Deep optimization of model predictive control performance for wind turbine yaw system based on intelligent fuzzy deduction

Because wind direction has the trait of time varying, yaw is a common state of wind turbine (WT). To improve the energy capture and reduce the yaw actuator usage time, a Model Predictive Control (MPC) method based on the Fuzzy Deduction Weight Coefficient Evaluator (FDWE) is proposed. Specifically,...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 221; p. 119705
Main Authors: Song, Dongran, Li, Ziqun, Deng, Xiaofei, Dong, Mi, Huang, Lingxiang, Yang, Jian, Su, Mei, Joo, Younghoon
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.07.2023
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Because wind direction has the trait of time varying, yaw is a common state of wind turbine (WT). To improve the energy capture and reduce the yaw actuator usage time, a Model Predictive Control (MPC) method based on the Fuzzy Deduction Weight Coefficient Evaluator (FDWE) is proposed. Specifically, in view of the two contradictory control objectives of energy capture loss ratio and yaw actuator usage ratio in MPC, FDWE is designed to dynamically adjusts the weight coefficient connecting the two objectives according to the predicted wind direction. On this basis, to fully exert the advantage of FDWE, the fuzzy rule and membership function (MF) are tried to be simultaneously optimized. For this complex optimization problem involving different types of multiple design variables, three different solving strategies are proposed: fuzzy rule-MF ordered optimization, mixed integer optimization, and association optimization. Finally, an improved Adaptive Grid Algorithm Multi-Objective Particle Swarm Optimization is presented to solve the formulated optimization problems. The results indicate that the optimized FDWE-MPC using the three strategies not only improves the energy capture of the WT, but also reduces the use of yaw actuator compared to the baseline MPC. Consequently, the proposed method is promising in reducing the production cost for the WTs.
AbstractList Because wind direction has the trait of time varying, yaw is a common state of wind turbine (WT). To improve the energy capture and reduce the yaw actuator usage time, a Model Predictive Control (MPC) method based on the Fuzzy Deduction Weight Coefficient Evaluator (FDWE) is proposed. Specifically, in view of the two contradictory control objectives of energy capture loss ratio and yaw actuator usage ratio in MPC, FDWE is designed to dynamically adjusts the weight coefficient connecting the two objectives according to the predicted wind direction. On this basis, to fully exert the advantage of FDWE, the fuzzy rule and membership function (MF) are tried to be simultaneously optimized. For this complex optimization problem involving different types of multiple design variables, three different solving strategies are proposed: fuzzy rule-MF ordered optimization, mixed integer optimization, and association optimization. Finally, an improved Adaptive Grid Algorithm Multi-Objective Particle Swarm Optimization is presented to solve the formulated optimization problems. The results indicate that the optimized FDWE-MPC using the three strategies not only improves the energy capture of the WT, but also reduces the use of yaw actuator compared to the baseline MPC. Consequently, the proposed method is promising in reducing the production cost for the WTs.
ArticleNumber 119705
Author Huang, Lingxiang
Li, Ziqun
Yang, Jian
Deng, Xiaofei
Joo, Younghoon
Dong, Mi
Su, Mei
Song, Dongran
Author_xml – sequence: 1
  givenname: Dongran
  orcidid: 0000-0002-3982-8388
  surname: Song
  fullname: Song, Dongran
  email: songdongran@csu.edu.cn
  organization: School of Automation, Central South University, Changsha, China
– sequence: 2
  givenname: Ziqun
  surname: Li
  fullname: Li, Ziqun
  email: kimlee1874@qq.com
  organization: School of Automation, Central South University, Changsha, China
– sequence: 3
  givenname: Xiaofei
  orcidid: 0000-0001-6600-4918
  surname: Deng
  fullname: Deng, Xiaofei
  email: xiaofei0228@163.com
  organization: School of Information Technology and Management, Hunan University of Finance and Economics, Changsha, China
– sequence: 4
  givenname: Mi
  surname: Dong
  fullname: Dong, Mi
  email: 178120900@qq.com
