, the method requires a threshold for similarity, which will be called SR (Similarity Ratio). The proposed method discovers clusters of different densities, shapes, and sizes. The experimental results show the superior ability of the proposed method to detect clusters of different densities even with no discernible separations between them.
•Discovering clusters of varied densities.•A density-based clustering algorithm based on k-nearest neighbors and local density of objects.•Handling varied density clusters with noise. |
|---|---|
| AbstractList | Discovering clusters of different sizes, shapes, and densities is a challenging duty. DBSCAN can find clusters of different shapes and sizes. But it has trouble finding clusters of different densities because it depends on a global value for its parameter Eps. Several methods have been proposed to tackle this problem, each method has its drawbacks. This paper introduces a new stand-alone method to discover clusters of different densities. The proposed method depends on the k-nearest neighbors to compute the local density of each object as the sum of distances to its k1-nearest neighbors, where 0 < k1 < k, it starts from any object. This object is called a cluster initiator. Any object that is reachable from a cluster initiator and has a local density similar to the local density of the cluster initiator is assigned the same cluster. So, the method requires a threshold for similarity, which will be called SR (Similarity Ratio). The proposed method discovers clusters of different densities, shapes, and sizes. The experimental results show the superior ability of the proposed method to detect clusters of different densities even with no discernible separations between them.
•Discovering clusters of varied densities.•A density-based clustering algorithm based on k-nearest neighbors and local density of objects.•Handling varied density clusters with noise. |
| ArticleNumber | 101925 |
| Author | Fahim, Ahmed |
| Author_xml | – sequence: 1 givenname: Ahmed surname: Fahim fullname: Fahim, Ahmed email: ahmmedfahim@yahoo.com, a.abualeala@psau.edu.sa organization: Department of Computer Science, Faculty of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Aflaj, Saudi Arabia |
| BookMark | eNp9j8tqwzAQRUVJoWmaH-jK-2JXD1uSoZsQ-oJAN-1ayNIolXHsIqmB_H1tXLroIrO5MwPnwrlGi37oAaFbgguCCb9vi3YwsaCY0ulR0-oCLYkUIhcVIYu_HbMrtI6xxeMwKWvCluhukx118GAzC3306ZQ3Oo6X6b5jguD7faa7_RB8-jzcoEunuwjr31yhj6fH9-1Lvnt7ft1udrlhGKdcMgGNA1eBNVDbxjlcycoKwSlzrOLQYGwl4bphGpdONMyUwAjnoiSOU2ArROdeE4YYAzj1FfxBh5MiWE3GqlWTsZqM1Ww8QvIfZHzSyQ99Ctp359GHGYVR6ughqGg89AasD2CSsoM_h_8AIEpzNw |
| CitedBy_id | crossref_primary_10_1016_j_ijar_2023_108968 crossref_primary_10_1016_j_cherd_2025_03_018 crossref_primary_10_1186_s43067_024_00161_1 crossref_primary_10_1002_eng2_70037 crossref_primary_10_3390_s24010118 crossref_primary_10_3390_en17164125 crossref_primary_10_1371_journal_pone_0313890 crossref_primary_10_1002_adts_202301113 crossref_primary_10_3390_pr11041240 |
