Preliminary design on high-end workstation cooling system using loop heat pipes

•Preliminary design is introduced to implement quick modeling on a loop heat pipe cooling system.•Design optimization based on a real coded genetic algorithm was devised to provide various configurations of design variables.•Multidimensional visualization tool was adapted to discern the most suitabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal science and engineering progress Jg. 20; S. 100519
Hauptverfasser: Choi, Jeehoon, Jeong, Minjoong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.12.2020
Schlagworte:
ISSN:2451-9049, 2451-9049
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Preliminary design is introduced to implement quick modeling on a loop heat pipe cooling system.•Design optimization based on a real coded genetic algorithm was devised to provide various configurations of design variables.•Multidimensional visualization tool was adapted to discern the most suitable design among solutions.•Prototype was constructed and tested to verify the proposed design process. This paper introduces a new approach for the preliminary design of high-end workstation cooling system using loop heat pipe. To demonstrate this approach, a multidimensional visualization environment tool with respect to design optimization based on a genetic algorithm was devised not only to provide various configurations of design variables but also to conduct quickly preliminary design from the viewpoint of commercially viable versions and manufacturing. The optimization utilizing a real coded genetic algorithm was implemented to appropriately determine the configuration design variables of loop heat pipe components associated with the pressure drop, subject to specified design constraints. Through the devised visualization environment, various configurations can be identified so that cooling system modelers can promptly select the optimal candidate at the preliminary design stage when the proposed design condition and configurations are needed for decision making. As a case study, we designed a workstation cooling system based on the loop heat pipe that enabled to transport heat of 200 W CPU toheat exchanger. The highest temperature was 50.7 °C, which is sufficiently low to run multi-core CPUs. The experimental results show that the preliminary design optimization based cooling prototype to be a solution for achieving superior thermal performance in high-end workstations.
AbstractList •Preliminary design is introduced to implement quick modeling on a loop heat pipe cooling system.•Design optimization based on a real coded genetic algorithm was devised to provide various configurations of design variables.•Multidimensional visualization tool was adapted to discern the most suitable design among solutions.•Prototype was constructed and tested to verify the proposed design process. This paper introduces a new approach for the preliminary design of high-end workstation cooling system using loop heat pipe. To demonstrate this approach, a multidimensional visualization environment tool with respect to design optimization based on a genetic algorithm was devised not only to provide various configurations of design variables but also to conduct quickly preliminary design from the viewpoint of commercially viable versions and manufacturing. The optimization utilizing a real coded genetic algorithm was implemented to appropriately determine the configuration design variables of loop heat pipe components associated with the pressure drop, subject to specified design constraints. Through the devised visualization environment, various configurations can be identified so that cooling system modelers can promptly select the optimal candidate at the preliminary design stage when the proposed design condition and configurations are needed for decision making. As a case study, we designed a workstation cooling system based on the loop heat pipe that enabled to transport heat of 200 W CPU toheat exchanger. The highest temperature was 50.7 °C, which is sufficiently low to run multi-core CPUs. The experimental results show that the preliminary design optimization based cooling prototype to be a solution for achieving superior thermal performance in high-end workstations.
ArticleNumber 100519
Author Jeong, Minjoong
Choi, Jeehoon
Author_xml – sequence: 1
  givenname: Jeehoon
  surname: Choi
  fullname: Choi, Jeehoon
  organization: LG Electronics, Seoul, Republic of Korea
– sequence: 2
  givenname: Minjoong
  surname: Jeong
  fullname: Jeong, Minjoong
  email: jeong@kisti.re.kr
  organization: Korea Institute of Science and Technology Information, University of Science and Technology, Daejeon, Republic of Korea
BookMark eNp9kMFKAzEQhoNUsNa-gKe8wNYkm93NghcpaoVCPeg5pNlJm7pNliQqfXt3WQ_ioaeZ-eEbZr5rNHHeAUK3lCwooeXdYZEidAtG2BCQgtYXaMp4QbOa8Hryp79C8xgPhBBWCJ7XYoo2rwFae7ROhRNuINqdw97hvd3tM3AN_vbhIyaVbB9q71vrdjieYoIj_ozD0Hrf4T2ohDvbQbxBl0a1Eea_dYbenx7flqtsvXl-WT6sM50TkjJBdMX4ti6FoETUFecF5EZzSrQBRaiquIGqMqoQquSKKWa0oKURZqvBlEU-Q2Lcq4OPMYCR2o5npqBsKymRgxt5kIMbObiRo5seZf_QLthj__956H6EoH_qy0KQUVtwGhobQCfZeHsO_wF0kIDV
CitedBy_id crossref_primary_10_3390_ma15175830
crossref_primary_10_1016_j_tsep_2020_100683
crossref_primary_10_1016_j_tsep_2021_101117
crossref_primary_10_1016_j_tsep_2023_102139
crossref_primary_10_1016_j_applthermaleng_2021_117385
Cites_doi 10.4271/2009-01-2519
10.1023/A:1006504901164
10.1016/S1359-4311(03)00036-X
10.1007/BF03177454
10.5098/fhp.v2.1.3003
10.1016/j.applthermaleng.2019.114281
10.1016/j.applthermaleng.2016.12.062
10.1007/BF02676074
10.1016/j.applthermaleng.2013.06.060
10.1016/j.expthermflusci.2013.08.009
10.1016/j.applthermaleng.2019.03.147
10.1016/j.applthermaleng.2020.115073
10.1016/j.applthermaleng.2018.07.143
10.1016/j.ijthermalsci.2006.11.007
10.1016/j.applthermaleng.2015.09.096
10.1016/j.applthermaleng.2004.05.010
10.1115/1.4005734
10.4236/jectc.2014.41004
10.1016/j.applthermaleng.2012.12.011
10.1016/j.applthermaleng.2017.09.103
10.1016/j.applthermaleng.2019.114459
10.1016/j.applthermaleng.2004.07.010
10.1016/j.jhazmat.2008.02.106
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.tsep.2020.100519
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2451-9049
ExternalDocumentID 10_1016_j_tsep_2020_100519
S2451904920300408
GroupedDBID --M
AACTN
AAEDW
AAHCO
AAIAV
AAKOC
AALRI
AAOAW
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AFKWA
AFTJW
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
FDB
FIRID
FYGXN
KOM
OAUVE
ROL
SPC
SPCBC
SSR
SST
SSZ
T5K
~G-
0R~
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EJD
ID FETCH-LOGICAL-c300t-80c724b968810897445e3fc410cfea01a74fe77fa58a64a2a2fc816f8fbcef653
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621595900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2451-9049
IngestDate Tue Nov 18 20:54:09 EST 2025
Thu Nov 13 04:34:24 EST 2025
Fri Feb 23 02:46:02 EST 2024
IsPeerReviewed false
IsScholarly true
Keywords Electronics cooling
Applications
Genetic algorithm
Loop heat pipe
Optimization
Work stations
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-80c724b968810897445e3fc410cfea01a74fe77fa58a64a2a2fc816f8fbcef653
ParticipantIDs crossref_citationtrail_10_1016_j_tsep_2020_100519
crossref_primary_10_1016_j_tsep_2020_100519
elsevier_sciencedirect_doi_10_1016_j_tsep_2020_100519
PublicationCentury 2000
PublicationDate 2020-12-01
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Thermal science and engineering progress
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Faghri (b0115) 1995
Choi, Lee, Sung, Kim (b0075) 2012
Choi, Jeong (b0105) 2016; 92
Adachi, Fujita, Nagai (b0045) 2019; 163
Jeong, Yoshimura, Kobayashi (b0145) 2007; 21
Jo, An, Nguyen, Kim, Bang, James, Choi, Yoon (b0090) 2018; 128
A.M. Delil, Yu.F. Maydanik, C. Gernard, Development of Different Novel Loop Heat Pipes within the ISTC-1360 Project, SAE Paper No. 2003-01-2383.