  organization: School of Information Technology and Management, Hunan University of Finance and Economics, Changsha, China
– sequence: 5
  givenname: Lingxiang
  surname: Huang
  fullname: Huang, Lingxiang
  email: huanglingxiang@hewp.com.cn
  organization: Harbin Electric Corporation Wind Power CO., LTD., Xiangtan, China
– sequence: 6
  givenname: Jian
  surname: Yang
  fullname: Yang, Jian
  email: jian.yang@csu.edu.cn
  organization: School of Automation, Central South University, Changsha, China
– sequence: 7
  givenname: Mei
  surname: Su
  fullname: Su, Mei
  email: sumeicsu@csu.edu.cn
  organization: School of Automation, Central South University, Changsha, China
– sequence: 8
  givenname: Younghoon
  orcidid: 0000-0002-4662-1916
  surname: Joo
  fullname: Joo, Younghoon
  email: yhjoo@kunsan.ac.kr
  organization: School of IT Information and Control Engineering, Kunsan National University, Kunsan, Korea
BookMark eNp9kE1LAzEQhoNUsK3-AU_5A1sn-5UueJH6CQUveg7ZZCIpu0lJ0pbtr3drPXnwNC8DzzvMMyMT5x0ScstgwYDVd5sFxoNc5JAXC8YaDtUFmbIlL7KaN8WETKGpeFYyXl6RWYwbAMYB-JQcHxG31G-T7e1RJusd9Yb2XmNHtwG1VcnukSrvUvDjCoPxoZdOIR0DPVinadqF1jqkgzzQOMSEPW1lRE3HMusSdp39Qpeo2R2PA9Wod-p06JpcGtlFvPmdc_L5_PSxes3W7y9vq4d1pgqAlHHM27wpqxbqutLLEgqtFK_aikmDnDemBazZsqk0gGnzgvMqL5GbdqQK4KqYk_zcq4KPMaAR22B7GQbBQJzsiY042RMne-Jsb4SWfyBl04-fFKTt_kfvzyiOT-0tBhGVxdGYtgFVEtrb__BvMb2QWQ
CitedBy_id crossref_primary_10_1016_j_enconman_2024_118155
crossref_primary_10_1007_s00521_025_11247_w
crossref_primary_10_1016_j_enconman_2023_117385
crossref_primary_10_1109_ACCESS_2025_3558398
crossref_primary_10_3233_WEB_240141
crossref_primary_10_3390_jmse11051082
crossref_primary_10_1016_j_oceaneng_2024_117482
crossref_primary_10_1016_j_rser_2024_115227
crossref_primary_10_1016_j_apenergy_2023_121891
crossref_primary_10_1080_15567036_2024_2302956
crossref_primary_10_1016_j_rineng_2025_106205
crossref_primary_10_1016_j_apenergy_2023_121546
crossref_primary_10_1016_j_ijepes_2024_110019
crossref_primary_10_1016_j_oceaneng_2024_119805
crossref_primary_10_1016_j_apenergy_2023_121849
crossref_primary_10_3390_jmse11050967
Cites_doi 10.1109/TFUZZ.1993.390281
10.1109/TSTE.2018.2856919
10.1109/ICELMACH.2014.6960412
10.1007/978-81-322-2119-7_97
10.1109/21.199466
10.1109/ACCESS.2020.2996381
10.1109/TEVC.2004.826067
10.1016/j.rser.2013.03.018
10.1109/ICCEP.2015.7177629
10.1016/j.apenergy.2018.04.114
10.1016/j.eswa.2022.116663
10.1016/j.apenergy.2020.116303
10.1109/WNWEC.2009.5335830
10.1049/iet-rpg.2016.0005
10.1016/j.enconman.2022.116628
10.1016/j.apenergy.2021.116641
10.1002/we.2519
10.1002/we.2493
10.1016/j.eswa.2019.113123
10.1002/we.1492
10.1002/we.2564
10.1016/S2307-1877(25)00609-1
10.1109/ICMA.2016.7558583
10.1016/j.apenergy.2019.113816
10.1002/we.2579
10.1016/j.enconman.2020.112496
10.1016/j.eswa.2021.114836
10.35833/MPCE.2019.000467
10.1016/j.enconman.2020.113212
10.1016/j.ins.2010.02.022
10.1109/CCDC.2017.7979412
10.1016/j.eswa.2020.114182
10.1016/j.ins.2008.12.028
10.1016/j.energy.2017.02.149
10.1016/S0005-1098(99)00214-9
10.1016/j.enconman.2017.12.019
10.1016/j.eswa.2022.116509
10.32604/EE.2021.014269
10.1109/TSTE.2018.2878624
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.119705
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_119705
S0957417423002063
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-7e2b2945b0665d8403dcc75b51afe779fb0e61895d00fb2377524e7fbb29307c3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001008562900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Nov 18 19:58:27 EST 2025
Sat Nov 29 07:07:53 EST 2025
Fri Feb 23 02:38:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords MPC
Membership function optimization
Fuzzy rule optimization
AGA-MOPSO
Wind turbine
Yaw system
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-7e2b2945b0665d8403dcc75b51afe779fb0e61895d00fb2377524e7fbb29307c3
ORCID 0000-0002-4662-1916
0000-0002-3982-8388
0000-0001-6600-4918
ParticipantIDs crossref_primary_10_1016_j_eswa_2023_119705
crossref_citationtrail_10_1016_j_eswa_2023_119705
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_119705
PublicationCentury 2000
PublicationDate 2023-07-01
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Song, Li, Cai, Li, Yang, Su, Joo (b0175) 2019; 10
Allik, Uiga, Annuk (b0010) 2014; 12
Bu, F., Huang, W., Hu, Y., Xu, Y., Shi, K., & Wang, Q. (2009). Study and Implementation of A Control Algorithm for Wind Turbine Yaw Control System.
Gao, Wang, Li, Sun, Yang, Han, Zhao (b0070) 2019; 255
Song, Yang, Fan, Liu, Liu, Chen, Joo (b0185) 2018; 157
Li, Miao, Li (b0100) 2021; 283
Mademils, C. (2015). Influence of the Measurement Accuracy of Wind Sensors on Wind System Performance.
Campos-Mercado, Cerecero-Natale, Garcia-Salazar, Abundis Fong, Wood (b0040) 2020; 24
Bharani, R., & Jayasankar, K. C. (2015). Yaw Control of Wind Turbine Using Fuzzy Logic Controller. In C. Kamalakannan, L. P. Suresh, S. S. Dash, & B. K. Panigrahi (Eds.), Power Electronics and Renewable Energy Systems (Vol. 326, pp. 997-1006).
Masero, Francisco, Maestre, Revollar, Vega (b0125) 2021; 176
Liu, Song, Li, Yang, Hu, Fang, Hoon Joo (b0105) 2023; 277
Kragh, Hansen, Mikkelsen (b0095) 2013; 16
GWEC. (2021). Global Wind Report 2021. Retrieved from Europe.
Zhang, Wang, Liao, Xiao, Fu (b0230) 2022; 193
Liu, Y., Zhao, Y., Hou, C., & Meng, G. (2016). Research on Yaw Control System of 1.5 MW Double-fed Wind Power Generators.
Mayne, Rawlings, Rao, Scokaert (b0130) 2000; 36
Song, Fan, Yang, Liu, Chen, Joo (b0170) 2018; 224
Mesemanolis, A., & Mademlis, C. (2014). Combined Maximum Power Point and Yaw Control Strategy for a Horizontal Axis Wind Turbine.
Mellal, Pecht (b0140) 2020; 222
Song, Yang, Zheng, Deng, Yang, Su, Joo (b0190) 2020; 206
Sheibat-Othman, Othman, Tayari, Sakly, Odgaard, Larsen (b0160) 2015; 48
Yang, Fang, Song, Su, Yang, Huang, Joo (b0205) 2020; 24
Song, Chang, Zheng, Yang, Yang, Joo (b0165) 2021; 9
Friis Pedersen, Gottschall, Kristoffersen, Dahlberg (b0065) 2011
Coello, Pulido, Lechuga (b0055) 2004; 8
Choi, Shin, Ko, Rhee (b0050) 2019; 10
Karimi, Feylizadeh, Govindan, Bagherpour (b0090) 2022; 196
Yang, Zhou, Fang, Li, Liu (b0210) 2008; Simulation(21)
Bossanyi (b0030) 2012
Medici (b0135) 2005
Sugeno, Yasukawa (b0195) 1993; 1
Zhang, Zhao (b0215) 2021; 288
Guo, F., Jiang, W., Shao, H., Du, Y., & She, J. (2017). Research on the Wind Turbine Yaw System Based on PLC. Paper presented at the 2017 29th Chinese Control and Decision Conference. <Go to ISI>://WOS:000427082207136.
Castillo, Martínez-Marroquín, Melin, Valdez, Soria (b0045) 2012; 192
Song, Yang, Dong, Joo (b0180) 2017; 126
Wang, Mendel (b0200) 2002; 22
Karakasis, Mesemanolis, Nalmpantis, Mademlis (b0085) 2016; 10
Bakhshi, Sandborn (b0015) 2020; 23
Najariyan, Zhao (b0150) 2021; 167
Farag, El-Hosary, Kamel, El-Metwally (b0060) 2019; 7
Ali, Talha, Berkouk, m (b0005) 2020; 23
Barcena, Acosta, Etxebarria, Kortabarria (b0020) 2020; 8
Zhang, Chen, Zhang, Zhuang (b0220) 2020; 145
Zhang, Huang, Song, Xu, Song (b0225) 2021; 118
Martínez, Castillo, Aguilar (b0120) 2009; 179
Pinar Perez, Garcia Marquez, Tobias, Papaelias (b0155) 2013; 23
Pinar Perez (10.1016/j.eswa.2023.119705_b0155) 2013; 23
Sheibat-Othman (10.1016/j.eswa.2023.119705_b0160) 2015; 48
Allik (10.1016/j.eswa.2023.119705_b0010) 2014; 12
Zhang (10.1016/j.eswa.2023.119705_b0230) 2022; 193
10.1016/j.eswa.2023.119705_b0080
Sugeno (10.1016/j.eswa.2023.119705_b0195) 1993; 1
Castillo (10.1016/j.eswa.2023.119705_b0045) 2012; 192
Farag (10.1016/j.eswa.2023.119705_b0060) 2019; 7
Mellal (10.1016/j.eswa.2023.119705_b0140) 2020; 222
Barcena (10.1016/j.eswa.2023.119705_b0020) 2020; 8
Karimi (10.1016/j.eswa.2023.119705_b0090) 2022; 196
Yang (10.1016/j.eswa.2023.119705_b0205) 2020; 24
Campos-Mercado (10.1016/j.eswa.2023.119705_b0040) 2020; 24
10.1016/j.eswa.2023.119705_b0035
Choi (10.1016/j.eswa.2023.119705_b0050) 2019; 10
Song (10.1016/j.eswa.2023.119705_b0170) 2018; 224
10.1016/j.eswa.2023.119705_b0115
Song (10.1016/j.eswa.2023.119705_b0180) 2017; 126
Gao (10.1016/j.eswa.2023.119705_b0070) 2019; 255
Medici (10.1016/j.eswa.2023.119705_b0135) 2005
Zhang (10.1016/j.eswa.2023.119705_b0215) 2021; 288
Song (10.1016/j.eswa.2023.119705_b0185) 2018; 157
Masero (10.1016/j.eswa.2023.119705_b0125) 2021; 176
Bossanyi (10.1016/j.eswa.2023.119705_b0030)
Yang (10.1016/j.eswa.2023.119705_b0210) 2008; Simulation(21)
Song (10.1016/j.eswa.2023.119705_b0190) 2020; 206
Wang (10.1016/j.eswa.2023.119705_b0200) 2002; 22
Najariyan (10.1016/j.eswa.2023.119705_b0150) 2021; 167
Friis Pedersen (10.1016/j.eswa.2023.119705_b0065) 2011
Li (10.1016/j.eswa.2023.119705_b0100) 2021; 283
Karakasis (10.1016/j.eswa.2023.119705_b0085) 2016; 10