| Cites_doi | 10.5815/ijmecs.2017.12.02 10.2307/2532178 10.1155/2018/3742048 10.1109/TIP.2016.2559803 10.1145/276305.276312 10.1016/j.ins.2018.03.031 10.1109/ICICCS48265.2020.9121008 10.1109/DMIA.2015.14 10.1109/ICEBE.2008.54 10.1109/TKDE.2002.1033770 10.1145/235968.233324 10.1126/science.1242072 10.1145/304181.304187 10.1093/comjnl/16.1.30 10.1631/jzus.2006.A1626 10.1007/s00500-020-04777-z 10.1093/comjnl/20.4.364 10.1145/276305.276314 10.1186/1471-2105-8-3 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jocs.2022.101925 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Business |
| EISSN | 1877-7511 |
| ExternalDocumentID | 10_1016_j_jocs_2022_101925 S1877750322002848 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 P2P PC. Q38 RIG ROL SDF SES SPC SPCBC SSV SSZ T5K UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-837ebfef5edce9dbff0585d77623f356eb00d816ab3a04f7b3c4e3166741f62e3 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000950823200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1877-7503 |
| IngestDate | Sat Nov 29 06:58:06 EST 2025 Tue Nov 18 22:35:00 EST 2025 Fri Feb 23 02:38:18 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cluster analysis Varied density clusters VDCA Clustering algorithms k-nearest neighbors |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-837ebfef5edce9dbff0585d77623f356eb00d816ab3a04f7b3c4e3166741f62e3 |
| ParticipantIDs | crossref_primary_10_1016_j_jocs_2022_101925 crossref_citationtrail_10_1016_j_jocs_2022_101925 elsevier_sciencedirect_doi_10_1016_j_jocs_2022_101925 |
| PublicationCentury | 2000 |
| PublicationDate | January 2023 2023-01-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of computational science |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Agrawal, Gehrke, Gunopulos, Raghavan (bib30) 1998; vol. 27 Alhanjouri, Ahmed (bib17) 2012; vol. 3 Hinneburg, Keim (bib3) 1998; vol. September Fahim (bib12) 2018; vol. 10 Ankerst, Breunig, Kriegel, Sander (bib2) 1999; vol. 28 Zhang, Ramakrishnan, Livny (bib11) 1996 Liu, Zhou, Wu (bib18) 2007; vol. 531 Sheikholeslami, Chatterjee, Zhang (bib29) 1998; no. 24 Fahim (bib14) 2017; vol. 9 Ng, Han (bib6) 1994 Ng, Han (bib7) 2002; vol. 14 Ghanbarpour, Minaei (bib24) 2014 M. Debnath, P.K. Tripathi, R. Elmasri, K-DBSCAN: Identifying spatial clusters with differing density levels, in Proceedings - 2015 International Workshop on Data Mining with Industrial Applications, DMIA 2015: Part of the ETyC 2015, 2015, pp. 51–60, doi 1996, pp. 226–231. C. Xiaoyun, M. Yufang, Z. Yan, W. Ping, GMDBSCAN: Multi-density DBSCAN cluster based on grid, in IEEE International Conference on e-Business Engineering, ICEBE’08 - Workshops: AiR’08, EM2I’08, SOAIC’08, SOKM’08, BIMA’08, DKEEE’08, 2008, pp. 780–783 M. Ester, H.-P. Kriegel, J. Sander, X. Xiaowei, A Density-based algorithm for discovering clusters in large spatial databases with noise, in Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96 Jungan, Jinyin, Dongyong, Jun (bib15) 2018; vol. 2018 Louhichi, Gzara, Ben Abdallah (bib20) 2014 Guha, Rastogi, Cure (bib10) 1998; vol. 2 Hou, Gao, Li (bib21) 2016; vol. 25 Wang, Zhang, Xie, Dai, Xiong, Dan (bib27) 2020; vol. 24 Liu, Wang, Yu (bib26) 2018; vol. 450 Wang, Yang, Muntz (bib28) 1997 Sibson (bib8) 1973; vol. 16 Xiong, Chen, Zhang, Zhang (bib19) 2012; vol. 9 Rodriguez, Laio (bib25) 2014; vol. 344 Fahim, Salem, Torkey, Ramadan (bib4) 2006; vol. 7 . Fu, Medico (bib31) 2007; vol. 8 A. Fahim, A Clustering Algorithm for Varied Density Clusters based on Similarity of Local Density of Objects, in Proceedings of the International Conference on Intelligent Computing and Control Systems, ICICCS 2020, 2020, no. Iciccs, pp. 26–31 Fahim (bib22) 2019; vol. 22 J.E. Gentle, L. Kaufman, and P.J. Rousseuw, Finding Groups in Data: An Introduction to Cluster Analysis., vol. 47, no. 2. 1991. Defays (bib9) 1977; vol. 20 Guha (10.1016/j.jocs.2022.101925_bib10) 1998; vol. 2 Fahim (10.1016/j.jocs.2022.101925_bib4) 2006; vol. 7 Jungan (10.1016/j.jocs.2022.101925_bib15) 2018; vol. 2018 Zhang (10.1016/j.jocs.2022.101925_bib11) 1996 10.1016/j.jocs.2022.101925_bib13 Xiong (10.1016/j.jocs.2022.101925_bib19) 2012; vol. 9 Wang (10.1016/j.jocs.2022.101925_bib28) 1997 10.1016/j.jocs.2022.101925_bib1 Ghanbarpour (10.1016/j.jocs.2022.101925_bib24) 2014 Ankerst (10.1016/j.jocs.2022.101925_bib2) 1999; vol. 28 Wang (10.1016/j.jocs.2022.101925_bib27) 2020; vol. 24 Hinneburg (10.1016/j.jocs.2022.101925_bib3) 1998; vol. September 10.1016/j.jocs.2022.101925_bib5 Liu (10.1016/j.jocs.2022.101925_bib26) 2018; vol. 450 Ng (10.1016/j.jocs.2022.101925_bib7) 2002; vol. 14 10.1016/j.jocs.2022.101925_bib23 Sibson (10.1016/j.jocs.2022.101925_bib8) 1973; vol. 16 Agrawal (10.1016/j.jocs.2022.101925_bib30) 1998; vol. 27 Hou (10.1016/j.jocs.2022.101925_bib21) 2016; vol. 25 Liu (10.1016/j.jocs.2022.101925_bib18) 2007; vol. 531 Sheikholeslami (10.1016/j.jocs.2022.101925_bib29) 1998; no. 24 Ng (10.1016/j.jocs.2022.101925_bib6) 1994 Louhichi (10.1016/j.jocs.2022.101925_bib20) 2014 Defays (10.1016/j.jocs.2022.101925_bib9) 1977; vol. 20 Fahim (10.1016/j.jocs.2022.101925_bib12) 2018; vol. 10 Fu (10.1016/j.jocs.2022.101925_bib31) 2007; vol. 8 Rodriguez (10.1016/j.jocs.2022.101925_bib25) 2014; vol. 344 Fahim (10.1016/j.jocs.2022.101925_bib14) 2017; vol. 9 10.1016/j.jocs.2022.101925_bib16 Alhanjouri (10.1016/j.jocs.2022.101925_bib17) 2012; vol. 3 Fahim (10.1016/j.jocs.2022.101925_bib22) 2019; vol. 22 |
| References_xml | – volume: vol. 3 start-page: 1 year: 2012 end-page: 9 ident: bib17 article-title: New density-based clustering technique: GMDBSCAN-UR publication-title: Int. J. Adv. Res. Comput. Sci. – volume: vol. 450 start-page: 200 year: 2018 end-page: 226 ident: bib26 article-title: Shared-nearest-neighbor-based clustering by fast search and find of density peaks publication-title: Inf. Sci. (Ny. ). – volume: vol. 2018 year: 2018 ident: bib15 article-title: A k-deviation density based clustering algorithm publication-title: Math. Probl. Eng. – reference: M. Ester, H.-P. Kriegel, J. Sander, X. Xiaowei, A Density-based algorithm for discovering clusters in large spatial databases with noise, in Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96 – volume: vol. 14 start-page: 1003 year: 2002 end-page: 1016 ident: bib7 article-title: CLARANS: a method for clustering objects for spatial data mining publication-title: IEEE Trans. Knowl. Data Eng. – reference: A. Fahim, A Clustering Algorithm for Varied Density Clusters based on Similarity of Local Density of Objects, in Proceedings of the International Conference on Intelligent Computing and Control Systems, ICICCS 2020, 2020, no. Iciccs, pp. 26–31, – volume: vol. 27 start-page: 94 year: 1998 end-page: 105 ident: bib30 article-title: Automatic subspace clustering of high dimensional data for data mining applications publication-title: ACM SIGMOD Iternational Conf. Manag. Data – volume: vol. 2 start-page: 73 year: 1998 end-page: 84 ident: bib10 article-title: An efficient clustering algorithm for large databases publication-title: Proc. ACM SIGMOD Int. Conf. Manag. Data – reference: J.E. Gentle, L. Kaufman, and P.J. Rousseuw, Finding Groups in Data: An Introduction to Cluster Analysis., vol. 47, no. 2. 1991. – volume: vol. 24 start-page: 6571 year: 2020 end-page: 6590 ident: bib27 article-title: A density-core-based clustering algorithm with local resultant force publication-title: Soft Comput. – start-page: 144 year: 1994 end-page: 155 ident: bib6 article-title: Efficient and effective clustering methods for spatial data mining publication-title: Proc. 20th Int. Conf. Very Large Data Bases – volume: vol. 25 start-page: 3182 year: 2016 end-page: 3193 ident: bib21 article-title: DSets-DBSCAN: a parameter-free clustering algorithm publication-title: IEEE Trans. Image Process – volume: vol. 9 start-page: 9 year: 2017 end-page: 16 ident: bib14 article-title: A clustering algorithm based on local density of points publication-title: Int. J. Mod. Educ. Comput. Sci. – reference: C. Xiaoyun, M. Yufang, Z. Yan, W. Ping, GMDBSCAN: Multi-density DBSCAN cluster based on grid, in IEEE International Conference on e-Business Engineering, ICEBE’08 - Workshops: AiR’08, EM2I’08, SOAIC’08, SOKM’08, BIMA’08, DKEEE’08, 2008, pp. 780–783, – volume: vol. September start-page: 58 year: 1998 end-page: 65 ident: bib3 article-title: An efficient approach to clustering in large multimedia databases with noise publication-title: Proc. Fourth Int. Conf. Knowl. Discov. Data Min. – reference: M. Debnath, P.K. Tripathi, R. Elmasri, K-DBSCAN: Identifying spatial clusters with differing density levels, in Proceedings - 2015 International Workshop on Data Mining with Industrial Applications, DMIA 2015: Part of the ETyC 2015, 2015, pp. 51–60, doi: – volume: vol. 9 start-page: 2739 year: 2012 end-page: 2749 ident: bib19 article-title: Multi-density DBSCAN algorithm based on density levels partitioning publication-title: J. Inf. Comput. Sci. – volume: no. 24 start-page: 428 year: 1998 end-page: 439 ident: bib29 article-title: Wavecluster: a multi-resolution clustering approach for very large spatial databases publication-title: Proc. Int. Conf. Very Large Data Bases – volume: vol. 28 start-page: 49 year: 1999 end-page: 60 ident: bib2 article-title: OPTICS: ordering points to identify the clustering structure publication-title: ACM SIGMOD Rec. – volume: vol. 20 start-page: 364 year: 1977 end-page: 366 ident: bib9 article-title: An efficient algorithm for a complete link method publication-title: Comput. J. – reference: , 1996, pp. 226–231. – volume: vol. 16 start-page: 30 year: 1973 end-page: 34 ident: bib8 article-title: SLINK: an optimally efficient algorithm for the single-link cluster method publication-title: Comput. J. – volume: vol. 22 start-page: 244 year: 2019 end-page: 258 ident: bib22 article-title: Clustering algorithm for multi-density datasets publication-title: Rom. J. Inf. Sci. Technol. – volume: vol. 7 start-page: 1626 year: 2006 end-page: 1633 ident: bib4 article-title: Efficient enhanced k-means clustering algorithm publication-title: J. Zhejiang Univ. Sci. – volume: vol. 10 start-page: 1 year: 2018 end-page: 10 ident: bib12 article-title: Homogeneous densities clustering algorithm publication-title: Int. J. Inf. Technol. Comput. Sci. – reference: . – year: 2014 ident: bib20 article-title: A density based algorithm for discovering clusters with varied density publication-title: 2014 World Congr. Comput. Appl. Inf. Syst. WCCAIS 2014 – start-page: 1 year: 2014 end-page: 5 ident: bib24 article-title: EXDBSCAN: an extension of DBSCAN to detect clusters in multi-density datasets publication-title: 2014 Iran. Conf. Intell. Syst. ICIS 2014 – volume: vol. 344 start-page: 1492 year: 2014 end-page: 1496 ident: bib25 article-title: Clustering by fast search and find of density peaks publication-title: Science – volume: vol. 8 year: 2007 ident: bib31 article-title: FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data publication-title: BMC Bioinforma. – start-page: 103 year: 1996 end-page: 114 ident: bib11 article-title: BIRCH: an efficient data clustering method for very large databases publication-title: ACM SIGMOD Int. Conf. Manag. Data – volume: vol. 531 start-page: 528 year: 2007 end-page: 531 ident: bib18 article-title: Varied density based spatial clustering of application with noise publication-title: Proc. IEEE Conf. ICSSSM 2007 – start-page: 186 year: 1997 end-page: 195 ident: bib28 article-title: STING: a statistical information grid approach to spatial data mining publication-title: Proc. 23rd Int. Conf. Very Large Databases, VLDB 1997 – volume: vol. 9 start-page: 9 issue: 12 year: 2017 ident: 10.1016/j.jocs.2022.101925_bib14 article-title: A clustering algorithm based on local density of points publication-title: Int. J. Mod. Educ. Comput. Sci. doi: 10.5815/ijmecs.2017.12.02 – volume: no. 24 start-page: 428 year: 1998 ident: 10.1016/j.jocs.2022.101925_bib29 article-title: Wavecluster: a multi-resolution clustering approach for very large spatial databases publication-title: Proc. Int. Conf. Very Large Data Bases – ident: 10.1016/j.jocs.2022.101925_bib5 doi: 10.2307/2532178 – issue: 1 year: 2014 ident: 10.1016/j.jocs.2022.101925_bib20 article-title: A density based algorithm for discovering clusters with varied density publication-title: 2014 World Congr. Comput. Appl. Inf. Syst. WCCAIS 2014 – volume: vol. 2018 year: 2018 ident: 10.1016/j.jocs.2022.101925_bib15 article-title: A k-deviation density based clustering algorithm publication-title: Math. Probl. Eng. doi: 10.1155/2018/3742048 – volume: vol. 25 start-page: 3182 issue: 7 year: 2016 ident: 10.1016/j.jocs.2022.101925_bib21 article-title: DSets-DBSCAN: a parameter-free clustering algorithm publication-title: IEEE Trans. Image Process doi: 10.1109/TIP.2016.2559803 – volume: vol. 2 start-page: 73 issue: 1 year: 1998 ident: 10.1016/j.jocs.2022.101925_bib10 article-title: An efficient clustering algorithm for large databases publication-title: Proc. ACM SIGMOD Int. Conf. Manag. Data doi: 10.1145/276305.276312 – volume: vol. 450 start-page: 200 year: 2018 ident: 10.1016/j.jocs.2022.101925_bib26 article-title: Shared-nearest-neighbor-based clustering by fast search and find of density peaks publication-title: Inf. Sci. (Ny. ). doi: 10.1016/j.ins.2018.03.031 – volume: vol. September start-page: 58 year: 1998 ident: 10.1016/j.jocs.2022.101925_bib3 article-title: An efficient approach to clustering in large multimedia databases with noise publication-title: Proc. Fourth Int. Conf. Knowl. Discov. Data Min. – ident: 10.1016/j.jocs.2022.101925_bib23 doi: 10.1109/ICICCS48265.2020.9121008 – ident: 10.1016/j.jocs.2022.101925_bib13 doi: 10.1109/DMIA.2015.14 – start-page: 186 year: 1997 ident: 10.1016/j.jocs.2022.101925_bib28 article-title: STING: a statistical information grid approach to spatial data mining publication-title: Proc. 23rd Int. Conf. Very Large Databases, VLDB 1997 – ident: 10.1016/j.jocs.2022.101925_bib1 – ident: 10.1016/j.jocs.2022.101925_bib16 doi: 10.1109/ICEBE.2008.54 – volume: vol. 531 start-page: 528 year: 2007 ident: 10.1016/j.jocs.2022.101925_bib18 article-title: Varied density based spatial clustering of application with noise publication-title: Proc. IEEE Conf. ICSSSM 2007 – volume: vol. 14 start-page: 1003 issue: 5 year: 2002 ident: 10.1016/j.jocs.2022.101925_bib7 article-title: CLARANS: a method for clustering objects for spatial data mining publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2002.1033770 – start-page: 103 year: 1996 ident: 10.1016/j.jocs.2022.101925_bib11 article-title: BIRCH: an efficient data clustering method for very large databases publication-title: ACM SIGMOD Int. Conf. Manag. Data doi: 10.1145/235968.233324 – volume: vol. 344 start-page: 1492 issue: 6191 year: 2014 ident: 10.1016/j.jocs.2022.101925_bib25 article-title: Clustering by fast search and find of density peaks publication-title: Science doi: 10.1126/science.1242072 – volume: vol. 10 start-page: 1 issue: 10 year: 2018 ident: 10.1016/j.jocs.2022.101925_bib12 article-title: Homogeneous densities clustering algorithm publication-title: Int. J. Inf. Technol. Comput. Sci. – volume: vol. 28 start-page: 49 issue: 2 year: 1999 ident: 10.1016/j.jocs.2022.101925_bib2 article-title: OPTICS: ordering points to identify the clustering structure publication-title: ACM SIGMOD Rec. doi: 10.1145/304181.304187 – volume: vol. 16 start-page: 30 issue: 1 year: 1973 ident: 10.1016/j.jocs.2022.101925_bib8 article-title: SLINK: an optimally efficient algorithm for the single-link cluster method publication-title: Comput. J. doi: 10.1093/comjnl/16.1.30 – volume: vol. 7 start-page: 1626 issue: 10 year: 2006 ident: 10.1016/j.jocs.2022.101925_bib4 article-title: Efficient enhanced k-means clustering algorithm publication-title: J. Zhejiang Univ. Sci. doi: 10.1631/jzus.2006.A1626 – volume: vol. 9 start-page: 2739 issue: 10 year: 2012 ident: 10.1016/j.jocs.2022.101925_bib19 article-title: Multi-density DBSCAN algorithm based on density levels partitioning publication-title: J. Inf. Comput. Sci. – volume: vol. 24 start-page: 6571 issue: 9 year: 2020 ident: 10.1016/j.jocs.2022.101925_bib27 article-title: A density-core-based clustering algorithm with local resultant force publication-title: Soft Comput. doi: 10.1007/s00500-020-04777-z – volume: vol. 20 start-page: 364 issue: 4 year: 1977 ident: 10.1016/j.jocs.2022.101925_bib9 article-title: An efficient algorithm for a complete link method publication-title: Comput. J. doi: 10.1093/comjnl/20.4.364 – volume: vol. 27 start-page: 94 issue: 2 year: 1998 ident: 10.1016/j.jocs.2022.101925_bib30 article-title: Automatic subspace clustering of high dimensional data for data mining applications publication-title: ACM SIGMOD Iternational Conf. Manag. Data doi: 10.1145/276305.276314 – volume: vol. 8 issue: 1 year: 2007 ident: 10.1016/j.jocs.2022.101925_bib31 article-title: FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data publication-title: BMC Bioinforma. doi: 10.1186/1471-2105-8-3 – volume: vol. 3 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.jocs.2022.101925_bib17 article-title: New density-based clustering technique: GMDBSCAN-UR publication-title: Int. J. Adv. Res. Comput. Sci. – volume: vol. 22 start-page: 244 issue: 3–4 year: 2019 ident: 10.1016/j.jocs.2022.101925_bib22 article-title: Clustering algorithm for multi-density datasets publication-title: Rom. J. Inf. Sci. Technol. – start-page: 1 year: 2014 ident: 10.1016/j.jocs.2022.101925_bib24 article-title: EXDBSCAN: an extension of DBSCAN to detect clusters in multi-density datasets publication-title: 2014 Iran. Conf. Intell. Syst. ICIS 2014 – start-page: 144 year: 1994 ident: 10.1016/j.jocs.2022.101925_bib6 article-title: Efficient and effective clustering methods for spatial data mining publication-title: Proc. 20th Int. Conf. Very Large Data Bases |
| SSID | ssj0000388913 |
| Score | 2.3139558 |
| Snippet | Discovering clusters of different sizes, shapes, and densities is a challenging duty. DBSCAN can find clusters of different shapes and sizes. But it has... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 101925 |
| SubjectTerms | Cluster analysis Clustering algorithms k-nearest neighbors Varied density clusters VDCA |
| Title | A varied density-based clustering algorithm |
| URI | https://dx.doi.org/10.1016/j.jocs.2022.101925 |
| Volume | 66 |
| WOSCitedRecordID | wos000950823200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1877-7511 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000388913 issn: 1877-7503 databaseCode: AIEXJ dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEA6-EC_i-sA3PXhQSqRt2iY9FlHUw-JBYW9lm4frsttddqvovzfTpN1VVPTgJZSQpCFfmJkkM_MhdMI9If1QEBzziGGtoRXOw5BjJiPhe7mCt6WKbIK226zTSe4sveW0ohOgRcFeX5Pxv0Kt6zTYEDr7B7ibQXWF_tag61LDrstfAZ-6L3D-Fa4A3_TyDYOiEi4fPENOhComcfA4mjyVveE3limvmB7qW0KrIxuguz1DwJz2hjYwyl4aBGTu0sDIOUYphifMeUEYz0syH2y_6Esha877_fP-iEPC8yA4nzX-mNH6k6Zp_P9q17J-BmNkMEZmxlhEywGNEi1il9Oby85tc18GWWuSiu26mbuNgTLuep8n87WdMWc73G-gdbu0TmrAaqEFWWyi1TrmYBO1rISdOqc2DfjZFnJTxwDpfADSmQHpNEBuo4ery_uLa2ypLTAnnldiRqjMlVQROOEmIlfK0-c2QbVqIopEMTA6CebH3Zx0vVDRnPBQEj-OtQGo4kCSHbRUjAq5ixzJtU0ZMAgm8cJuSBOpDwERzQULCUT_7CG_XoiM27zvQD8yyL5HYQ-5TZ-xyXryY-uoXt_M7kljj2V6x_zQb_9PfzlAa7OdfIiWysmzPEIr_KV8mk6O7XZ5B_6IX3M |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+varied+density-based+clustering+algorithm&rft.jtitle=Journal+of+computational+science&rft.au=Fahim%2C+Ahmed&rft.date=2023-01-01&rft.issn=1877-7503&rft.volume=66&rft.spage=101925&rft_id=info:doi/10.1016%2Fj.jocs.2022.101925&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jocs_2022_101925 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon |