Clustering right-skewed data stream via Birnbaum–Saunders mixture models: A flexible approach based on fuzzy clustering algorithm
Despite the widespread use of Gaussian mixture model for clustering datasets, practical applications show that the skewed and leptokurtic mixture models can be considered as promising alternatives. This paper proposes a finite mixture of Birnbaum–Saunders (FM-BS) distributions for analyzing and clus...
Uložené v:
| Vydané v: | Applied soft computing Ročník 82; s. 105539 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.09.2019
|
| Predmet: | |
| ISSN: | 1568-4946, 1872-9681 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Despite the widespread use of Gaussian mixture model for clustering datasets, practical applications show that the skewed and leptokurtic mixture models can be considered as promising alternatives. This paper proposes a finite mixture of Birnbaum–Saunders (FM-BS) distributions for analyzing and clustering right-skewed, leptokurtic, and multimodal lifetime datasets. The maximum likelihood (ML) estimates of the proposed model are obtained by developing a computationally analytical expectation–maximization (EM) type algorithm, as well as a fuzzy classification maximum likelihood (FCML) type algorithm, that combines the advantages of fuzzy clustering and robust statistical estimators. Simulation studies demonstrate the accuracy and computational efficiency of the FCML algorithm to estimate parameters of the FM-BS distributions and to cluster samples drawn from the FM-BS distributions. Finally, some real datasets have been analyzed to illustrate how well the proposed FM-BS model estimates the membership values.
•A finite mixture model for clustering right-skewed, and multimodal data is proposed.•The EM and FCML type algorithms are implemented for computing ML estimates.•Asymptotic standard errors of parameter estimate are obtained through. |
|---|---|
| AbstractList | Despite the widespread use of Gaussian mixture model for clustering datasets, practical applications show that the skewed and leptokurtic mixture models can be considered as promising alternatives. This paper proposes a finite mixture of Birnbaum–Saunders (FM-BS) distributions for analyzing and clustering right-skewed, leptokurtic, and multimodal lifetime datasets. The maximum likelihood (ML) estimates of the proposed model are obtained by developing a computationally analytical expectation–maximization (EM) type algorithm, as well as a fuzzy classification maximum likelihood (FCML) type algorithm, that combines the advantages of fuzzy clustering and robust statistical estimators. Simulation studies demonstrate the accuracy and computational efficiency of the FCML algorithm to estimate parameters of the FM-BS distributions and to cluster samples drawn from the FM-BS distributions. Finally, some real datasets have been analyzed to illustrate how well the proposed FM-BS model estimates the membership values.
•A finite mixture model for clustering right-skewed, and multimodal data is proposed.•The EM and FCML type algorithms are implemented for computing ML estimates.•Asymptotic standard errors of parameter estimate are obtained through. |
| ArticleNumber | 105539 |
| Author | Mashinchi, Mashallah Naderi, Mehrdad Hashemi, Farzane |