Song (10.1016/j.eswa.2023.119705_b0175) 2019; 10
Song (10.1016/j.eswa.2023.119705_b0165) 2021; 9
10.1016/j.eswa.2023.119705_b0110
10.1016/j.eswa.2023.119705_b0075
10.1016/j.eswa.2023.119705_b0025
Liu (10.1016/j.eswa.2023.119705_b0105) 2023; 277
10.1016/j.eswa.2023.119705_b0145
Coello (10.1016/j.eswa.2023.119705_b0055) 2004; 8
Kragh (10.1016/j.eswa.2023.119705_b0095) 2013; 16
Zhang (10.1016/j.eswa.2023.119705_b0220) 2020; 145
Ali (10.1016/j.eswa.2023.119705_b0005) 2020; 23
Bakhshi (10.1016/j.eswa.2023.119705_b0015) 2020; 23
Zhang (10.1016/j.eswa.2023.119705_b0225) 2021; 118
Martínez (10.1016/j.eswa.2023.119705_b0120) 2009; 179
Mayne (10.1016/j.eswa.2023.119705_b0130) 2000; 36
References_xml – volume: 224
  start-page: 267
  year: 2018
  end-page: 279
  ident: b0170
  article-title: Power extraction efficiency optimization of horizontal-axis wind turbines through optimizing control parameters of yaw control systems using an intelligent method
  publication-title: Applied Energy
– volume: 145
  year: 2020
  ident: b0220
  article-title: Fuzzy optimization model for electric vehicle routing problem with time windows and recharging stations
  publication-title: Expert Systems with Applications
– year: 2011
  ident: b0065
  article-title: Yawing and performance of an offshore wind farm
  publication-title: Proceedings.
– volume: 10
  start-page: 2084
  year: 2019
  end-page: 2093
  ident: b0175
  article-title: Model Predictive Control Using Multi-Step Prediction Model for Electrical Yaw System of Horizontal-Axis Wind Turbines
  publication-title: Ieee Transactions on Sustainable Energy
– volume: 118
  start-page: 237
  year: 2021
  end-page: 250
  ident: b0225
  article-title: Model Predictive Yaw Control Using Fuzzy-Deduced Weighting Factor for Large- Scale Wind Turbines
  publication-title: Energy Engineering
– volume: 193
  year: 2022
  ident: b0230
  article-title: Wind speed forecasting based on model selection, fuzzy cluster, and multi-objective algorithm and wind energy simulation by Betz's theory
  publication-title: Expert Systems with Applications
– volume: 277
  year: 2023
  ident: b0105
  article-title: Life cycle cost modelling and economic analysis of wind power: A state of art review
  publication-title: Energy Conversion and Management
– volume: 36
  start-page: 789
  year: 2000
  end-page: 814
  ident: b0130
  article-title: Constrained model predictive control: Stability and optimality
  publication-title: Automatica
– volume: 167
  year: 2021
  ident: b0150
  article-title: Granular fuzzy PID controller
  publication-title: Expert Systems with Applications
– volume: 8
  start-page: 98395
  year: 2020
  end-page: 98409
  ident: b0020
  article-title: Wind Turbine Structural Load Reduction by Linear Single Model Predictive Control
  publication-title: Ieee Access
– year: 2005
  ident: b0135
  article-title: Experimental studies of wind turbine wakes: Power optimisation and meandering
– volume: 12
  start-page: 433
  year: 2014
  end-page: 444
  ident: b0010
  article-title: Deviations between wind speed data measured with nacelle-mounted anemometers on small wind turbines and anemometers mounted on measuring masts
  publication-title: Agronomy Research
– volume: 255
  year: 2019
  ident: b0070
  article-title: Investigation of wind turbine performance coupling wake and topography effects based on LiDAR measurements and SCADA data
  publication-title: Applied Energy
– volume: 9
  start-page: 219
  year: 2021
  end-page: 224
  ident: b0165
  article-title: Adaptive Model Predictive Control for Yaw System of Variable-speed Wind Turbines
  publication-title: Journal of Modern Power Systems and Clean Energy
– volume: 206
  year: 2020
  ident: b0190
  article-title: New perspectives on maximum wind energy extraction of variable-speed wind turbines using previewed wind speeds
  publication-title: Energy Conversion and Management
– reference: Bharani, R., & Jayasankar, K. C. (2015). Yaw Control of Wind Turbine Using Fuzzy Logic Controller. In C. Kamalakannan, L. P. Suresh, S. S. Dash, & B. K. Panigrahi (Eds.), Power Electronics and Renewable Energy Systems (Vol. 326, pp. 997-1006).
– volume: 8
  start-page: 256
  year: 2004
  end-page: 279
  ident: b0055
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 196
  year: 2022
  ident: b0090
  article-title: Fuzzy multi-objective programming: A systematic literature review
  publication-title: Expert Systems with Applications
– volume: Simulation(21)
  start-page: 5843
  year: 2008
  end-page: 5847
  ident: b0210
  article-title: Multi-objective Particle Swarm Optimization Based on Adaptive Grid Algorithms. Journal of
  publication-title: System
– volume: 222
  year: 2020
  ident: b0140
  article-title: A multi-objective design optimization framework for wind turbines under altitude consideration
  publication-title: Energy Conversion and Management
– volume: 1
  start-page: 7
  year: 1993
  end-page: 31
  ident: b0195
  article-title: A Fuzzy-logic-based Approach to Qualitative Modeling
  publication-title: IEEE Transactions on Fuzzy Systems
– reference: Liu, Y., Zhao, Y., Hou, C., & Meng, G. (2016). Research on Yaw Control System of 1.5 MW Double-fed Wind Power Generators.
– volume: 179
  start-page: 2158
  year: 2009
  end-page: 2174
  ident: b0120
  article-title: Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms
  publication-title: Information Sciences
– volume: 192
  start-page: 19
  year: 2012
  end-page: 38
  ident: b0045
  article-title: Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot
  publication-title: Information Sciences
– reference: Bu, F., Huang, W., Hu, Y., Xu, Y., Shi, K., & Wang, Q. (2009). Study and Implementation of A Control Algorithm for Wind Turbine Yaw Control System.
– volume: 22
  start-page: 1414
  year: 2002
  end-page: 1427
  ident: b0200
  article-title: Generating fuzzy rules by learning from examples
  publication-title: IEEE Transactions on Systems Man & Cybernetics
– volume: 10
  start-page: 1441
  year: 2016
  end-page: 1449
  ident: b0085
  article-title: Active yaw control in a horizontal axis wind system without requiring wind direction measurement
  publication-title: Iet Renewable Power Generation
– reference: Guo, F., Jiang, W., Shao, H., Du, Y., & She, J. (2017). Research on the Wind Turbine Yaw System Based on PLC. Paper presented at the 2017 29th Chinese Control and Decision Conference. <Go to ISI>://WOS:000427082207136.
– volume: 288
  year: 2021
  ident: b0215
  article-title: Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements
  publication-title: Applied Energy
– volume: 283
  start-page: 14
  year: 2021
  ident: b0100
  article-title: Multiple hydrogen-based hybrid storage systems operation for microgrids: A combined TOPSIS and model predictive control methodology
  publication-title: Applied Energy
– volume: 16
  start-page: 353
  year: 2013
  end-page: 366
  ident: b0095
  article-title: Precision and shortcomings of yaw error estimation using spinner-based light detection and ranging
  publication-title: Wind Energy
– volume: 24
  start-page: 379
  year: 2020
  end-page: 401
  ident: b0040
  article-title: Mathematical modeling and fuzzy proportional-integral-derivative scheme to control the yaw motion of a wind turbine
  publication-title: Wind Energy
– volume: 23
  start-page: 463
  year: 2013
  end-page: 472
  ident: b0155
  article-title: Wind turbine reliability analysis
  publication-title: Renewable & Sustainable Energy Reviews
– volume: 24
  start-page: 97
  year: 2020
  end-page: 115
  ident: b0205
  article-title: Review of control strategy of large horizontal-axis wind turbines yaw system
  publication-title: Wind Energy
– year: 2012
  ident: b0030
  article-title: GH Bladed User Manual
– volume: 48
  start-page: 339
  year: 2015
  end-page: 344
  ident: b0160
  article-title: Estimation of the wind turbine yaw error by support vector machines
  publication-title: IFAC
– volume: 126
  start-page: 564
  year: 2017
  end-page: 572
  ident: b0180
  article-title: Model predictive control with finite control set for variable-speed wind turbines
  publication-title: Energy
– reference: GWEC. (2021). Global Wind Report 2021. Retrieved from Europe.
– volume: 10
  start-page: 971
  year: 2019
  end-page: 982
  ident: b0050
  article-title: Static and Dynamic Yaw Misalignments of Wind Turbines and Machine Learning Based Correction Methods Using LiDAR Data
  publication-title: Ieee Transactions on Sustainable Energy
– volume: 7
  start-page: 215
  year: 2019
  end-page: 231
  ident: b0060
  article-title: Analysis of Various Yaw Control Techniques for Large Wind Turbines
  publication-title: Journal of Engineering Research
– volume: 23
  start-page: 1408
  year: 2020
  end-page: 1421
  ident: b0015
  article-title: Maximizing the returns of LIDAR systems in wind farms for yaw error correction applications
  publication-title: Wind Energy
– reference: Mesemanolis, A., & Mademlis, C. (2014). Combined Maximum Power Point and Yaw Control Strategy for a Horizontal Axis Wind Turbine.
– volume: 23
  start-page: 1831
  year: 2020
  end-page: 1845
  ident: b0005
  article-title: New M5P model tree-based control for doubly fed induction generator in wind energy conversion system
  publication-title: Wind Energy
– volume: 157
  start-page: 587
  year: 2018
  end-page: 599
  ident: b0185
  article-title: Maximum power extraction for wind turbines through a novel yaw control solution using predicted wind directions
  publication-title: Energy Conversion and Management
– volume: 176
  start-page: 1
  year: 2021
  end-page: 13
  ident: b0125
  article-title: Hierarchical distributed model predictive control based on fuzzy negotiation
  publication-title: Expert Systems with Applications
– reference: Mademils, C. (2015). Influence of the Measurement Accuracy of Wind Sensors on Wind System Performance.
– volume: 1
  start-page: 7
  issue: 1
  year: 1993
  ident: 10.1016/j.eswa.2023.119705_b0195
  article-title: A Fuzzy-logic-based Approach to Qualitative Modeling
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.1993.390281
– volume: 10
  start-page: 971
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2023.119705_b0050
  article-title: Static and Dynamic Yaw Misalignments of Wind Turbines and Machine Learning Based Correction Methods Using LiDAR Data
  publication-title: Ieee Transactions on Sustainable Energy
  doi: 10.1109/TSTE.2018.2856919
– ident: 10.1016/j.eswa.2023.119705_b0145
  doi: 10.1109/ICELMACH.2014.6960412
– ident: 10.1016/j.eswa.2023.119705_b0025
  doi: 10.1007/978-81-322-2119-7_97
– volume: 22
  start-page: 1414
  issue: 6
  year: 2002
  ident: 10.1016/j.eswa.2023.119705_b0200
  article-title: Generating fuzzy rules by learning from examples
  publication-title: IEEE Transactions on Systems Man & Cybernetics
  doi: 10.1109/21.199466
– volume: 8
  start-page: 98395
  year: 2020
  ident: 10.1016/j.eswa.2023.119705_b0020
  article-title: Wind Turbine Structural Load Reduction by Linear Single Model Predictive Control
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2020.2996381
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  ident: 10.1016/j.eswa.2023.119705_b0055
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.826067
– volume: 23
  start-page: 463
  year: 2013
  ident: 10.1016/j.eswa.2023.119705_b0155
  article-title: Wind turbine reliability analysis
  publication-title: Renewable & Sustainable Energy Reviews
  doi: 10.1016/j.rser.2013.03.018
– volume: 12
  start-page: 433
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2023.119705_b0010
  article-title: Deviations between wind speed data measured with nacelle-mounted anemometers on small wind turbines and anemometers mounted on measuring masts
  publication-title: Agronomy Research
– ident: 10.1016/j.eswa.2023.119705_b0115
  doi: 10.1109/ICCEP.2015.7177629
– volume: 224
  start-page: 267
  year: 2018
  ident: 10.1016/j.eswa.2023.119705_b0170
  article-title: Power extraction efficiency optimization of horizontal-axis wind turbines through optimizing control parameters of yaw control systems using an intelligent method
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2018.04.114
– volume: 196
  year: 2022
  ident: 10.1016/j.eswa.2023.119705_b0090
  article-title: Fuzzy multi-objective programming: A systematic literature review
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.116663
– volume: 283
  start-page: 14
  year: 2021
  ident: 10.1016/j.eswa.2023.119705_b0100
  article-title: Multiple hydrogen-based hybrid storage systems operation for microgrids: A combined TOPSIS and model predictive control methodology
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2020.116303
– ident: 10.1016/j.eswa.2023.119705_b0035
  doi: 10.1109/WNWEC.2009.5335830
– volume: 10
  start-page: 1441
  issue: 9
  year: 2016
  ident: 10.1016/j.eswa.2023.119705_b0085
  article-title: Active yaw control in a horizontal axis wind system without requiring wind direction measurement
  publication-title: Iet Renewable Power Generation
  doi: 10.1049/iet-rpg.2016.0005
– volume: 277
  year: 2023
  ident: 10.1016/j.eswa.2023.119705_b0105
  article-title: Life cycle cost modelling and economic analysis of wind power: A state of art review
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2022.116628
– volume: 288
  year: 2021
  ident: 10.1016/j.eswa.2023.119705_b0215
  article-title: Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2021.116641
– volume: 23
  start-page: 1831
  issue: 9
  year: 2020
  ident: 10.1016/j.eswa.2023.119705_b0005
  article-title: New M5P model tree-based control for doubly fed induction generator in wind energy conversion system
  publication-title: Wind Energy
  doi: 10.1002/we.2519
– ident: 10.1016/j.eswa.2023.119705_b0030
– volume: 23
  start-page: 1408
  issue: 6
  year: 2020
  ident: 10.1016/j.eswa.2023.119705_b0015
  article-title: Maximizing the returns of LIDAR systems in wind farms for yaw error correction applications
  publication-title: Wind Energy
  doi: 10.1002/we.2493
– volume: Simulation(21)
  start-page: 5843
  year: 2008
  ident: 10.1016/j.eswa.2023.119705_b0210
  article-title: Multi-objective Particle Swarm Optimization Based on Adaptive Grid Algorithms. Journal of
  publication-title: System
– volume: 145
  year: 2020
  ident: 10.1016/j.eswa.2023.119705_b0220
  article-title: Fuzzy optimization model for electric vehicle routing problem with time windows and recharging stations
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.113123
– volume: 16
  start-page: 353
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2023.119705_b0095
  article-title: Precision and shortcomings of yaw error estimation using spinner-based light detection and ranging
  publication-title: Wind Energy
  doi: 10.1002/we.1492
– volume: 24
  start-page: 97
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2023.119705_b0205
  article-title: Review of control strategy of large horizontal-axis wind turbines yaw system
  publication-title: Wind Energy
  doi: 10.1002/we.2564
– volume: 7
  start-page: 215
  issue: 3
  year: 2019
  ident: 10.1016/j.eswa.2023.119705_b0060
  article-title: Analysis of Various Yaw Control Techniques for Large Wind Turbines
  publication-title: Journal of Engineering Research
  doi: 10.1016/S2307-1877(25)00609-1
– ident: 10.1016/j.eswa.2023.119705_b0110
  doi: 10.1109/ICMA.2016.7558583
– volume: 255
  year: 2019
  ident: 10.1016/j.eswa.2023.119705_b0070
  article-title: Investigation of wind turbine performance coupling wake and topography effects based on LiDAR measurements and SCADA data
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2019.113816
– volume: 24
  start-page: 379
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2023.119705_b0040
  article-title: Mathematical modeling and fuzzy proportional-integral-derivative scheme to control the yaw motion of a wind turbine
  publication-title: Wind Energy
  doi: 10.1002/we.2579
– volume: 206
  year: 2020
  ident: 10.1016/j.eswa.2023.119705_b0190
  article-title: New perspectives on maximum wind energy extraction of variable-speed wind turbines using previewed wind speeds
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2020.112496
– volume: 176
  start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.119705_b0125
  article-title: Hierarchical distributed model predictive control based on fuzzy negotiation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.114836
– volume: 9
  start-page: 219
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.119705_b0165
  article-title: Adaptive Model Predictive Control for Yaw System of Variable-speed Wind Turbines
  publication-title: Journal of Modern Power Systems and Clean Energy
  doi: 10.35833/MPCE.2019.000467
– volume: 222
  year: 2020
  ident: 10.1016/j.eswa.2023.119705_b0140
  article-title: A multi-objective design optimization framework for wind turbines under altitude consideration
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2020.113212
– volume: 192
  start-page: 19
  year: 2012
  ident: 10.1016/j.eswa.2023.119705_b0045
  article-title: Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.02.022
– ident: 10.1016/j.eswa.2023.119705_b0075
  doi: 10.1109/CCDC.2017.7979412
– year: 2005
  ident: 10.1016/j.eswa.2023.119705_b0135
– volume: 167
  year: 2021
  ident: 10.1016/j.eswa.2023.119705_b0150
  article-title: Granular fuzzy PID controller
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114182
– volume: 179
  start-page: 2158
  issue: 13
  year: 2009
  ident: 10.1016/j.eswa.2023.119705_b0120
  article-title: Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2008.12.028
– volume: 126
  start-page: 564
  year: 2017
  ident: 10.1016/j.eswa.2023.119705_b0180
  article-title: Model predictive control with finite control set for variable-speed wind turbines
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.149
– volume: 36
  start-page: 789
  issue: 6
  year: 2000
  ident: 10.1016/j.eswa.2023.119705_b0130
  article-title: Constrained model predictive control: Stability and optimality
  publication-title: Automatica
  doi: 10.1016/S0005-1098(99)00214-9
– year: 2011
  ident: 10.1016/j.eswa.2023.119705_b0065
  article-title: Yawing and performance of an offshore wind farm
  publication-title: Proceedings.
– volume: 48
  start-page: 339
  issue: 30
  year: 2015
  ident: 10.1016/j.eswa.2023.119705_b0160
  article-title: Estimation of the wind turbine yaw error by support vector machines
  publication-title: IFAC
– volume: 157
  start-page: 587
  year: 2018
  ident: 10.1016/j.eswa.2023.119705_b0185
  article-title: Maximum power extraction for wind turbines through a novel yaw control solution using predicted wind directions
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2017.12.019
– volume: 193
  year: 2022
  ident: 10.1016/j.eswa.2023.119705_b0230
  article-title: Wind speed forecasting based on model selection, fuzzy cluster, and multi-objective algorithm and wind energy simulation by Betz's theory
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.116509
– volume: 118
  start-page: 237
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2023.119705_b0225
  article-title: Model Predictive Yaw Control Using Fuzzy-Deduced Weighting Factor for Large- Scale Wind Turbines
  publication-title: Energy Engineering
  doi: 10.32604/EE.2021.014269
– ident: 10.1016/j.eswa.2023.119705_b0080
– volume: 10
  start-page: 2084
  issue: 4
  year: 2019
  ident: 10.1016/j.eswa.2023.119705_b0175
  article-title: Model Predictive Control Using Multi-Step Prediction Model for Electrical Yaw System of Horizontal-Axis Wind Turbines
  publication-title: Ieee Transactions on Sustainable Energy
  doi: 10.1109/TSTE.2018.2878624
SSID ssj0017007
Score 2.4914277
Snippet Because wind direction has the trait of time varying, yaw is a common state of wind turbine (WT). To improve the energy capture and reduce the yaw actuator...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119705
SubjectTerms AGA-MOPSO
Fuzzy rule optimization
Membership function optimization
MPC
Wind turbine
Yaw system
Title Deep optimization of model predictive control performance for wind turbine yaw system based on intelligent fuzzy deduction
URI https://dx.doi.org/10.1016/j.eswa.2023.119705
Volume 221
WOSCitedRecordID wos001008562900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3ojykg_colS2E6_Xx6pbBEhUHIq04hLFjiNlVbLbNNtt93_wfzuOHW8oUNEDlySy7Nlo58t4bH8zg9B7mPR1SvNxbHgOCxQux3EOE1-sSzHWmhpFZN4VmxDHx5PZTH4djX72sTAXp6KuJ5eXcvlfVQ1toGwbOnsHdQeh0ADPoHS4gtrh-k-KnxqzjBZgCX74EMvuCN0WvLEJAYqqM3CBor4cBA5YxuG6sozKVaOs93mVr32q58jOdkXU8SL7HJ5tVK42m6uosNlfg37ngdtnmtaP7kPoBoflYWfHU4KncG8G_KCOZPC9OluFpqlxPWdVvihNFZq9gC_VcAODJYHsut2JFHFKXbGe3igzFzftzao96-yis3-3-G7zYb5vztc2jRRL9redf02vfWPaC2TEnuc2z6yMzMrInIx7aJcJLsHe7x58Opp9DsdTgrg4_P7NfTSWIw7efJM_ezwDL-bkMXrolx_4wMHmCRqZ-il61Jf2wN7SP0MbiyI8RBFelLhDEd6iCHsU4QGKMDxgiyLsUYQBRdjhAHcowiBsgCLcoQgHFD1H3z4cnRx-jH2ZjlgnhLSxMEwxmXJlT_GKSUqSQmvBFad5aYSQpSJmTCeSF4SUiiVCcJYaUSoYBTOMTl6gnXpRm5cISyoLwZS2TnpKNZEF5TpRHNa0xORG7SHa_5WZ9jnsbSmV0-zvStxDURizdBlcbu3New1l3gd1vmUGgLtl3Ks7_cpr9GD7JbxBO22zMm_RfX3RVufNO4-2a4ytrgM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+optimization+of+model+predictive+control+performance+for+wind+turbine+yaw+system+based+on+intelligent+fuzzy+deduction&rft.jtitle=Expert+systems+with+applications&rft.au=Song%2C+Dongran&rft.au=Li%2C+Ziqun&rft.au=Deng%2C+Xiaofei&rft.au=Dong%2C+Mi&rft.date=2023-07-01&rft.issn=0957-4174&rft.volume=221&rft.spage=119705&rft_id=info:doi/10.1016%2Fj.eswa.2023.119705&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_119705
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon