Preliminary design on high-end workstation cooling system using loop heat pipes
•Preliminary design is introduced to implement quick modeling on a loop heat pipe cooling system.•Design optimization based on a real coded genetic algorithm was devised to provide various configurations of design variables.•Multidimensional visualization tool was adapted to discern the most suitabl...
Gespeichert in:
| Veröffentlicht in: | Thermal science and engineering progress Jg. 20; S. 100519 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.12.2020
|
| Schlagworte: | |
| ISSN: | 2451-9049, 2451-9049 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Preliminary design is introduced to implement quick modeling on a loop heat pipe cooling system.•Design optimization based on a real coded genetic algorithm was devised to provide various configurations of design variables.•Multidimensional visualization tool was adapted to discern the most suitable design among solutions.•Prototype was constructed and tested to verify the proposed design process.
This paper introduces a new approach for the preliminary design of high-end workstation cooling system using loop heat pipe. To demonstrate this approach, a multidimensional visualization environment tool with respect to design optimization based on a genetic algorithm was devised not only to provide various configurations of design variables but also to conduct quickly preliminary design from the viewpoint of commercially viable versions and manufacturing. The optimization utilizing a real coded genetic algorithm was implemented to appropriately determine the configuration design variables of loop heat pipe components associated with the pressure drop, subject to specified design constraints. Through the devised visualization environment, various configurations can be identified so that cooling system modelers can promptly select the optimal candidate at the preliminary design stage when the proposed design condition and configurations are needed for decision making. As a case study, we designed a workstation cooling system based on the loop heat pipe that enabled to transport heat of 200 W CPU toheat exchanger. The highest temperature was 50.7 °C, which is sufficiently low to run multi-core CPUs. The experimental results show that the preliminary design optimization based cooling prototype to be a solution for achieving superior thermal performance in high-end workstations. |
|---|---|
| AbstractList | •Preliminary design is introduced to implement quick modeling on a loop heat pipe cooling system.•Design optimization based on a real coded genetic algorithm was devised to provide various configurations of design variables.•Multidimensional visualization tool was adapted to discern the most suitable design among solutions.•Prototype was constructed and tested to verify the proposed design process.
This paper introduces a new approach for the preliminary design of high-end workstation cooling system using loop heat pipe. To demonstrate this approach, a multidimensional visualization environment tool with respect to design optimization based on a genetic algorithm was devised not only to provide various configurations of design variables but also to conduct quickly preliminary design from the viewpoint of commercially viable versions and manufacturing. The optimization utilizing a real coded genetic algorithm was implemented to appropriately determine the configuration design variables of loop heat pipe components associated with the pressure drop, subject to specified design constraints. Through the devised visualization environment, various configurations can be identified so that cooling system modelers can promptly select the optimal candidate at the preliminary design stage when the proposed design condition and configurations are needed for decision making. As a case study, we designed a workstation cooling system based on the loop heat pipe that enabled to transport heat of 200 W CPU toheat exchanger. The highest temperature was 50.7 °C, which is sufficiently low to run multi-core CPUs. The experimental results show that the preliminary design optimization based cooling prototype to be a solution for achieving superior thermal performance in high-end workstations. |
| ArticleNumber | 100519 |
| Author | Jeong, Minjoong Choi, Jeehoon |
| Author_xml | – sequence: 1 givenname: Jeehoon surname: Choi fullname: Choi, Jeehoon organization: LG Electronics, Seoul, Republic of Korea – sequence: 2 givenname: Minjoong surname: Jeong fullname: Jeong, Minjoong email: jeong@kisti.re.kr organization: Korea Institute of Science and Technology Information, University of Science and Technology, Daejeon, Republic of Korea |
| BookMark | eNp9kMFKAzEQhoNUsNa-gKe8wNYkm93NghcpaoVCPeg5pNlJm7pNliQqfXt3WQ_ioaeZ-eEbZr5rNHHeAUK3lCwooeXdYZEidAtG2BCQgtYXaMp4QbOa8Hryp79C8xgPhBBWCJ7XYoo2rwFae7ROhRNuINqdw97hvd3tM3AN_vbhIyaVbB9q71vrdjieYoIj_ozD0Hrf4T2ohDvbQbxBl0a1Eea_dYbenx7flqtsvXl-WT6sM50TkjJBdMX4ti6FoETUFecF5EZzSrQBRaiquIGqMqoQquSKKWa0oKURZqvBlEU-Q2Lcq4OPMYCR2o5npqBsKymRgxt5kIMbObiRo5seZf_QLthj__956H6EoH_qy0KQUVtwGhobQCfZeHsO_wF0kIDV |
| CitedBy_id | crossref_primary_10_3390_ma15175830 crossref_primary_10_1016_j_tsep_2020_100683 crossref_primary_10_1016_j_tsep_2021_101117 crossref_primary_10_1016_j_tsep_2023_102139 crossref_primary_10_1016_j_applthermaleng_2021_117385 |
| Cites_doi | 10.4271/2009-01-2519 10.1023/A:1006504901164 10.1016/S1359-4311(03)00036-X 10.1007/BF03177454 10.5098/fhp.v2.1.3003 10.1016/j.applthermaleng.2019.114281 10.1016/j.applthermaleng.2016.12.062 10.1007/BF02676074 10.1016/j.applthermaleng.2013.06.060 10.1016/j.expthermflusci.2013.08.009 10.1016/j.applthermaleng.2019.03.147 10.1016/j.applthermaleng.2020.115073 10.1016/j.applthermaleng.2018.07.143 10.1016/j.ijthermalsci.2006.11.007 10.1016/j.applthermaleng.2015.09.096 10.1016/j.applthermaleng.2004.05.010 10.1115/1.4005734 10.4236/jectc.2014.41004 10.1016/j.applthermaleng.2012.12.011 10.1016/j.applthermaleng.2017.09.103 10.1016/j.applthermaleng.2019.114459 10.1016/j.applthermaleng.2004.07.010 10.1016/j.jhazmat.2008.02.106 |
| ContentType | Journal Article |
| Copyright | 2020 |
| Copyright_xml | – notice: 2020 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.tsep.2020.100519 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2451-9049 |
| ExternalDocumentID | 10_1016_j_tsep_2020_100519 S2451904920300408 |
| GroupedDBID | --M AACTN AAEDW AAHCO AAIAV AAKOC AALRI AAOAW AAXUO ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV AEBSH AFKWA AFTJW AGUBO AHJVU AIEXJ AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC EBS EFJIC EFLBG FDB FIRID FYGXN KOM OAUVE ROL SPC SPCBC SSR SST SSZ T5K ~G- 0R~ AAQFI AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS EJD |
| ID | FETCH-LOGICAL-c300t-80c724b968810897445e3fc410cfea01a74fe77fa58a64a2a2fc816f8fbcef653 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621595900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2451-9049 |
| IngestDate | Tue Nov 18 20:54:09 EST 2025 Thu Nov 13 04:34:24 EST 2025 Fri Feb 23 02:46:02 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Keywords | Electronics cooling Applications Genetic algorithm Loop heat pipe Optimization Work stations |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-80c724b968810897445e3fc410cfea01a74fe77fa58a64a2a2fc816f8fbcef653 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_tsep_2020_100519 crossref_primary_10_1016_j_tsep_2020_100519 elsevier_sciencedirect_doi_10_1016_j_tsep_2020_100519 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 2020-12-00 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Thermal science and engineering progress |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Faghri (b0115) 1995 Choi, Lee, Sung, Kim (b0075) 2012 Choi, Jeong (b0105) 2016; 92 Adachi, Fujita, Nagai (b0045) 2019; 163 Jeong, Yoshimura, Kobayashi (b0145) 2007; 21 Jo, An, Nguyen, Kim, Bang, James, Choi, Yoon (b0090) 2018; 128 A.M. Delil, Yu.F. Maydanik, C. Gernard, Development of Different Novel Loop Heat Pipes within the ISTC-1360 Project, SAE Paper No. 2003-01-2383. Ameli, Agnew, Leung, Ng, Sutcliffe, Singh, McGlen (b0165) 2013; 52 Zimbeck, Slavik, Cennamo, Kang, Yun, Kroliczek (b0025) 2008 Gopienko (b0155) 1999; 38 Maydanik (b0110) 2005; 25 Bai, Fu, Lin, Zhou, Wen (b0040) 2019; 155 Choi, Sung, Yoo, Kim, Borca-Tasciuc (b0070) 2012; 4 Zhang, Zhang, Lai, Liu, Liu (b0050) 2020 Choi, Sung, Kim, Borca-Tasciuc (b0080) 2013; 60 L.L. Vasiliev Jr., M. Marengo, C. Ferrandi, S. Zinna, V. Maziuk, Advanced Design of a “Low-Cost” Loop Heat Pipe, SAE Technical Paper 2009-01-2519. Swanson, Birur (b0015) 2003; 23 Choi, Sano, Zhang, Yuan, Lee, Borca-Tasciuc (b0085) 2013; 51 Goldberg (b0125) 1989 Jeong, Choi, Koh (b0135) 2011 Wang, Lin, Bai, Tao, Wen (b0100) 2020; 164 Buffone (b0060) 2014; 4 Launay, Sartre, Bonjour (b0030) 2007; 46 Back (b0150) 1996 McKay, Beckman, Conover (b0140) 1979; 21 Riehl, Dutra (b0020) 2005; 25 Munson, Young, Okiishi, Shao (b0120) 2006 Myers (b0160) 2008; 159 Huang, Chuang, Yang (b0065) 2017; 126 Li, Fu, Li, Fu, Zhou, Tang, Tang, Deng, Zhou (b0095) 2018; 143 Launay, Vallee (b0035) 2011; 2 Herrera, Lozano, Verdegay (b0130) 1998; 12 Cheung, Hoang, Ku, Kaya (b0005) 1998 Holman (b0170) 2011 Ameli (10.1016/j.tsep.2020.100519_b0165) 2013; 52 Cheung (10.1016/j.tsep.2020.100519_b0005) 1998 Choi (10.1016/j.tsep.2020.100519_b0085) 2013; 51 Munson (10.1016/j.tsep.2020.100519_b0120) 2006 Buffone (10.1016/j.tsep.2020.100519_b0060) 2014; 4 Riehl (10.1016/j.tsep.2020.100519_b0020) 2005; 25 Holman (10.1016/j.tsep.2020.100519_b0170) 2011 Herrera (10.1016/j.tsep.2020.100519_b0130) 1998; 12 Li (10.1016/j.tsep.2020.100519_b0095) 2018; 143 Myers (10.1016/j.tsep.2020.100519_b0160) 2008; 159 Choi (10.1016/j.tsep.2020.100519_b0070) 2012; 4 Choi (10.1016/j.tsep.2020.100519_b0080) 2013; 60 Jo (10.1016/j.tsep.2020.100519_b0090) 2018; 128 Back (10.1016/j.tsep.2020.100519_b0150) 1996 Launay (10.1016/j.tsep.2020.100519_b0035) 2011; 2 Adachi (10.1016/j.tsep.2020.100519_b0045) 2019; 163 Jeong (10.1016/j.tsep.2020.100519_b0135) 2011 McKay (10.1016/j.tsep.2020.100519_b0140) 1979; 21 Choi (10.1016/j.tsep.2020.100519_b0105) 2016; 92 Goldberg (10.1016/j.tsep.2020.100519_b0125) 1989 Jeong (10.1016/j.tsep.2020.100519_b0145) 2007; 21 Maydanik (10.1016/j.tsep.2020.100519_b0110) 2005; 25 Gopienko (10.1016/j.tsep.2020.100519_b0155) 1999; 38 Huang (10.1016/j.tsep.2020.100519_b0065) 2017; 126 Faghri (10.1016/j.tsep.2020.100519_b0115) 1995 Launay (10.1016/j.tsep.2020.100519_b0030) 2007; 46 Wang (10.1016/j.tsep.2020.100519_b0100) 2020; 164 Zhang (10.1016/j.tsep.2020.100519_b0050) 2020 Bai (10.1016/j.tsep.2020.100519_b0040) 2019; 155 Choi (10.1016/j.tsep.2020.100519_b0075) 2012 Zimbeck (10.1016/j.tsep.2020.100519_b0025) 2008 10.1016/j.tsep.2020.100519_b0010 Swanson (10.1016/j.tsep.2020.100519_b0015) 2003; 23 10.1016/j.tsep.2020.100519_b0055 |
| References_xml | – volume: 163 year: 2019 ident: b0045 article-title: Numerical study of temperature oscillation in loop heat pipe publication-title: Appl. Therm. Eng. – volume: 23 start-page: 1055 year: 2003 end-page: 1065 ident: b0015 article-title: NASA thermal control technologies for robotic spacecraft publication-title: Appl. Therm. Eng. – volume: 164 year: 2020 ident: b0100 article-title: Comparative study of two loop heat pipes using R134a as the working fluid publication-title: Appl. Therm. Eng. – year: 2006 ident: b0120 article-title: Fundamentals of Fluid Mechanics – volume: 52 start-page: 498 year: 2013 end-page: 504 ident: b0165 article-title: A novel method for manufacturing sintered aluminium heat pipes (SAHP) publication-title: Appl. Therm. Eng. – volume: 21 start-page: 43 year: 2007 end-page: 54 ident: b0145 article-title: Multidimensional visualization and clustering for multi-objective optimization of artificial satellite heat pipe design publication-title: J. Mech. Sci. Technol. – reference: A.M. Delil, Yu.F. Maydanik, C. Gernard, Development of Different Novel Loop Heat Pipes within the ISTC-1360 Project, SAE Paper No. 2003-01-2383. – volume: 21 start-page: 239 year: 1979 end-page: 245 ident: b0140 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 126 start-page: 1091 year: 2017 end-page: 1097 ident: b0065 article-title: Low-cost manufacturing of loop heat pipe for commercial applications publication-title: Appl. Therm. Eng. – volume: 4 start-page: 33 year: 2014 ident: b0060 article-title: Testing of a low-cost loop heat pipe design publication-title: J. Electron. Cool. Therm. Control – year: 1995 ident: b0115 article-title: Heat Pipe Science and Technology – year: 1996 ident: b0150 article-title: Evolutionary Algorithms in Theory and Practice – year: 2012 ident: b0075 article-title: Investigation on operational characteristics of the miniature loop heat pipes with flat evaporators based on diverse vapor removal channels publication-title: 16th International Heat Pipe Conference, No. 023, Lyon, France – volume: 155 start-page: 14 year: 2019 end-page: 23 ident: b0040 article-title: Quiet power-free cooling system enabled by loop heat pipe publication-title: Appl. Therm. Eng. – volume: 38 start-page: 529 year: 1999 end-page: 531 ident: b0155 article-title: Methods of reducing explosion hazards for aluminum powders, dusts, and pastes publication-title: Powder Metall. Met. Ceram. – volume: 25 start-page: 101 year: 2005 end-page: 112 ident: b0020 article-title: Development of an experimental loop heat pipe for application in future space missions publication-title: Appl. Therm. Eng. – year: 2011 ident: b0135 article-title: Performance evaluation of modified genetic and swarm-based optimization algorithms in damage identification problem publication-title: Struct. Control Health Monit. – year: 2011 ident: b0170 article-title: Experimental Methods for Engineers – start-page: 19 year: 2008 end-page: 25 ident: b0025 article-title: Loop heat pipe technology for cooling computer servers publication-title: Thermal and Thermomechanical Phenomena in Electronic Systems, ITHERM 2008 – volume: 2 year: 2011 ident: b0035 article-title: State-of-the-art experimental studies on loop heat pipes publication-title: Front. Heat Pipes – volume: 159 start-page: 72 year: 2008 end-page: 80 ident: b0160 article-title: Reducing aluminum dust explosion hazards: case study of dust inerting in an aluminum buffing operation publication-title: J. Hazard. Mater. – volume: 143 start-page: 621 year: 2018 end-page: 629 ident: b0095 article-title: Effect of fabrication parameters on capillary pumping performance of multi-scale composite porous wicks for loop heat pipe publication-title: Appl. Therm. Eng. – volume: 60 start-page: 371 year: 2013 end-page: 378 ident: b0080 article-title: Interface engineering to enhance thermal contact conductance of evaporators in miniature loop heat pipe systems publication-title: Appl. Therm. Eng. – volume: 128 start-page: 1605 year: 2018 end-page: 1610 ident: b0090 article-title: Modifying capillary pressure and boiling regime of micro-porous wicks textured with graphene oxide publication-title: Appl. Therm. Eng. – volume: 25 start-page: 635 year: 2005 end-page: 657 ident: b0110 article-title: Review: loop heat pipes publication-title: Appl. Therm. Eng. – year: 1989 ident: b0125 article-title: Genetic Algorithms in Search, Optimization and Machine Learning – volume: 4 year: 2012 ident: b0070 article-title: Enhanced miniature loop heat pipe cooling system for high power density electronics publication-title: J. Therm. Sci. Eng. Appl. – volume: 46 start-page: 621 year: 2007 end-page: 636 ident: b0030 article-title: Parametric analysis of loop heat pipe operation: a literature review publication-title: Int. J. Therm. Sci. – start-page: 115073 year: 2020 ident: b0050 article-title: Numerical study on thermohydraulic behavior in compensation chamber of a loop heat pipe with flat evaporator publication-title: Appl. Therm. Eng. – volume: 51 start-page: 271 year: 2013 end-page: 278 ident: b0085 article-title: Experimental investigation on sintered porous wicks for miniature loop heat pipe applications publication-title: Exp. Therm. Fluid Sci. – year: 1998 ident: b0005 article-title: Thermal Performance and Operational Characteristics of Loop Heat Pipe (NRL LHP) – reference: L.L. Vasiliev Jr., M. Marengo, C. Ferrandi, S. Zinna, V. Maziuk, Advanced Design of a “Low-Cost” Loop Heat Pipe, SAE Technical Paper 2009-01-2519. – volume: 92 start-page: 162 year: 2016 end-page: 171 ident: b0105 article-title: Compact, lightweight, and highly efficient circular heat sink design for high-end PCs publication-title: Appl. Therm. Eng. – volume: 12 start-page: 265 year: 1998 end-page: 319 ident: b0130 article-title: Tackling real-coded genetic algorithms: operators and tools for behavioral analysis publication-title: Artif. Intell. Rev. – ident: 10.1016/j.tsep.2020.100519_b0055 doi: 10.4271/2009-01-2519 – volume: 12 start-page: 265 year: 1998 ident: 10.1016/j.tsep.2020.100519_b0130 article-title: Tackling real-coded genetic algorithms: operators and tools for behavioral analysis publication-title: Artif. Intell. Rev. doi: 10.1023/A:1006504901164 – volume: 23 start-page: 1055 year: 2003 ident: 10.1016/j.tsep.2020.100519_b0015 article-title: NASA thermal control technologies for robotic spacecraft publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(03)00036-X – year: 2012 ident: 10.1016/j.tsep.2020.100519_b0075 article-title: Investigation on operational characteristics of the miniature loop heat pipes with flat evaporators based on diverse vapor removal channels – volume: 21 start-page: 43 year: 2007 ident: 10.1016/j.tsep.2020.100519_b0145 article-title: Multidimensional visualization and clustering for multi-objective optimization of artificial satellite heat pipe design publication-title: J. Mech. Sci. Technol. doi: 10.1007/BF03177454 – volume: 2 year: 2011 ident: 10.1016/j.tsep.2020.100519_b0035 article-title: State-of-the-art experimental studies on loop heat pipes publication-title: Front. Heat Pipes doi: 10.5098/fhp.v2.1.3003 – volume: 163 year: 2019 ident: 10.1016/j.tsep.2020.100519_b0045 article-title: Numerical study of temperature oscillation in loop heat pipe publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114281 – year: 1989 ident: 10.1016/j.tsep.2020.100519_b0125 – year: 1996 ident: 10.1016/j.tsep.2020.100519_b0150 – volume: 126 start-page: 1091 year: 2017 ident: 10.1016/j.tsep.2020.100519_b0065 article-title: Low-cost manufacturing of loop heat pipe for commercial applications publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.12.062 – ident: 10.1016/j.tsep.2020.100519_b0010 – volume: 38 start-page: 529 issue: 9–10 year: 1999 ident: 10.1016/j.tsep.2020.100519_b0155 article-title: Methods of reducing explosion hazards for aluminum powders, dusts, and pastes publication-title: Powder Metall. Met. Ceram. doi: 10.1007/BF02676074 – volume: 60 start-page: 371 issue: 1 year: 2013 ident: 10.1016/j.tsep.2020.100519_b0080 article-title: Interface engineering to enhance thermal contact conductance of evaporators in miniature loop heat pipe systems publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.06.060 – volume: 51 start-page: 271 year: 2013 ident: 10.1016/j.tsep.2020.100519_b0085 article-title: Experimental investigation on sintered porous wicks for miniature loop heat pipe applications publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2013.08.009 – volume: 155 start-page: 14 year: 2019 ident: 10.1016/j.tsep.2020.100519_b0040 article-title: Quiet power-free cooling system enabled by loop heat pipe publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.03.147 – start-page: 115073 year: 2020 ident: 10.1016/j.tsep.2020.100519_b0050 article-title: Numerical study on thermohydraulic behavior in compensation chamber of a loop heat pipe with flat evaporator publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115073 – year: 2006 ident: 10.1016/j.tsep.2020.100519_b0120 – year: 2011 ident: 10.1016/j.tsep.2020.100519_b0135 article-title: Performance evaluation of modified genetic and swarm-based optimization algorithms in damage identification problem publication-title: Struct. Control Health Monit. – volume: 21 start-page: 239 year: 1979 ident: 10.1016/j.tsep.2020.100519_b0140 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – year: 1995 ident: 10.1016/j.tsep.2020.100519_b0115 – volume: 143 start-page: 621 year: 2018 ident: 10.1016/j.tsep.2020.100519_b0095 article-title: Effect of fabrication parameters on capillary pumping performance of multi-scale composite porous wicks for loop heat pipe publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.07.143 – volume: 46 start-page: 621 year: 2007 ident: 10.1016/j.tsep.2020.100519_b0030 article-title: Parametric analysis of loop heat pipe operation: a literature review publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2006.11.007 – volume: 92 start-page: 162 year: 2016 ident: 10.1016/j.tsep.2020.100519_b0105 article-title: Compact, lightweight, and highly efficient circular heat sink design for high-end PCs publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.09.096 – start-page: 19 year: 2008 ident: 10.1016/j.tsep.2020.100519_b0025 article-title: Loop heat pipe technology for cooling computer servers – volume: 25 start-page: 101 year: 2005 ident: 10.1016/j.tsep.2020.100519_b0020 article-title: Development of an experimental loop heat pipe for application in future space missions publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2004.05.010 – volume: 4 year: 2012 ident: 10.1016/j.tsep.2020.100519_b0070 article-title: Enhanced miniature loop heat pipe cooling system for high power density electronics publication-title: J. Therm. Sci. Eng. Appl. doi: 10.1115/1.4005734 – volume: 4 start-page: 33 year: 2014 ident: 10.1016/j.tsep.2020.100519_b0060 article-title: Testing of a low-cost loop heat pipe design publication-title: J. Electron. Cool. Therm. Control doi: 10.4236/jectc.2014.41004 – volume: 52 start-page: 498 issue: 2 year: 2013 ident: 10.1016/j.tsep.2020.100519_b0165 article-title: A novel method for manufacturing sintered aluminium heat pipes (SAHP) publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.12.011 – year: 1998 ident: 10.1016/j.tsep.2020.100519_b0005 – volume: 128 start-page: 1605 year: 2018 ident: 10.1016/j.tsep.2020.100519_b0090 article-title: Modifying capillary pressure and boiling regime of micro-porous wicks textured with graphene oxide publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.09.103 – volume: 164 year: 2020 ident: 10.1016/j.tsep.2020.100519_b0100 article-title: Comparative study of two loop heat pipes using R134a as the working fluid publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114459 – volume: 25 start-page: 635 year: 2005 ident: 10.1016/j.tsep.2020.100519_b0110 article-title: Review: loop heat pipes publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2004.07.010 – volume: 159 start-page: 72 issue: 1 year: 2008 ident: 10.1016/j.tsep.2020.100519_b0160 article-title: Reducing aluminum dust explosion hazards: case study of dust inerting in an aluminum buffing operation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.02.106 – year: 2011 ident: 10.1016/j.tsep.2020.100519_b0170 |
| SSID | ssj0002584398 |
| Score | 2.2135365 |
| Snippet | •Preliminary design is introduced to implement quick modeling on a loop heat pipe cooling system.•Design optimization based on a real coded genetic algorithm... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 100519 |
| SubjectTerms | Applications Electronics cooling Genetic algorithm Loop heat pipe Optimization Work stations |
| Title | Preliminary design on high-end workstation cooling system using loop heat pipes |
| URI | https://dx.doi.org/10.1016/j.tsep.2020.100519 |
| Volume | 20 |
| WOSCitedRecordID | wos000621595900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 2451-9049 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002584398 issn: 2451-9049 databaseCode: AIEXJ dateStart: 20170301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9wwEBUl6aE9lKQfNG1adOhtcbBk2ZKPoaS0gaSBprA3Y8ujdpfFNrtOSP99NZLsddMQ2kIvZhErrT1vdhjJb94Q8q5i6De8jIQSSSRyVdv_XJJHDEzMQCXCJNo1m5Dn52o-zy9C_86Naycgm0bd3OTdf4XajlmwsXT2L-AeF7UD9rMF3V4t7Pb6R8BfrGHlWnWtf8xqx8_AFwIoSxxBU7veMJtAMdRt66rRvZzz7MqdG6zatsP8sZ91iy4wDJejT9k4HqooQ6UBbAUNPdlroHQ4zkC78BQa-N5u3_efQuABny2apR3_Nj164LdpHGNNzJaAZMMWFymSPrwQ6RHcMRbiriuC-z2E-9OE5VG_AdQT5Y7IkYa4-qs09hdcF5flMQqHYc33LpdpbqPb7vGnk_npeNrGbZ6VuMbI462ECipP9rv9Y3dnKZPM43KPPAlbBnrsod4nD6B5Sh5PhCSfkc8T0KkHnbYNHUCnE9BpAJ160KkDnSLoFEGnDvTn5OuHk8v3H6PQKiPS9sl7m2doyUWVZ0qxWNk9okghMVqwWBsoY1ZKYUBKU6aqzETJS260YplRptJgsjR5QXaatoGXhCooZVJlXNZVLDQy45TmNQMdozYgVAeEDaYpdNCRx3Ymq2IgDC4LNGeB5iy8OQ_IbJzTeRWVe7-dDhYvgkP7_K6wPnLPvFf_OO81ebT17kOy06-v4A15qK_7xWb9NrjST4T-g3I |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preliminary+design+on+high-end+workstation+cooling+system+using+loop+heat+pipes&rft.jtitle=Thermal+science+and+engineering+progress&rft.au=Choi%2C+Jeehoon&rft.au=Jeong%2C+Minjoong&rft.date=2020-12-01&rft.pub=Elsevier+Ltd&rft.issn=2451-9049&rft.eissn=2451-9049&rft.volume=20&rft_id=info:doi/10.1016%2Fj.tsep.2020.100519&rft.externalDocID=S2451904920300408 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9049&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9049&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9049&client=summon |