Ameli, Agnew, Leung, Ng, Sutcliffe, Singh, McGlen (b0165) 2013; 52
Zimbeck, Slavik, Cennamo, Kang, Yun, Kroliczek (b0025) 2008
Gopienko (b0155) 1999; 38
Maydanik (b0110) 2005; 25
Bai, Fu, Lin, Zhou, Wen (b0040) 2019; 155
Choi, Sung, Yoo, Kim, Borca-Tasciuc (b0070) 2012; 4
Zhang, Zhang, Lai, Liu, Liu (b0050) 2020
Choi, Sung, Kim, Borca-Tasciuc (b0080) 2013; 60
L.L. Vasiliev Jr., M. Marengo, C. Ferrandi, S. Zinna, V. Maziuk, Advanced Design of a “Low-Cost” Loop Heat Pipe, SAE Technical Paper 2009-01-2519.
Swanson, Birur (b0015) 2003; 23
Choi, Sano, Zhang, Yuan, Lee, Borca-Tasciuc (b0085) 2013; 51
Goldberg (b0125) 1989
Jeong, Choi, Koh (b0135) 2011
Wang, Lin, Bai, Tao, Wen (b0100) 2020; 164
Buffone (b0060) 2014; 4
Launay, Sartre, Bonjour (b0030) 2007; 46
Back (b0150) 1996
McKay, Beckman, Conover (b0140) 1979; 21
Riehl, Dutra (b0020) 2005; 25
Munson, Young, Okiishi, Shao (b0120) 2006
Myers (b0160) 2008; 159
Huang, Chuang, Yang (b0065) 2017; 126
Li, Fu, Li, Fu, Zhou, Tang, Tang, Deng, Zhou (b0095) 2018; 143
Launay, Vallee (b0035) 2011; 2
Herrera, Lozano, Verdegay (b0130) 1998; 12
Cheung, Hoang, Ku, Kaya (b0005) 1998
Holman (b0170) 2011
Ameli (10.1016/j.tsep.2020.100519_b0165) 2013; 52
Cheung (10.1016/j.tsep.2020.100519_b0005) 1998
Choi (10.1016/j.tsep.2020.100519_b0085) 2013; 51
Munson (10.1016/j.tsep.2020.100519_b0120) 2006
Buffone (10.1016/j.tsep.2020.100519_b0060) 2014; 4
Riehl (10.1016/j.tsep.2020.100519_b0020) 2005; 25
Holman (10.1016/j.tsep.2020.100519_b0170) 2011
Herrera (10.1016/j.tsep.2020.100519_b0130) 1998; 12
Li (10.1016/j.tsep.2020.100519_b0095) 2018; 143
Myers (10.1016/j.tsep.2020.100519_b0160) 2008; 159
Choi (10.1016/j.tsep.2020.100519_b0070) 2012; 4
Choi (10.1016/j.tsep.2020.100519_b0080) 2013; 60
Jo (10.1016/j.tsep.2020.100519_b0090) 2018; 128
Back (10.1016/j.tsep.2020.100519_b0150) 1996
Launay (10.1016/j.tsep.2020.100519_b0035) 2011; 2
Adachi (10.1016/j.tsep.2020.100519_b0045) 2019; 163
Jeong (10.1016/j.tsep.2020.100519_b0135) 2011
McKay (10.1016/j.tsep.2020.100519_b0140) 1979; 21
Choi (10.1016/j.tsep.2020.100519_b0105) 2016; 92
Goldberg (10.1016/j.tsep.2020.100519_b0125) 1989
Jeong (10.1016/j.tsep.2020.100519_b0145) 2007; 21
Maydanik (10.1016/j.tsep.2020.100519_b0110) 2005; 25
Gopienko (10.1016/j.tsep.2020.100519_b0155) 1999; 38
Huang (10.1016/j.tsep.2020.100519_b0065) 2017; 126
Faghri (10.1016/j.tsep.2020.100519_b0115) 1995
Launay (10.1016/j.tsep.2020.100519_b0030) 2007; 46
Wang (10.1016/j.tsep.2020.100519_b0100) 2020; 164
Zhang (10.1016/j.tsep.2020.100519_b0050) 2020
Bai (10.1016/j.tsep.2020.100519_b0040) 2019; 155
Choi (10.1016/j.tsep.2020.100519_b0075) 2012
Zimbeck (10.1016/j.tsep.2020.100519_b0025) 2008
10.1016/j.tsep.2020.100519_b0010
Swanson (10.1016/j.tsep.2020.100519_b0015) 2003; 23
10.1016/j.tsep.2020.100519_b0055
References_xml – volume: 163
  year: 2019
  ident: b0045
  article-title: Numerical study of temperature oscillation in loop heat pipe
  publication-title: Appl. Therm. Eng.
– volume: 23
  start-page: 1055
  year: 2003
  end-page: 1065
  ident: b0015
  article-title: NASA thermal control technologies for robotic spacecraft
  publication-title: Appl. Therm. Eng.
– volume: 164
  year: 2020
  ident: b0100
  article-title: Comparative study of two loop heat pipes using R134a as the working fluid
  publication-title: Appl. Therm. Eng.
– year: 2006
  ident: b0120
  article-title: Fundamentals of Fluid Mechanics
– volume: 52
  start-page: 498
  year: 2013
  end-page: 504
  ident: b0165
  article-title: A novel method for manufacturing sintered aluminium heat pipes (SAHP)
  publication-title: Appl. Therm. Eng.
– volume: 21
  start-page: 43
  year: 2007
  end-page: 54
  ident: b0145
  article-title: Multidimensional visualization and clustering for multi-objective optimization of artificial satellite heat pipe design
  publication-title: J. Mech. Sci. Technol.
– reference: A.M. Delil, Yu.F. Maydanik, C. Gernard, Development of Different Novel Loop Heat Pipes within the ISTC-1360 Project, SAE Paper No. 2003-01-2383.
– volume: 21
  start-page: 239
  year: 1979
  end-page: 245
  ident: b0140
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– volume: 126
  start-page: 1091
  year: 2017
  end-page: 1097
  ident: b0065
  article-title: Low-cost manufacturing of loop heat pipe for commercial applications
  publication-title: Appl. Therm. Eng.
– volume: 4
  start-page: 33
  year: 2014
  ident: b0060
  article-title: Testing of a low-cost loop heat pipe design
  publication-title: J. Electron. Cool. Therm. Control
– year: 1995
  ident: b0115
  article-title: Heat Pipe Science and Technology
– year: 1996
  ident: b0150
  article-title: Evolutionary Algorithms in Theory and Practice
– year: 2012
  ident: b0075
  article-title: Investigation on operational characteristics of the miniature loop heat pipes with flat evaporators based on diverse vapor removal channels
  publication-title: 16th International Heat Pipe Conference, No. 023, Lyon, France
– volume: 155
  start-page: 14
  year: 2019
  end-page: 23
  ident: b0040
  article-title: Quiet power-free cooling system enabled by loop heat pipe
  publication-title: Appl. Therm. Eng.
– volume: 38
  start-page: 529
  year: 1999
  end-page: 531
  ident: b0155
  article-title: Methods of reducing explosion hazards for aluminum powders, dusts, and pastes
  publication-title: Powder Metall. Met. Ceram.
– volume: 25
  start-page: 101
  year: 2005
  end-page: 112
  ident: b0020
  article-title: Development of an experimental loop heat pipe for application in future space missions
  publication-title: Appl. Therm. Eng.
– year: 2011
  ident: b0135
  article-title: Performance evaluation of modified genetic and swarm-based optimization algorithms in damage identification problem
  publication-title: Struct. Control Health Monit.
– year: 2011
  ident: b0170
  article-title: Experimental Methods for Engineers
– start-page: 19
  year: 2008
  end-page: 25
  ident: b0025
  article-title: Loop heat pipe technology for cooling computer servers
  publication-title: Thermal and Thermomechanical Phenomena in Electronic Systems, ITHERM 2008
– volume: 2
  year: 2011
  ident: b0035
  article-title: State-of-the-art experimental studies on loop heat pipes
  publication-title: Front. Heat Pipes
– volume: 159
  start-page: 72
  year: 2008
  end-page: 80
  ident: b0160
  article-title: Reducing aluminum dust explosion hazards: case study of dust inerting in an aluminum buffing operation
  publication-title: J. Hazard. Mater.
– volume: 143
  start-page: 621
  year: 2018
  end-page: 629
  ident: b0095
  article-title: Effect of fabrication parameters on capillary pumping performance of multi-scale composite porous wicks for loop heat pipe
  publication-title: Appl. Therm. Eng.
– volume: 60
  start-page: 371
  year: 2013
  end-page: 378
  ident: b0080
  article-title: Interface engineering to enhance thermal contact conductance of evaporators in miniature loop heat pipe systems
  publication-title: Appl. Therm. Eng.
– volume: 128
  start-page: 1605
  year: 2018
  end-page: 1610
  ident: b0090
  article-title: Modifying capillary pressure and boiling regime of micro-porous wicks textured with graphene oxide
  publication-title: Appl. Therm. Eng.
– volume: 25
  start-page: 635
  year: 2005
  end-page: 657
  ident: b0110
  article-title: Review: loop heat pipes
  publication-title: Appl. Therm. Eng.
– year: 1989
  ident: b0125
  article-title: Genetic Algorithms in Search, Optimization and Machine Learning
– volume: 4
  year: 2012
  ident: b0070
  article-title: Enhanced miniature loop heat pipe cooling system for high power density electronics
  publication-title: J. Therm. Sci. Eng. Appl.
– volume: 46
  start-page: 621
  year: 2007
  end-page: 636
  ident: b0030
  article-title: Parametric analysis of loop heat pipe operation: a literature review
  publication-title: Int. J. Therm. Sci.
– start-page: 115073
  year: 2020
  ident: b0050
  article-title: Numerical study on thermohydraulic behavior in compensation chamber of a loop heat pipe with flat evaporator
  publication-title: Appl. Therm. Eng.
– volume: 51
  start-page: 271
  year: 2013
  end-page: 278
  ident: b0085
  article-title: Experimental investigation on sintered porous wicks for miniature loop heat pipe applications
  publication-title: Exp. Therm. Fluid Sci.
– year: 1998
  ident: b0005
  article-title: Thermal Performance and Operational Characteristics of Loop Heat Pipe (NRL LHP)
– reference: L.L. Vasiliev Jr., M. Marengo, C. Ferrandi, S. Zinna, V. Maziuk, Advanced Design of a “Low-Cost” Loop Heat Pipe, SAE Technical Paper 2009-01-2519.
– volume: 92
  start-page: 162
  year: 2016
  end-page: 171
  ident: b0105
  article-title: Compact, lightweight, and highly efficient circular heat sink design for high-end PCs
  publication-title: Appl. Therm. Eng.
– volume: 12
  start-page: 265
  year: 1998
  end-page: 319
  ident: b0130
  article-title: Tackling real-coded genetic algorithms: operators and tools for behavioral analysis
  publication-title: Artif. Intell. Rev.
– ident: 10.1016/j.tsep.2020.100519_b0055
  doi: 10.4271/2009-01-2519
– volume: 12
  start-page: 265
  year: 1998
  ident: 10.1016/j.tsep.2020.100519_b0130
  article-title: Tackling real-coded genetic algorithms: operators and tools for behavioral analysis
  publication-title: Artif. Intell. Rev.
  doi: 10.1023/A:1006504901164
– volume: 23
  start-page: 1055
  year: 2003
  ident: 10.1016/j.tsep.2020.100519_b0015
  article-title: NASA thermal control technologies for robotic spacecraft
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(03)00036-X
– year: 2012
  ident: 10.1016/j.tsep.2020.100519_b0075
  article-title: Investigation on operational characteristics of the miniature loop heat pipes with flat evaporators based on diverse vapor removal channels
– volume: 21
  start-page: 43
  year: 2007
  ident: 10.1016/j.tsep.2020.100519_b0145
  article-title: Multidimensional visualization and clustering for multi-objective optimization of artificial satellite heat pipe design
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/BF03177454
– volume: 2
  year: 2011
  ident: 10.1016/j.tsep.2020.100519_b0035
  article-title: State-of-the-art experimental studies on loop heat pipes
  publication-title: Front. Heat Pipes
  doi: 10.5098/fhp.v2.1.3003
– volume: 163
  year: 2019
  ident: 10.1016/j.tsep.2020.100519_b0045
  article-title: Numerical study of temperature oscillation in loop heat pipe
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114281
– year: 1989
  ident: 10.1016/j.tsep.2020.100519_b0125
– year: 1996
  ident: 10.1016/j.tsep.2020.100519_b0150
– volume: 126
  start-page: 1091
  year: 2017
  ident: 10.1016/j.tsep.2020.100519_b0065
  article-title: Low-cost manufacturing of loop heat pipe for commercial applications
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.12.062
– ident: 10.1016/j.tsep.2020.100519_b0010
– volume: 38
  start-page: 529
  issue: 9–10
  year: 1999
  ident: 10.1016/j.tsep.2020.100519_b0155
  article-title: Methods of reducing explosion hazards for aluminum powders, dusts, and pastes
  publication-title: Powder Metall. Met. Ceram.
  doi: 10.1007/BF02676074
– volume: 60
  start-page: 371
  issue: 1
  year: 2013
  ident: 10.1016/j.tsep.2020.100519_b0080
  article-title: Interface engineering to enhance thermal contact conductance of evaporators in miniature loop heat pipe systems
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.06.060
– volume: 51
  start-page: 271
  year: 2013
  ident: 10.1016/j.tsep.2020.100519_b0085
  article-title: Experimental investigation on sintered porous wicks for miniature loop heat pipe applications
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2013.08.009
– volume: 155
  start-page: 14
  year: 2019
  ident: 10.1016/j.tsep.2020.100519_b0040
  article-title: Quiet power-free cooling system enabled by loop heat pipe
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.03.147
– start-page: 115073
  year: 2020
  ident: 10.1016/j.tsep.2020.100519_b0050
  article-title: Numerical study on thermohydraulic behavior in compensation chamber of a loop heat pipe with flat evaporator
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115073
– year: 2006
  ident: 10.1016/j.tsep.2020.100519_b0120
– year: 2011
  ident: 10.1016/j.tsep.2020.100519_b0135
  article-title: Performance evaluation of modified genetic and swarm-based optimization algorithms in damage identification problem
  publication-title: Struct. Control Health Monit.
– volume: 21
  start-page: 239
  year: 1979
  ident: 10.1016/j.tsep.2020.100519_b0140
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– year: 1995
  ident: 10.1016/j.tsep.2020.100519_b0115
– volume: 143
  start-page: 621
  year: 2018
  ident: 10.1016/j.tsep.2020.100519_b0095
  article-title: Effect of fabrication parameters on capillary pumping performance of multi-scale composite porous wicks for loop heat pipe
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.07.143
– volume: 46
  start-page: 621
  year: 2007
  ident: 10.1016/j.tsep.2020.100519_b0030
  article-title: Parametric analysis of loop heat pipe operation: a literature review
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2006.11.007
– volume: 92
  start-page: 162
  year: 2016
  ident: 10.1016/j.tsep.2020.100519_b0105
  article-title: Compact, lightweight, and highly efficient circular heat sink design for high-end PCs
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.09.096
– start-page: 19
  year: 2008
  ident: 10.1016/j.tsep.2020.100519_b0025
  article-title: Loop heat pipe technology for cooling computer servers
– volume: 25
  start-page: 101
  year: 2005
  ident: 10.1016/j.tsep.2020.100519_b0020
  article-title: Development of an experimental loop heat pipe for application in future space missions
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2004.05.010
– volume: 4
  year: 2012
  ident: 10.1016/j.tsep.2020.100519_b0070
  article-title: Enhanced miniature loop heat pipe cooling system for high power density electronics
  publication-title: J. Therm. Sci. Eng. Appl.
  doi: 10.1115/1.4005734
– volume: 4
  start-page: 33
  year: 2014
  ident: 10.1016/j.tsep.2020.100519_b0060
  article-title: Testing of a low-cost loop heat pipe design
  publication-title: J. Electron. Cool. Therm. Control
  doi: 10.4236/jectc.2014.41004
– volume: 52
  start-page: 498
  issue: 2
  year: 2013
  ident: 10.1016/j.tsep.2020.100519_b0165
  article-title: A novel method for manufacturing sintered aluminium heat pipes (SAHP)
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.12.011
– year: 1998
  ident: 10.1016/j.tsep.2020.100519_b0005
– volume: 128
  start-page: 1605
  year: 2018
  ident: 10.1016/j.tsep.2020.100519_b0090
  article-title: Modifying capillary pressure and boiling regime of micro-porous wicks textured with graphene oxide
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.09.103
– volume: 164
  year: 2020
  ident: 10.1016/j.tsep.2020.100519_b0100
  article-title: Comparative study of two loop heat pipes using R134a as the working fluid
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114459
– volume: 25
  start-page: 635
  year: 2005
  ident: 10.1016/j.tsep.2020.100519_b0110
  article-title: Review: loop heat pipes
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2004.07.010
– volume: 159
  start-page: 72
  issue: 1
  year: 2008
  ident: 10.1016/j.tsep.2020.100519_b0160
  article-title: Reducing aluminum dust explosion hazards: case study of dust inerting in an aluminum buffing operation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.02.106
– year: 2011
  ident: 10.1016/j.tsep.2020.100519_b0170
SSID ssj0002584398
Score 2.2135365
Snippet •Preliminary design is introduced to implement quick modeling on a loop heat pipe cooling system.•Design optimization based on a real coded genetic algorithm...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100519
SubjectTerms Applications
Electronics cooling
Genetic algorithm
Loop heat pipe
Optimization
Work stations
Title Preliminary design on high-end workstation cooling system using loop heat pipes
URI https://dx.doi.org/10.1016/j.tsep.2020.100519
Volume 20
WOSCitedRecordID wos000621595900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2451-9049
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002584398
  issn: 2451-9049
  databaseCode: AIEXJ
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9wwEBUl6aE9lKQfNG1adOhtcbBk2ZKPoaS0gaSBprA3Y8ujdpfFNrtOSP99NZLsddMQ2kIvZhErrT1vdhjJb94Q8q5i6De8jIQSSSRyVdv_XJJHDEzMQCXCJNo1m5Dn52o-zy9C_86Naycgm0bd3OTdf4XajlmwsXT2L-AeF7UD9rMF3V4t7Pb6R8BfrGHlWnWtf8xqx8_AFwIoSxxBU7veMJtAMdRt66rRvZzz7MqdG6zatsP8sZ91iy4wDJejT9k4HqooQ6UBbAUNPdlroHQ4zkC78BQa-N5u3_efQuABny2apR3_Nj164LdpHGNNzJaAZMMWFymSPrwQ6RHcMRbiriuC-z2E-9OE5VG_AdQT5Y7IkYa4-qs09hdcF5flMQqHYc33LpdpbqPb7vGnk_npeNrGbZ6VuMbI462ECipP9rv9Y3dnKZPM43KPPAlbBnrsod4nD6B5Sh5PhCSfkc8T0KkHnbYNHUCnE9BpAJ160KkDnSLoFEGnDvTn5OuHk8v3H6PQKiPS9sl7m2doyUWVZ0qxWNk9okghMVqwWBsoY1ZKYUBKU6aqzETJS260YplRptJgsjR5QXaatoGXhCooZVJlXNZVLDQy45TmNQMdozYgVAeEDaYpdNCRx3Ymq2IgDC4LNGeB5iy8OQ_IbJzTeRWVe7-dDhYvgkP7_K6wPnLPvFf_OO81ebT17kOy06-v4A15qK_7xWb9NrjST4T-g3I
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preliminary+design+on+high-end+workstation+cooling+system+using+loop+heat+pipes&rft.jtitle=Thermal+science+and+engineering+progress&rft.au=Choi%2C+Jeehoon&rft.au=Jeong%2C+Minjoong&rft.date=2020-12-01&rft.pub=Elsevier+Ltd&rft.issn=2451-9049&rft.eissn=2451-9049&rft.volume=20&rft_id=info:doi/10.1016%2Fj.tsep.2020.100519&rft.externalDocID=S2451904920300408
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9049&client=summon