| Author_xml | – sequence: 1 givenname: Farzane surname: Hashemi fullname: Hashemi, Farzane email: farzane.hashemi1367@yahoo.com organization: Department of Statistics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran – sequence: 2 givenname: Mehrdad surname: Naderi fullname: Naderi, Mehrdad email: m.naderi@up.ac.za organization: Department of Statistics, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa – sequence: 3 givenname: Mashallah surname: Mashinchi fullname: Mashinchi, Mashallah email: mashinchi@uk.ac.ir organization: Department of Statistics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran |
| BookMark | eNp9kMFqGzEQhkVJIbGbF8hJL7CutFrvaksvqWnSQiCHJGcxkmZtubsrI2kdO6dAHyFv2CfpGhcKOfg0PwPfP8w3IWe975GQK85mnPHy83oG0ZtZzng9LuZzUX8gF1xWeVaXkp-NeV7KrKiL8pxMYlyzEapzeUF-L9ohJgyuX9LglquUxV_4jJZaSEBjCggd3Tqg31zoNQzdn9e3Bxh6iyHSzu3SEJB23mIbv9Br2rS4c7pFCptN8GBWVEMc23xPm-HlZU_N_3PQLn1wadV9Ih8baCNe_ptT8nTz_XHxI7u7v_25uL7LjGAsZTKXDeOVhrzJeWWFKYQsmag1GMmh0YUujCxEVY5vmhyslroqGDNC8FpItGJK8mOvCT7GgI3aBNdB2CvO1EGjWquDRnXQqI4aR0i-g4xLkJzvUwDXnka_HtFRDm4dBhWNw96gdQFNUta7U_hfpfKUAg |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2020_106797 crossref_primary_10_1007_s42952_020_00063_8 crossref_primary_10_1016_j_amc_2020_125712 crossref_primary_10_1007_s40314_022_01875_6 crossref_primary_10_1007_s40995_020_01020_0 crossref_primary_10_1007_s40304_021_00260_9 crossref_primary_10_1002_sam_70027 crossref_primary_10_1016_j_amc_2020_125109 crossref_primary_10_1016_j_cam_2023_115433 |
| Cites_doi | 10.1016/j.csda.2011.06.026 10.18869/acadpub.jirss.16.1.1003 10.1111/1467-9965.00068 10.1080/02331880701829948 10.1080/02664763.2018.1428288 10.1002/asmb.2403 10.1016/j.patcog.2017.05.017 10.1007/s11222-009-9128-9 10.2478/bile-2013-0006 10.1016/j.fss.2015.07.001 10.1016/j.apm.2014.05.039 10.1002/asmb.887 10.1007/BF01908075 10.1007/s00180-012-0327-z 10.1007/s00500-007-0266-8 10.1007/s00477-008-0215-9 10.1111/j.2517-6161.1977.tb01600.x 10.1016/j.fss.2015.04.012 10.1016/j.enconman.2017.03.083 10.1016/0165-0114(93)90030-L 10.2307/3212003 10.1137/1026034 10.1111/j.2517-6161.1989.tb01754.x 10.1023/A:1008981510081 10.1007/s10182-016-0266-z 10.1016/j.insmatheco.2016.06.018 10.1016/j.jmva.2018.11.015 10.1016/j.csda.2014.09.006 10.1111/j.2517-6161.1982.tb01203.x 10.1016/S0167-9473(02)00254-2 10.1016/j.patcog.2011.08.028 10.1016/S0019-9958(65)90241-X 10.1080/02664763.2016.1190322 10.1007/s11222-013-9386-4 10.1016/j.patrec.2008.06.013 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2019.105539 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2019_105539 S1568494619303151 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-828f017ba2f217d3c4386039bac81afb4b4c84376494c2adb8b7400c331938ed3 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000484606800052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Sat Nov 29 07:04:42 EST 2025 Tue Nov 18 21:40:51 EST 2025 Fri Feb 23 02:45:59 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fuzzy clustering Classification maximum likelihood Finite mixture of Birnbaum–Saunders distributions EM-type algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-828f017ba2f217d3c4386039bac81afb4b4c84376494c2adb8b7400c331938ed3 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2019_105539 crossref_citationtrail_10_1016_j_asoc_2019_105539 elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105539 |
| PublicationCentury | 2000 |
| PublicationDate | September 2019 2019-09-00 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Ali (b18) 2015; 39 Wang, Lin (b35) 2012; 28 Redner, Walker (b1) 1984; 26 Lin (b3) 2009; 20 Naderi, Arabpour, Jamalizadeh (b8) 2017; 16 Dempster, Laird, Rubin (b9) 1977; 39 Naderi, Hung, Lin, Jamalizadeh (b41) 2019; 171 Naderi, Mozafari, Okhli (b20) 2019 McLachlan, Basford (b32) 1988 Hung, Chien (b40) 2016; 44 Gomes, Ferreira, Leiva (b25) 2012; 49 Leiva, Sanhueza, Angulo (b23) 2008; 23 Ferreira, Lachos, Bolfarine (b6) 2016; 100 Benites, Maehara, Vilca, Marmolejo-Ramos (b19) 2017 Paula, Leiva, Barros, Liu (b26) 2011; 28 Yang, Nataliani (b42) 2017; 71 Mohammadi, Alavi, McGowan (b24) 2017; 143 Yang (b10) 1993; 57 Peel, McLachlan (b2) 2000; 10 Bigand, Colot (b14) 2016; 286 Balakrishnan, Kundu (b27) 2018 Zadeh (b15) 1965; 8 Lin, Ho, Lee (b4) 2013; 24 Cabral, Lachos, Prates (b5) 2012; 56 Meilijson (b29) 1989; 51 Bezdek (b31) 1981 Jamalizadeh, Hashemi, Naderi (b28) 2018; 35 Hung, Chang, Chuang (b17) 2007; 12 Hubert, Arabie (b37) 1985; 2 Jorgensen (b36) 2012 Punzo, Mazza, Maruotti (b16) 2018; 45 Balakrishnan, Leiva, Sanhueza, Cabrera (b22) 2009; 43 Quost, Denœux (b13) 2016; 286 Pitselis (b38) 2016; 70 Chatzis, Varvarigou (b11) 2008; 29 Ju, Liu (b12) 2012; 45 O’Hagan, Murphy, Gormley, McNicholas, Karlis (b7) 2016; 93 Hartigan, Wong (b33) 1979; 28 Artzner, Delbaen, Eber, Heath (b39) 1999; 9 Birnbaum, Saunders (b21) 1969; 6 Ng, Kundu, Balakrishnan (b34) 2003; 43 Louis (b30) 1982; 44 Paula (10.1016/j.asoc.2019.105539_b26) 2011; 28 Redner (10.1016/j.asoc.2019.105539_b1) 1984; 26 Ju (10.1016/j.asoc.2019.105539_b12) 2012; 45 Cabral (10.1016/j.asoc.2019.105539_b5) 2012; 56 Zadeh (10.1016/j.asoc.2019.105539_b15) 1965; 8 Louis (10.1016/j.asoc.2019.105539_b30) 1982; 44 Dempster (10.1016/j.asoc.2019.105539_b9) 1977; 39 Meilijson (10.1016/j.asoc.2019.105539_b29) 1989; 51 Ali (10.1016/j.asoc.2019.105539_b18) 2015; 39 Hung (10.1016/j.asoc.2019.105539_b40) 2016; 44 Lin (10.1016/j.asoc.2019.105539_b4) 2013; 24 Yang (10.1016/j.asoc.2019.105539_b42) 2017; 71 Hartigan (10.1016/j.asoc.2019.105539_b33) 1979; 28 Bezdek (10.1016/j.asoc.2019.105539_b31) 1981 Ng (10.1016/j.asoc.2019.105539_b34) 2003; 43 Chatzis (10.1016/j.asoc.2019.105539_b11) 2008; 29 Quost (10.1016/j.asoc.2019.105539_b13) 2016; 286 Birnbaum (10.1016/j.asoc.2019.105539_b21) 1969; 6 Balakrishnan (10.1016/j.asoc.2019.105539_b22) 2009; 43 Benites (10.1016/j.asoc.2019.105539_b19) 2017 Pitselis (10.1016/j.asoc.2019.105539_b38) 2016; 70 O’Hagan (10.1016/j.asoc.2019.105539_b7) 2016; 93 Naderi (10.1016/j.asoc.2019.105539_b41) 2019; 171 Punzo (10.1016/j.asoc.2019.105539_b16) 2018; 45 Naderi (10.1016/j.asoc.2019.105539_b8) 2017; 16 Balakrishnan (10.1016/j.asoc.2019.105539_b27) 2018 Mohammadi (10.1016/j.asoc.2019.105539_b24) 2017; 143 Naderi (10.1016/j.asoc.2019.105539_b20) 2019 Jorgensen (10.1016/j.asoc.2019.105539_b36) 2012 McLachlan (10.1016/j.asoc.2019.105539_b32) 1988 Jamalizadeh (10.1016/j.asoc.2019.105539_b28) 2018; 35 Bigand (10.1016/j.asoc.2019.105539_b14) 2016; 286 Lin (10.1016/j.asoc.2019.105539_b3) 2009; 20 Yang (10.1016/j.asoc.2019.105539_b10) 1993; 57 Gomes (10.1016/j.asoc.2019.105539_b25) 2012; 49 Wang (10.1016/j.asoc.2019.105539_b35) 2012; 28 Hung (10.1016/j.asoc.2019.105539_b17) 2007; 12 Artzner (10.1016/j.asoc.2019.105539_b39) 1999; 9 Leiva (10.1016/j.asoc.2019.105539_b23) 2008; 23 Ferreira (10.1016/j.asoc.2019.105539_b6) 2016; 100 Peel (10.1016/j.asoc.2019.105539_b2) 2000; 10 Hubert (10.1016/j.asoc.2019.105539_b37) 1985; 2 |
| References_xml | – volume: 12 start-page: 1013 year: 2007 end-page: 1018 ident: b17 article-title: Fuzzy classification maximum likelihood algorithms for mixed-Weibull distributions publication-title: Soft Comput. – volume: 93 start-page: 18 year: 2016 end-page: 30 ident: b7 article-title: Clustering with the multivariate normal inverse Gaussian distribution publication-title: Comput. Statist. Data Anal. – volume: 6 start-page: 319 year: 1969 end-page: 327 ident: b21 article-title: A new family of life distributions publication-title: J. Appl. Probab. – volume: 23 start-page: 299 year: 2008 end-page: 307 ident: b23 article-title: A length-biased version of the Birnbaum-Saunders distribution with application in water quality publication-title: Stoch. Environ. Res. Risk Assess. – volume: 49 start-page: 81 year: 2012 end-page: 94 ident: b25 article-title: The extreme value Birnbaum-Saunders model, its moments and an application in biometry publication-title: Biom. Lett. – volume: 29 start-page: 1901 year: 2008 end-page: 1905 ident: b11 article-title: Robust fuzzy clustering using mixtures of student’s- publication-title: Pattern Recognit. Lett. – volume: 71 start-page: 45 year: 2017 end-page: 59 ident: b42 article-title: Robust-learning fuzzy publication-title: Pattern Recognit. – volume: 10 start-page: 339 year: 2000 end-page: 348 ident: b2 article-title: Robust mixture modelling using the publication-title: Stat. Comput. – year: 2017 ident: b19 article-title: Finite mixture of Birnbaum-Saunders distributions using the – volume: 56 start-page: 126 year: 2012 end-page: 142 ident: b5 article-title: Multivariate mixture modeling using skew-normal independent distributions publication-title: Comput. Statist. Data Anal. – volume: 143 start-page: 109 year: 2017 end-page: 122 ident: b24 article-title: Use of Birnbaum-Saunders distribution for estimating wind speed and wind power probability distributions: A review publication-title: Energy Convers. Manage. – volume: 286 start-page: 134 year: 2016 end-page: 156 ident: b13 article-title: Clustering and classification of fuzzy data using the fuzzy EM algorithm publication-title: Fuzzy Sets and Systems – volume: 171 start-page: 126 year: 2019 end-page: 138 ident: b41 article-title: A novel mixture model using the multivariate normal mean–variance mixture of Birnbaum-Saunders distributions and its application to extrasolar planets publication-title: J. Multivariate Anal. – volume: 43 start-page: 283 year: 2003 end-page: 298 ident: b34 article-title: Modified moment estimation for the two-parameter Birnbaum-Saunders distribution publication-title: Comput. Statist. Data Anal. – volume: 45 start-page: 1146 year: 2012 end-page: 1158 ident: b12 article-title: Fuzzy Gaussian mixture models publication-title: Pattern Recognit. – year: 2019 ident: b20 article-title: Finite mixture modeling via skew-Laplace Birnbaum-Saunders distribution publication-title: J. Stat. Theory Appl. – year: 2012 ident: b36 article-title: Statistical Properties of the Generalized Inverse Gaussian Distribution. Vol. 9 – volume: 45 start-page: 2563 year: 2018 end-page: 2584 ident: b16 article-title: Fitting insurance and economic data with outliers: a flexible approach based on finite mixtures of contaminated Gamma distributions publication-title: J. Appl. Stat. – volume: 57 start-page: 365 year: 1993 end-page: 375 ident: b10 article-title: On a class of fuzzy classification maximum likelihood procedures publication-title: Fuzzy Sets and Systems – volume: 44 start-page: 226 year: 1982 end-page: 233 ident: b30 article-title: Finding the observed information matrix when using the EM algorithm publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 70 start-page: 373 year: 2016 end-page: 386 ident: b38 article-title: Credible risk measures with applications in actuarial sciences and finance publication-title: Insurance Math. Econom. – volume: 28 start-page: 100 year: 1979 end-page: 108 ident: b33 article-title: A publication-title: J. R. Stat. Soc. Ser. C – volume: 286 start-page: 66 year: 2016 end-page: 85 ident: b14 article-title: Membership function construction for interval-valued fuzzy sets with application to Gaussian noise reduction publication-title: Fuzzy Sets and Systems – year: 2018 ident: b27 article-title: Birnbaum-Saunders distribution: A review of models, analysis, and applications publication-title: Appl. Stoch. Models Bus. Ind. – volume: 26 start-page: 195 year: 1984 end-page: 239 ident: b1 article-title: Mixture densities, maximum likelihood and the EM algorithm publication-title: SIAM Rev. – volume: 35 start-page: 82 year: 2018 end-page: 89 ident: b28 article-title: Discussion of “Birnbaum-Saunders distribution: A review of models, analysis, and applications” publication-title: Appl. Stoch. Models Bus. Ind. – volume: 51 start-page: 127 year: 1989 end-page: 138 ident: b29 article-title: A fast improvement to the EM algorithm on its own terms publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 28 start-page: 751 year: 2012 end-page: 769 ident: b35 article-title: An efficient ECM algorithm for maximum likelihood estimation in mixtures of publication-title: Comput. Statist. – volume: 2 start-page: 193 year: 1985 end-page: 218 ident: b37 article-title: Comparing partitions publication-title: J. Classification – volume: 100 start-page: 421 year: 2016 end-page: 441 ident: b6 article-title: Likelihood-based inference for multivariate skew scale mixtures of normal distributions publication-title: AStA Adv. Stat. Anal. – volume: 20 start-page: 343 year: 2009 end-page: 356 ident: b3 article-title: Robust mixture modeling using multivariate skew publication-title: Stat. Comput. – volume: 28 start-page: 16 year: 2011 end-page: 34 ident: b26 article-title: Robust statistical modeling using the Birnbaum-Saunders- publication-title: Appl. Stoch. Models Bus. Ind. – volume: 44 start-page: 978 year: 2016 end-page: 999 ident: b40 article-title: Learning-based EM algorithm for normal-inverse Gaussian mixture model with application to extrasolar planets publication-title: J. Appl. Stat. – volume: 24 start-page: 531 year: 2013 end-page: 546 ident: b4 article-title: Flexible mixture modelling using the multivariate skew- publication-title: Stat. Comput. – volume: 39 start-page: 515 year: 2015 end-page: 530 ident: b18 article-title: Mixture of the inverse Rayleigh distribution: Properties and estimation in a Bayesian framework publication-title: Appl. Math. Model. – year: 1988 ident: b32 article-title: Mixture Models: Inference and Applications To Clustering. Vol. 84 – year: 1981 ident: b31 article-title: Pattern Recognition with Fuzzy Objective Function Algorithms – volume: 8 start-page: 338 year: 1965 end-page: 353 ident: b15 article-title: Fuzzy sets publication-title: Inf. Control – volume: 43 start-page: 91 year: 2009 end-page: 104 ident: b22 article-title: Mixture inverse Gaussian distributions and its transformations, moments and applications publication-title: Statistics – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: b9 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 9 start-page: 203 year: 1999 end-page: 228 ident: b39 article-title: Coherent measures of risk publication-title: Math. Finance – volume: 16 start-page: 33 year: 2017 end-page: 52 ident: b8 article-title: On the finite mixture modelling via normal mean–variance Birnbaum-Saunders distribution publication-title: J. Iran. Stat. Soc. (JIRSS) – volume: 56 start-page: 126 issue: 1 year: 2012 ident: 10.1016/j.asoc.2019.105539_b5 article-title: Multivariate mixture modeling using skew-normal independent distributions publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2011.06.026 – volume: 16 start-page: 33 issue: 1 year: 2017 ident: 10.1016/j.asoc.2019.105539_b8 article-title: On the finite mixture modelling via normal mean–variance Birnbaum-Saunders distribution publication-title: J. Iran. Stat. Soc. (JIRSS) doi: 10.18869/acadpub.jirss.16.1.1003 – volume: 9 start-page: 203 issue: 3 year: 1999 ident: 10.1016/j.asoc.2019.105539_b39 article-title: Coherent measures of risk publication-title: Math. Finance doi: 10.1111/1467-9965.00068 – volume: 43 start-page: 91 issue: 1 year: 2009 ident: 10.1016/j.asoc.2019.105539_b22 article-title: Mixture inverse Gaussian distributions and its transformations, moments and applications publication-title: Statistics doi: 10.1080/02331880701829948 – volume: 45 start-page: 2563 issue: 14 year: 2018 ident: 10.1016/j.asoc.2019.105539_b16 article-title: Fitting insurance and economic data with outliers: a flexible approach based on finite mixtures of contaminated Gamma distributions publication-title: J. Appl. Stat. doi: 10.1080/02664763.2018.1428288 – volume: 35 start-page: 82 issue: 1 year: 2018 ident: 10.1016/j.asoc.2019.105539_b28 article-title: Discussion of “Birnbaum-Saunders distribution: A review of models, analysis, and applications” publication-title: Appl. Stoch. Models Bus. Ind. doi: 10.1002/asmb.2403 – volume: 71 start-page: 45 year: 2017 ident: 10.1016/j.asoc.2019.105539_b42 article-title: Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.05.017 – volume: 20 start-page: 343 issue: 3 year: 2009 ident: 10.1016/j.asoc.2019.105539_b3 article-title: Robust mixture modeling using multivariate skew t distributions publication-title: Stat. Comput. doi: 10.1007/s11222-009-9128-9 – volume: 49 start-page: 81 issue: 2 year: 2012 ident: 10.1016/j.asoc.2019.105539_b25 article-title: The extreme value Birnbaum-Saunders model, its moments and an application in biometry publication-title: Biom. Lett. doi: 10.2478/bile-2013-0006 – volume: 286 start-page: 66 year: 2016 ident: 10.1016/j.asoc.2019.105539_b14 article-title: Membership function construction for interval-valued fuzzy sets with application to Gaussian noise reduction publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2015.07.001 – volume: 39 start-page: 515 issue: 2 year: 2015 ident: 10.1016/j.asoc.2019.105539_b18 article-title: Mixture of the inverse Rayleigh distribution: Properties and estimation in a Bayesian framework publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2014.05.039 – volume: 28 start-page: 16 issue: 1 year: 2011 ident: 10.1016/j.asoc.2019.105539_b26 article-title: Robust statistical modeling using the Birnbaum-Saunders-t distribution applied to insurance publication-title: Appl. Stoch. Models Bus. Ind. doi: 10.1002/asmb.887 – volume: 2 start-page: 193 issue: 1 year: 1985 ident: 10.1016/j.asoc.2019.105539_b37 article-title: Comparing partitions publication-title: J. Classification doi: 10.1007/BF01908075 – volume: 28 start-page: 751 issue: 2 year: 2012 ident: 10.1016/j.asoc.2019.105539_b35 article-title: An efficient ECM algorithm for maximum likelihood estimation in mixtures of t-factor analyzers publication-title: Comput. Statist. doi: 10.1007/s00180-012-0327-z – volume: 12 start-page: 1013 issue: 10 year: 2007 ident: 10.1016/j.asoc.2019.105539_b17 article-title: Fuzzy classification maximum likelihood algorithms for mixed-Weibull distributions publication-title: Soft Comput. doi: 10.1007/s00500-007-0266-8 – volume: 23 start-page: 299 issue: 3 year: 2008 ident: 10.1016/j.asoc.2019.105539_b23 article-title: A length-biased version of the Birnbaum-Saunders distribution with application in water quality publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-008-0215-9 – year: 2019 ident: 10.1016/j.asoc.2019.105539_b20 article-title: Finite mixture modeling via skew-Laplace Birnbaum-Saunders distribution publication-title: J. Stat. Theory Appl. – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 10.1016/j.asoc.2019.105539_b9 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 286 start-page: 134 year: 2016 ident: 10.1016/j.asoc.2019.105539_b13 article-title: Clustering and classification of fuzzy data using the fuzzy EM algorithm publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2015.04.012 – volume: 143 start-page: 109 year: 2017 ident: 10.1016/j.asoc.2019.105539_b24 article-title: Use of Birnbaum-Saunders distribution for estimating wind speed and wind power probability distributions: A review publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.03.083 – volume: 57 start-page: 365 issue: 3 year: 1993 ident: 10.1016/j.asoc.2019.105539_b10 article-title: On a class of fuzzy classification maximum likelihood procedures publication-title: Fuzzy Sets and Systems doi: 10.1016/0165-0114(93)90030-L – volume: 6 start-page: 319 issue: 02 year: 1969 ident: 10.1016/j.asoc.2019.105539_b21 article-title: A new family of life distributions publication-title: J. Appl. Probab. doi: 10.2307/3212003 – volume: 26 start-page: 195 issue: 2 year: 1984 ident: 10.1016/j.asoc.2019.105539_b1 article-title: Mixture densities, maximum likelihood and the EM algorithm publication-title: SIAM Rev. doi: 10.1137/1026034 – year: 2018 ident: 10.1016/j.asoc.2019.105539_b27 article-title: Birnbaum-Saunders distribution: A review of models, analysis, and applications publication-title: Appl. Stoch. Models Bus. Ind. – volume: 51 start-page: 127 issue: 1 year: 1989 ident: 10.1016/j.asoc.2019.105539_b29 article-title: A fast improvement to the EM algorithm on its own terms publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1989.tb01754.x – year: 1981 ident: 10.1016/j.asoc.2019.105539_b31 – volume: 10 start-page: 339 issue: 4 year: 2000 ident: 10.1016/j.asoc.2019.105539_b2 article-title: Robust mixture modelling using the t distribution publication-title: Stat. Comput. doi: 10.1023/A:1008981510081 – volume: 100 start-page: 421 issue: 4 year: 2016 ident: 10.1016/j.asoc.2019.105539_b6 article-title: Likelihood-based inference for multivariate skew scale mixtures of normal distributions publication-title: AStA Adv. Stat. Anal. doi: 10.1007/s10182-016-0266-z – volume: 70 start-page: 373 year: 2016 ident: 10.1016/j.asoc.2019.105539_b38 article-title: Credible risk measures with applications in actuarial sciences and finance publication-title: Insurance Math. Econom. doi: 10.1016/j.insmatheco.2016.06.018 – volume: 171 start-page: 126 year: 2019 ident: 10.1016/j.asoc.2019.105539_b41 article-title: A novel mixture model using the multivariate normal mean–variance mixture of Birnbaum-Saunders distributions and its application to extrasolar planets publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2018.11.015 – volume: 93 start-page: 18 year: 2016 ident: 10.1016/j.asoc.2019.105539_b7 article-title: Clustering with the multivariate normal inverse Gaussian distribution publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2014.09.006 – volume: 44 start-page: 226 issue: 2 year: 1982 ident: 10.1016/j.asoc.2019.105539_b30 article-title: Finding the observed information matrix when using the EM algorithm publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1982.tb01203.x – volume: 43 start-page: 283 issue: 3 year: 2003 ident: 10.1016/j.asoc.2019.105539_b34 article-title: Modified moment estimation for the two-parameter Birnbaum-Saunders distribution publication-title: Comput. Statist. Data Anal. doi: 10.1016/S0167-9473(02)00254-2 – volume: 45 start-page: 1146 issue: 3 year: 2012 ident: 10.1016/j.asoc.2019.105539_b12 article-title: Fuzzy Gaussian mixture models publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.08.028 – volume: 8 start-page: 338 issue: 3 year: 1965 ident: 10.1016/j.asoc.2019.105539_b15 article-title: Fuzzy sets publication-title: Inf. Control doi: 10.1016/S0019-9958(65)90241-X – volume: 44 start-page: 978 issue: 6 year: 2016 ident: 10.1016/j.asoc.2019.105539_b40 article-title: Learning-based EM algorithm for normal-inverse Gaussian mixture model with application to extrasolar planets publication-title: J. Appl. Stat. doi: 10.1080/02664763.2016.1190322 – year: 2017 ident: 10.1016/j.asoc.2019.105539_b19 – volume: 24 start-page: 531 issue: 4 year: 2013 ident: 10.1016/j.asoc.2019.105539_b4 article-title: Flexible mixture modelling using the multivariate skew-t-normal distribution publication-title: Stat. Comput. doi: 10.1007/s11222-013-9386-4 – volume: 29 start-page: 1901 issue: 13 year: 2008 ident: 10.1016/j.asoc.2019.105539_b11 article-title: Robust fuzzy clustering using mixtures of student’s-t distributions publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2008.06.013 – volume: 28 start-page: 100 issue: 1 year: 1979 ident: 10.1016/j.asoc.2019.105539_b33 article-title: A k-means clustering algorithm publication-title: J. R. Stat. Soc. Ser. C – year: 1988 ident: 10.1016/j.asoc.2019.105539_b32 – year: 2012 ident: 10.1016/j.asoc.2019.105539_b36 |
| SSID | ssj0016928 |
| Score | 2.324844 |
| Snippet | Despite the widespread use of Gaussian mixture model for clustering datasets, practical applications show that the skewed and leptokurtic mixture models can be... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105539 |
| SubjectTerms | Classification maximum likelihood EM-type algorithm Finite mixture of Birnbaum–Saunders distributions Fuzzy clustering |
| Title | Clustering right-skewed data stream via Birnbaum–Saunders mixture models: A flexible approach based on fuzzy clustering algorithm |
| URI | https://dx.doi.org/10.1016/j.asoc.2019.105539 |
| Volume | 82 |
| WOSCitedRecordID | wos000484606800052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMX3ojy0h64Wa6S7Npe9xaqIkAiQqJIuVm7a5ukJE7lRxpyQuIncOLv8UuYfdmhQEUPXCzHj7Hl-TIzO0-EnoNKStX8Bp9yMN9olhGfhznzg5wSTkUU8EzoYRPRZMKm0_hdr_fd1cKsF1FRsM0mPvuvrIZjwGxVOnsFdrdE4QDsA9NhC2yH7T8x_mjRqOYHygWgV95-9Sk7B7NS5YLq0hC-9NZz7r2Yl4XgzdKlO5D3vNGVLt5yvtFxBT0lpzK167lqnKmqrFwTck_pv1TFGvJmu_3sye6xfPFxVc7r2XLX8nXmbgVyXyeyN7XTmloAVqpzgTalebnlXbB_olKt9Ym32axMedr50JX3TM7MOfihQgKzXS_GsEvTagVvyHwaW3eklcxmLJEVrWqSp-l79JvUNw6I0wMOgFbZevFBd_GvLbYvqL42IdHlup0mikaiaCSGxjW0N4qCmPXR3vj18fRNG6IKYz24t31xW5FlkgcvvsmfrZ4dS-bkNrpplyB4bKBzB_Wy4i665cZ7YCvt76GvHZLwLpKwQhI2SMKAJOyQ9OPLN4chbDGEDYYO8Rg7BGGHIKwRhFcF1gjCHYJwi6D76MPL45OjV76d2eFLMhjUqitBDkJe8FEOi92USEpYOCCx4JINeS6ooJJR0GrwyeSIp4KJCNSIJKAKCMtS8gD1i1WRPUSYBZRHAqiGGaWxDOIczNU0IjkNgkjk6T4aum-aSNvQXs1VWSR_5-Y-8tp7zkw7l0uvDhyrEmuQGkMzAeRdct-jKz3lMbrR_SOeoH5dNtlTdF2u63lVPrOw-wnMyrGx |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+right-skewed+data+stream+via+Birnbaum%E2%80%93Saunders+mixture+models%3A+A+flexible+approach+based+on+fuzzy+clustering+algorithm&rft.jtitle=Applied+soft+computing&rft.au=Hashemi%2C+Farzane&rft.au=Naderi%2C+Mehrdad&rft.au=Mashinchi%2C+Mashallah&rft.date=2019-09-01&rft.issn=1568-4946&rft.volume=82&rft.spage=105539&rft_id=info:doi/10.1016%2Fj.asoc.2019.105539&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_105539 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |