A varied density-based clustering algorithm

Discovering clusters of different sizes, shapes, and densities is a challenging duty. DBSCAN can find clusters of different shapes and sizes. But it has trouble finding clusters of different densities because it depends on a global value for its parameter Eps. Several methods have been proposed to t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational science Ročník 66; s. 101925
Hlavní autor: Fahim, Ahmed
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2023
Témata:
ISSN:1877-7503, 1877-7511
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Discovering clusters of different sizes, shapes, and densities is a challenging duty. DBSCAN can find clusters of different shapes and sizes. But it has trouble finding clusters of different densities because it depends on a global value for its parameter Eps. Several methods have been proposed to tackle this problem, each method has its drawbacks. This paper introduces a new stand-alone method to discover clusters of different densities. The proposed method depends on the k-nearest neighbors to compute the local density of each object as the sum of distances to its k1-nearest neighbors, where 0 < k1 < k, it starts from any object. This object is called a cluster initiator. Any object that is reachable from a cluster initiator and has a local density similar to the local density of the cluster initiator is assigned the same cluster. So, the method requires a threshold for similarity, which will be called SR (Similarity Ratio). The proposed method discovers clusters of different densities, shapes, and sizes. The experimental results show the superior ability of the proposed method to detect clusters of different densities even with no discernible separations between them. •Discovering clusters of varied densities.•A density-based clustering algorithm based on k-nearest neighbors and local density of objects.•Handling varied density clusters with noise.
AbstractList Discovering clusters of different sizes, shapes, and densities is a challenging duty. DBSCAN can find clusters of different shapes and sizes. But it has trouble finding clusters of different densities because it depends on a global value for its parameter Eps. Several methods have been proposed to tackle this problem, each method has its drawbacks. This paper introduces a new stand-alone method to discover clusters of different densities. The proposed method depends on the k-nearest neighbors to compute the local density of each object as the sum of distances to its k1-nearest neighbors, where 0 < k1 < k, it starts from any object. This object is called a cluster initiator. Any object that is reachable from a cluster initiator and has a local density similar to the local density of the cluster initiator is assigned the same cluster. So, the method requires a threshold for similarity, which will be called SR (Similarity Ratio). The proposed method discovers clusters of different densities, shapes, and sizes. The experimental results show the superior ability of the proposed method to detect clusters of different densities even with no discernible separations between them. •Discovering clusters of varied densities.•A density-based clustering algorithm based on k-nearest neighbors and local density of objects.•Handling varied density clusters with noise.
ArticleNumber 101925
Author Fahim, Ahmed
Author_xml – sequence: 1
  givenname: Ahmed
  surname: Fahim
  fullname: Fahim, Ahmed
  email: ahmmedfahim@yahoo.com, a.abualeala@psau.edu.sa
  organization: Department of Computer Science, Faculty of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Aflaj, Saudi Arabia
BookMark eNp9j8tqwzAQRUVJoWmaH-jK-2JXD1uSoZsQ-oJAN-1ayNIolXHsIqmB_H1tXLroIrO5MwPnwrlGi37oAaFbgguCCb9vi3YwsaCY0ulR0-oCLYkUIhcVIYu_HbMrtI6xxeMwKWvCluhukx118GAzC3306ZQ3Oo6X6b5jguD7faa7_RB8-jzcoEunuwjr31yhj6fH9-1Lvnt7ft1udrlhGKdcMgGNA1eBNVDbxjlcycoKwSlzrOLQYGwl4bphGpdONMyUwAjnoiSOU2ArROdeE4YYAzj1FfxBh5MiWE3GqlWTsZqM1Ww8QvIfZHzSyQ99Ctp359GHGYVR6ughqGg89AasD2CSsoM_h_8AIEpzNw
CitedBy_id crossref_primary_10_1016_j_ijar_2023_108968
crossref_primary_10_1016_j_cherd_2025_03_018
crossref_primary_10_1186_s43067_024_00161_1
crossref_primary_10_1002_eng2_70037
crossref_primary_10_3390_s24010118
crossref_primary_10_3390_en17164125
crossref_primary_10_1371_journal_pone_0313890
crossref_primary_10_1002_adts_202301113
crossref_primary_10_3390_pr11041240
Cites_doi 10.5815/ijmecs.2017.12.02
10.2307/2532178
10.1155/2018/3742048
10.1109/TIP.2016.2559803
10.1145/276305.276312
10.1016/j.ins.2018.03.031
10.1109/ICICCS48265.2020.9121008
10.1109/DMIA.2015.14
10.1109/ICEBE.2008.54
10.1109/TKDE.2002.1033770
10.1145/235968.233324
10.1126/science.1242072
10.1145/304181.304187
10.1093/comjnl/16.1.30
10.1631/jzus.2006.A1626
10.1007/s00500-020-04777-z
10.1093/comjnl/20.4.364
10.1145/276305.276314
10.1186/1471-2105-8-3
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jocs.2022.101925
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Business
EISSN 1877-7511
ExternalDocumentID 10_1016_j_jocs_2022_101925
S1877750322002848
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
P2P
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-837ebfef5edce9dbff0585d77623f356eb00d816ab3a04f7b3c4e3166741f62e3
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000950823200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1877-7503
IngestDate Sat Nov 29 06:58:06 EST 2025
Tue Nov 18 22:35:00 EST 2025
Fri Feb 23 02:38:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cluster analysis
Varied density clusters
VDCA
Clustering algorithms
k-nearest neighbors
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-837ebfef5edce9dbff0585d77623f356eb00d816ab3a04f7b3c4e3166741f62e3
ParticipantIDs crossref_primary_10_1016_j_jocs_2022_101925
crossref_citationtrail_10_1016_j_jocs_2022_101925
elsevier_sciencedirect_doi_10_1016_j_jocs_2022_101925
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Journal of computational science
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Agrawal, Gehrke, Gunopulos, Raghavan (bib30) 1998; vol. 27
Alhanjouri, Ahmed (bib17) 2012; vol. 3
Hinneburg, Keim (bib3) 1998; vol. September
Fahim (bib12) 2018; vol. 10
Ankerst, Breunig, Kriegel, Sander (bib2) 1999; vol. 28
Zhang, Ramakrishnan, Livny (bib11) 1996
Liu, Zhou, Wu (bib18) 2007; vol. 531
Sheikholeslami, Chatterjee, Zhang (bib29) 1998; no. 24
Fahim (bib14) 2017; vol. 9
Ng, Han (bib6) 1994
Ng, Han (bib7) 2002; vol. 14
Ghanbarpour, Minaei (bib24) 2014
M. Debnath, P.K. Tripathi, R. Elmasri, K-DBSCAN: Identifying spatial clusters with differing density levels, in Proceedings - 2015 International Workshop on Data Mining with Industrial Applications, DMIA 2015: Part of the ETyC 2015, 2015, pp. 51–60, doi
1996, pp. 226–231.
C. Xiaoyun, M. Yufang, Z. Yan, W. Ping, GMDBSCAN: Multi-density DBSCAN cluster based on grid, in IEEE International Conference on e-Business Engineering, ICEBE’08 - Workshops: AiR’08, EM2I’08, SOAIC’08, SOKM’08, BIMA’08, DKEEE’08, 2008, pp. 780–783
M. Ester, H.-P. Kriegel, J. Sander, X. Xiaowei, A Density-based algorithm for discovering clusters in large spatial databases with noise, in Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96
Jungan, Jinyin, Dongyong, Jun (bib15) 2018; vol. 2018
Louhichi, Gzara, Ben Abdallah (bib20) 2014
Guha, Rastogi, Cure (bib10) 1998; vol. 2
Hou, Gao, Li (bib21) 2016; vol. 25
Wang, Zhang, Xie, Dai, Xiong, Dan (bib27) 2020; vol. 24
Liu, Wang, Yu (bib26) 2018; vol. 450
Wang, Yang, Muntz (bib28) 1997
Sibson (bib8) 1973; vol. 16
Xiong, Chen, Zhang, Zhang (bib19) 2012; vol. 9
Rodriguez, Laio (bib25) 2014; vol. 344
Fahim, Salem, Torkey, Ramadan (bib4) 2006; vol. 7
.
Fu, Medico (bib31) 2007; vol. 8
A. Fahim, A Clustering Algorithm for Varied Density Clusters based on Similarity of Local Density of Objects, in Proceedings of the International Conference on Intelligent Computing and Control Systems, ICICCS 2020, 2020, no. Iciccs, pp. 26–31
Fahim (bib22) 2019; vol. 22
J.E. Gentle, L. Kaufman, and P.J. Rousseuw, Finding Groups in Data: An Introduction to Cluster Analysis., vol. 47, no. 2. 1991.
Defays (bib9) 1977; vol. 20
Guha (10.1016/j.jocs.2022.101925_bib10) 1998; vol. 2
Fahim (10.1016/j.jocs.2022.101925_bib4) 2006; vol. 7
Jungan (10.1016/j.jocs.2022.101925_bib15) 2018; vol. 2018
Zhang (10.1016/j.jocs.2022.101925_bib11) 1996
10.1016/j.jocs.2022.101925_bib13
Xiong (10.1016/j.jocs.2022.101925_bib19) 2012; vol. 9
Wang (10.1016/j.jocs.2022.101925_bib28) 1997
10.1016/j.jocs.2022.101925_bib1
Ghanbarpour (10.1016/j.jocs.2022.101925_bib24) 2014
Ankerst (10.1016/j.jocs.2022.101925_bib2) 1999; vol. 28
Wang (10.1016/j.jocs.2022.101925_bib27) 2020; vol. 24
Hinneburg (10.1016/j.jocs.2022.101925_bib3) 1998; vol. September
10.1016/j.jocs.2022.101925_bib5
Liu (10.1016/j.jocs.2022.101925_bib26) 2018; vol. 450
Ng (10.1016/j.jocs.2022.101925_bib7) 2002; vol. 14
10.1016/j.jocs.2022.101925_bib23
Sibson (10.1016/j.jocs.2022.101925_bib8) 1973; vol. 16
Agrawal (10.1016/j.jocs.2022.101925_bib30) 1998; vol. 27
Hou (10.1016/j.jocs.2022.101925_bib21) 2016; vol. 25
Liu (10.1016/j.jocs.2022.101925_bib18) 2007; vol. 531
Sheikholeslami (10.1016/j.jocs.2022.101925_bib29) 1998; no. 24
Ng (10.1016/j.jocs.2022.101925_bib6) 1994
Louhichi (10.1016/j.jocs.2022.101925_bib20) 2014
Defays (10.1016/j.jocs.2022.101925_bib9) 1977; vol. 20
Fahim (10.1016/j.jocs.2022.101925_bib12) 2018; vol. 10
Fu (10.1016/j.jocs.2022.101925_bib31) 2007; vol. 8
Rodriguez (10.1016/j.jocs.2022.101925_bib25) 2014; vol. 344
Fahim (10.1016/j.jocs.2022.101925_bib14) 2017; vol. 9
10.1016/j.jocs.2022.101925_bib16
Alhanjouri (10.1016/j.jocs.2022.101925_bib17) 2012; vol. 3
Fahim (10.1016/j.jocs.2022.101925_bib22) 2019; vol. 22
References_xml – volume: vol. 3
  start-page: 1
  year: 2012
  end-page: 9
  ident: bib17
  article-title: New density-based clustering technique: GMDBSCAN-UR
  publication-title: Int. J. Adv. Res. Comput. Sci.
– volume: vol. 450
  start-page: 200
  year: 2018
  end-page: 226
  ident: bib26
  article-title: Shared-nearest-neighbor-based clustering by fast search and find of density peaks
  publication-title: Inf. Sci. (Ny. ).
– volume: vol. 2018
  year: 2018
  ident: bib15
  article-title: A k-deviation density based clustering algorithm
  publication-title: Math. Probl. Eng.
– reference: M. Ester, H.-P. Kriegel, J. Sander, X. Xiaowei, A Density-based algorithm for discovering clusters in large spatial databases with noise, in Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96
– volume: vol. 14
  start-page: 1003
  year: 2002
  end-page: 1016
  ident: bib7
  article-title: CLARANS: a method for clustering objects for spatial data mining
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: A. Fahim, A Clustering Algorithm for Varied Density Clusters based on Similarity of Local Density of Objects, in Proceedings of the International Conference on Intelligent Computing and Control Systems, ICICCS 2020, 2020, no. Iciccs, pp. 26–31,
– volume: vol. 27
  start-page: 94
  year: 1998
  end-page: 105
  ident: bib30
  article-title: Automatic subspace clustering of high dimensional data for data mining applications
  publication-title: ACM SIGMOD Iternational Conf. Manag. Data
– volume: vol. 2
  start-page: 73
  year: 1998
  end-page: 84
  ident: bib10
  article-title: An efficient clustering algorithm for large databases
  publication-title: Proc. ACM SIGMOD Int. Conf. Manag. Data
– reference: J.E. Gentle, L. Kaufman, and P.J. Rousseuw, Finding Groups in Data: An Introduction to Cluster Analysis., vol. 47, no. 2. 1991.
– volume: vol. 24
  start-page: 6571
  year: 2020
  end-page: 6590
  ident: bib27
  article-title: A density-core-based clustering algorithm with local resultant force
  publication-title: Soft Comput.
– start-page: 144
  year: 1994
  end-page: 155
  ident: bib6
  article-title: Efficient and effective clustering methods for spatial data mining
  publication-title: Proc. 20th Int. Conf. Very Large Data Bases
– volume: vol. 25
  start-page: 3182
  year: 2016
  end-page: 3193
  ident: bib21
  article-title: DSets-DBSCAN: a parameter-free clustering algorithm
  publication-title: IEEE Trans. Image Process
– volume: vol. 9
  start-page: 9
  year: 2017
  end-page: 16
  ident: bib14
  article-title: A clustering algorithm based on local density of points
  publication-title: Int. J. Mod. Educ. Comput. Sci.
– reference: C. Xiaoyun, M. Yufang, Z. Yan, W. Ping, GMDBSCAN: Multi-density DBSCAN cluster based on grid, in IEEE International Conference on e-Business Engineering, ICEBE’08 - Workshops: AiR’08, EM2I’08, SOAIC’08, SOKM’08, BIMA’08, DKEEE’08, 2008, pp. 780–783,
– volume: vol. September
  start-page: 58
  year: 1998
  end-page: 65
  ident: bib3
  article-title: An efficient approach to clustering in large multimedia databases with noise
  publication-title: Proc. Fourth Int. Conf. Knowl. Discov. Data Min.
– reference: M. Debnath, P.K. Tripathi, R. Elmasri, K-DBSCAN: Identifying spatial clusters with differing density levels, in Proceedings - 2015 International Workshop on Data Mining with Industrial Applications, DMIA 2015: Part of the ETyC 2015, 2015, pp. 51–60, doi:
– volume: vol. 9
  start-page: 2739
  year: 2012
  end-page: 2749
  ident: bib19
  article-title: Multi-density DBSCAN algorithm based on density levels partitioning
  publication-title: J. Inf. Comput. Sci.
– volume: no. 24
  start-page: 428
  year: 1998
  end-page: 439
  ident: bib29
  article-title: Wavecluster: a multi-resolution clustering approach for very large spatial databases
  publication-title: Proc. Int. Conf. Very Large Data Bases
– volume: vol. 28
  start-page: 49
  year: 1999
  end-page: 60
  ident: bib2
  article-title: OPTICS: ordering points to identify the clustering structure
  publication-title: ACM SIGMOD Rec.
– volume: vol. 20
  start-page: 364
  year: 1977
  end-page: 366
  ident: bib9
  article-title: An efficient algorithm for a complete link method
  publication-title: Comput. J.
– reference: , 1996, pp. 226–231.
– volume: vol. 16
  start-page: 30
  year: 1973
  end-page: 34
  ident: bib8
  article-title: SLINK: an optimally efficient algorithm for the single-link cluster method
  publication-title: Comput. J.
– volume: vol. 22
  start-page: 244
  year: 2019
  end-page: 258
  ident: bib22
  article-title: Clustering algorithm for multi-density datasets
  publication-title: Rom. J. Inf. Sci. Technol.
– volume: vol. 7
  start-page: 1626
  year: 2006
  end-page: 1633
  ident: bib4
  article-title: Efficient enhanced k-means clustering algorithm
  publication-title: J. Zhejiang Univ. Sci.
– volume: vol. 10
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib12
  article-title: Homogeneous densities clustering algorithm
  publication-title: Int. J. Inf. Technol. Comput. Sci.
– reference: .
– year: 2014
  ident: bib20
  article-title: A density based algorithm for discovering clusters with varied density
  publication-title: 2014 World Congr. Comput. Appl. Inf. Syst. WCCAIS 2014
– start-page: 1
  year: 2014
  end-page: 5
  ident: bib24
  article-title: EXDBSCAN: an extension of DBSCAN to detect clusters in multi-density datasets
  publication-title: 2014 Iran. Conf. Intell. Syst. ICIS 2014
– volume: vol. 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: bib25
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
– volume: vol. 8
  year: 2007
  ident: bib31
  article-title: FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data
  publication-title: BMC Bioinforma.
– start-page: 103
  year: 1996
  end-page: 114
  ident: bib11
  article-title: BIRCH: an efficient data clustering method for very large databases
  publication-title: ACM SIGMOD Int. Conf. Manag. Data
– volume: vol. 531
  start-page: 528
  year: 2007
  end-page: 531
  ident: bib18
  article-title: Varied density based spatial clustering of application with noise
  publication-title: Proc. IEEE Conf. ICSSSM 2007
– start-page: 186
  year: 1997
  end-page: 195
  ident: bib28
  article-title: STING: a statistical information grid approach to spatial data mining
  publication-title: Proc. 23rd Int. Conf. Very Large Databases, VLDB 1997
– volume: vol. 9
  start-page: 9
  issue: 12
  year: 2017
  ident: 10.1016/j.jocs.2022.101925_bib14
  article-title: A clustering algorithm based on local density of points
  publication-title: Int. J. Mod. Educ. Comput. Sci.
  doi: 10.5815/ijmecs.2017.12.02
– volume: no. 24
  start-page: 428
  year: 1998
  ident: 10.1016/j.jocs.2022.101925_bib29
  article-title: Wavecluster: a multi-resolution clustering approach for very large spatial databases
  publication-title: Proc. Int. Conf. Very Large Data Bases
– ident: 10.1016/j.jocs.2022.101925_bib5
  doi: 10.2307/2532178
– issue: 1
  year: 2014
  ident: 10.1016/j.jocs.2022.101925_bib20
  article-title: A density based algorithm for discovering clusters with varied density
  publication-title: 2014 World Congr. Comput. Appl. Inf. Syst. WCCAIS 2014
– volume: vol. 2018
  year: 2018
  ident: 10.1016/j.jocs.2022.101925_bib15
  article-title: A k-deviation density based clustering algorithm
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2018/3742048
– volume: vol. 25
  start-page: 3182
  issue: 7
  year: 2016
  ident: 10.1016/j.jocs.2022.101925_bib21
  article-title: DSets-DBSCAN: a parameter-free clustering algorithm
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2016.2559803
– volume: vol. 2
  start-page: 73
  issue: 1
  year: 1998
  ident: 10.1016/j.jocs.2022.101925_bib10
  article-title: An efficient clustering algorithm for large databases
  publication-title: Proc. ACM SIGMOD Int. Conf. Manag. Data
  doi: 10.1145/276305.276312
– volume: vol. 450
  start-page: 200
  year: 2018
  ident: 10.1016/j.jocs.2022.101925_bib26
  article-title: Shared-nearest-neighbor-based clustering by fast search and find of density peaks
  publication-title: Inf. Sci. (Ny. ).
  doi: 10.1016/j.ins.2018.03.031
– volume: vol. September
  start-page: 58
  year: 1998
  ident: 10.1016/j.jocs.2022.101925_bib3
  article-title: An efficient approach to clustering in large multimedia databases with noise
  publication-title: Proc. Fourth Int. Conf. Knowl. Discov. Data Min.
– ident: 10.1016/j.jocs.2022.101925_bib23
  doi: 10.1109/ICICCS48265.2020.9121008
– ident: 10.1016/j.jocs.2022.101925_bib13
  doi: 10.1109/DMIA.2015.14
– start-page: 186
  year: 1997
  ident: 10.1016/j.jocs.2022.101925_bib28
  article-title: STING: a statistical information grid approach to spatial data mining
  publication-title: Proc. 23rd Int. Conf. Very Large Databases, VLDB 1997
– ident: 10.1016/j.jocs.2022.101925_bib1
– ident: 10.1016/j.jocs.2022.101925_bib16
  doi: 10.1109/ICEBE.2008.54
– volume: vol. 531
  start-page: 528
  year: 2007
  ident: 10.1016/j.jocs.2022.101925_bib18
  article-title: Varied density based spatial clustering of application with noise
  publication-title: Proc. IEEE Conf. ICSSSM 2007
– volume: vol. 14
  start-page: 1003
  issue: 5
  year: 2002
  ident: 10.1016/j.jocs.2022.101925_bib7
  article-title: CLARANS: a method for clustering objects for spatial data mining
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2002.1033770
– start-page: 103
  year: 1996
  ident: 10.1016/j.jocs.2022.101925_bib11
  article-title: BIRCH: an efficient data clustering method for very large databases
  publication-title: ACM SIGMOD Int. Conf. Manag. Data
  doi: 10.1145/235968.233324
– volume: vol. 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 10.1016/j.jocs.2022.101925_bib25
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: vol. 10
  start-page: 1
  issue: 10
  year: 2018
  ident: 10.1016/j.jocs.2022.101925_bib12
  article-title: Homogeneous densities clustering algorithm
  publication-title: Int. J. Inf. Technol. Comput. Sci.
– volume: vol. 28
  start-page: 49
  issue: 2
  year: 1999
  ident: 10.1016/j.jocs.2022.101925_bib2
  article-title: OPTICS: ordering points to identify the clustering structure
  publication-title: ACM SIGMOD Rec.
  doi: 10.1145/304181.304187
– volume: vol. 16
  start-page: 30
  issue: 1
  year: 1973
  ident: 10.1016/j.jocs.2022.101925_bib8
  article-title: SLINK: an optimally efficient algorithm for the single-link cluster method
  publication-title: Comput. J.
  doi: 10.1093/comjnl/16.1.30
– volume: vol. 7
  start-page: 1626
  issue: 10
  year: 2006
  ident: 10.1016/j.jocs.2022.101925_bib4
  article-title: Efficient enhanced k-means clustering algorithm
  publication-title: J. Zhejiang Univ. Sci.
  doi: 10.1631/jzus.2006.A1626
– volume: vol. 9
  start-page: 2739
  issue: 10
  year: 2012
  ident: 10.1016/j.jocs.2022.101925_bib19
  article-title: Multi-density DBSCAN algorithm based on density levels partitioning
  publication-title: J. Inf. Comput. Sci.
– volume: vol. 24
  start-page: 6571
  issue: 9
  year: 2020
  ident: 10.1016/j.jocs.2022.101925_bib27
  article-title: A density-core-based clustering algorithm with local resultant force
  publication-title: Soft Comput.
  doi: 10.1007/s00500-020-04777-z
– volume: vol. 20
  start-page: 364
  issue: 4
  year: 1977
  ident: 10.1016/j.jocs.2022.101925_bib9
  article-title: An efficient algorithm for a complete link method
  publication-title: Comput. J.
  doi: 10.1093/comjnl/20.4.364
– volume: vol. 27
  start-page: 94
  issue: 2
  year: 1998
  ident: 10.1016/j.jocs.2022.101925_bib30
  article-title: Automatic subspace clustering of high dimensional data for data mining applications
  publication-title: ACM SIGMOD Iternational Conf. Manag. Data
  doi: 10.1145/276305.276314
– volume: vol. 8
  issue: 1
  year: 2007
  ident: 10.1016/j.jocs.2022.101925_bib31
  article-title: FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data
  publication-title: BMC Bioinforma.
  doi: 10.1186/1471-2105-8-3
– volume: vol. 3
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.jocs.2022.101925_bib17
  article-title: New density-based clustering technique: GMDBSCAN-UR
  publication-title: Int. J. Adv. Res. Comput. Sci.
– volume: vol. 22
  start-page: 244
  issue: 3–4
  year: 2019
  ident: 10.1016/j.jocs.2022.101925_bib22
  article-title: Clustering algorithm for multi-density datasets
  publication-title: Rom. J. Inf. Sci. Technol.
– start-page: 1
  year: 2014
  ident: 10.1016/j.jocs.2022.101925_bib24
  article-title: EXDBSCAN: an extension of DBSCAN to detect clusters in multi-density datasets
  publication-title: 2014 Iran. Conf. Intell. Syst. ICIS 2014
– start-page: 144
  year: 1994
  ident: 10.1016/j.jocs.2022.101925_bib6
  article-title: Efficient and effective clustering methods for spatial data mining
  publication-title: Proc. 20th Int. Conf. Very Large Data Bases
SSID ssj0000388913
Score 2.3139558
Snippet Discovering clusters of different sizes, shapes, and densities is a challenging duty. DBSCAN can find clusters of different shapes and sizes. But it has...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101925
SubjectTerms Cluster analysis
Clustering algorithms
k-nearest neighbors
Varied density clusters
VDCA
Title A varied density-based clustering algorithm
URI https://dx.doi.org/10.1016/j.jocs.2022.101925
Volume 66
WOSCitedRecordID wos000950823200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1877-7511
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388913
  issn: 1877-7503
  databaseCode: AIEXJ
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEA6-EC_i-sA3PXhQSqRt2iY9FlHUw-JBYW9lm4frsttddqvovzfTpN1VVPTgJZSQpCFfmJkkM_MhdMI9If1QEBzziGGtoRXOw5BjJiPhe7mCt6WKbIK226zTSe4sveW0ohOgRcFeX5Pxv0Kt6zTYEDr7B7ibQXWF_tag61LDrstfAZ-6L3D-Fa4A3_TyDYOiEi4fPENOhComcfA4mjyVveE3limvmB7qW0KrIxuguz1DwJz2hjYwyl4aBGTu0sDIOUYphifMeUEYz0syH2y_6Esha877_fP-iEPC8yA4nzX-mNH6k6Zp_P9q17J-BmNkMEZmxlhEywGNEi1il9Oby85tc18GWWuSiu26mbuNgTLuep8n87WdMWc73G-gdbu0TmrAaqEFWWyi1TrmYBO1rISdOqc2DfjZFnJTxwDpfADSmQHpNEBuo4ery_uLa2ypLTAnnldiRqjMlVQROOEmIlfK0-c2QbVqIopEMTA6CebH3Zx0vVDRnPBQEj-OtQGo4kCSHbRUjAq5ixzJtU0ZMAgm8cJuSBOpDwERzQULCUT_7CG_XoiM27zvQD8yyL5HYQ-5TZ-xyXryY-uoXt_M7kljj2V6x_zQb_9PfzlAa7OdfIiWysmzPEIr_KV8mk6O7XZ5B_6IX3M
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+varied+density-based+clustering+algorithm&rft.jtitle=Journal+of+computational+science&rft.au=Fahim%2C+Ahmed&rft.date=2023-01-01&rft.issn=1877-7503&rft.volume=66&rft.spage=101925&rft_id=info:doi/10.1016%2Fj.jocs.2022.101925&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jocs_2022_101925
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon