A feature-weighted suppressed possibilistic fuzzy c-means clustering algorithm and its application on color image segmentation

The possibilistic fuzzy c-means clustering (PFCM) algorithm is a hybridization of possibilistic c-means clustering (PCM) and fuzzy c-means clustering (FCM) algorithms. However, there are two main problems in PFCM. One is that the Euclidean distance employed in PFCM always disregards the imbalance am...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 241; S. 122270
Hauptverfasser: Yu, Haiyan, Jiang, Lerong, Fan, Jiulun, Xie, Shuang, Lan, Rong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.05.2024
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The possibilistic fuzzy c-means clustering (PFCM) algorithm is a hybridization of possibilistic c-means clustering (PCM) and fuzzy c-means clustering (FCM) algorithms. However, there are two main problems in PFCM. One is that the Euclidean distance employed in PFCM always disregards the imbalance among sample features because it treats all features of data equally, which easily causes misclassification for feature-imbalanced multidimensional data. The other is that PFCM always produces significant center deviations and overlapping centers for multiclass datasets with strong noise injection, due to the difficulty of PFCM in the membership-weight parameter setting and the lack of between-class relationships in possibilistic memberships. Therefore, a feature-weighted suppressed possibilistic fuzzy c-means clustering (FW-S-PFCM) algorithm is presented by introducing a feature-weighted method and “suppressed competitive learning” strategy into the PFCM algorithm in this paper. First, the FW-S-PFCM algorithm introduces a feature-weight matrix into the objective function that can automatically assign feature-weight values to different features and different clusters according to the distribution of samples, thus overcoming the influence of feature imbalance and improving clustering effects for noisy multidimensional datasets. Second, combined with the feature-weight matrix, a “suppressed competitive learning” strategy is designed to resolve the center-overlapping problem in noisy multiclass dataset clustering. Specifically, partial crucial points of each class near the center are selected according to a cluster core generated by a cross-section of a threshold on the possibilistic membership surface. Third, their possibilistic memberships participate in the suppressed learning process to overcome the lack of between-class relationships. Last, a segmentation algorithm for noisy color images based on FW-S-PFCM is proposed combined with the feature-weight method and noise-identification ability of possibilistic memberships. Experiments on synthetic data, UCI data and color image segmentation demonstrate that the proposed FW-S-PFCM algorithm can overcome the partial center-overlapping problem and improve clustering performance on complex datasets with feature imbalance and strong noise injection. The proposed algorithm can also reduce the iteration number, sensitivity to membership weights, and initializations of PFCM.
AbstractList The possibilistic fuzzy c-means clustering (PFCM) algorithm is a hybridization of possibilistic c-means clustering (PCM) and fuzzy c-means clustering (FCM) algorithms. However, there are two main problems in PFCM. One is that the Euclidean distance employed in PFCM always disregards the imbalance among sample features because it treats all features of data equally, which easily causes misclassification for feature-imbalanced multidimensional data. The other is that PFCM always produces significant center deviations and overlapping centers for multiclass datasets with strong noise injection, due to the difficulty of PFCM in the membership-weight parameter setting and the lack of between-class relationships in possibilistic memberships. Therefore, a feature-weighted suppressed possibilistic fuzzy c-means clustering (FW-S-PFCM) algorithm is presented by introducing a feature-weighted method and “suppressed competitive learning” strategy into the PFCM algorithm in this paper. First, the FW-S-PFCM algorithm introduces a feature-weight matrix into the objective function that can automatically assign feature-weight values to different features and different clusters according to the distribution of samples, thus overcoming the influence of feature imbalance and improving clustering effects for noisy multidimensional datasets. Second, combined with the feature-weight matrix, a “suppressed competitive learning” strategy is designed to resolve the center-overlapping problem in noisy multiclass dataset clustering. Specifically, partial crucial points of each class near the center are selected according to a cluster core generated by a cross-section of a threshold on the possibilistic membership surface. Third, their possibilistic memberships participate in the suppressed learning process to overcome the lack of between-class relationships. Last, a segmentation algorithm for noisy color images based on FW-S-PFCM is proposed combined with the feature-weight method and noise-identification ability of possibilistic memberships. Experiments on synthetic data, UCI data and color image segmentation demonstrate that the proposed FW-S-PFCM algorithm can overcome the partial center-overlapping problem and improve clustering performance on complex datasets with feature imbalance and strong noise injection. The proposed algorithm can also reduce the iteration number, sensitivity to membership weights, and initializations of PFCM.
ArticleNumber 122270
Author Xie, Shuang
Yu, Haiyan
Fan, Jiulun
Lan, Rong
Jiang, Lerong
Author_xml – sequence: 1
  givenname: Haiyan
  surname: Yu
  fullname: Yu, Haiyan
  email: yuhaiyan2010@126.com
– sequence: 2
  givenname: Lerong
  orcidid: 0000-0002-5736-5911
  surname: Jiang
  fullname: Jiang, Lerong
  email: jlrong00kl@163.com
– sequence: 3
  givenname: Jiulun
  orcidid: 0000-0002-7553-204X
  surname: Fan
  fullname: Fan, Jiulun
  email: jiulunf@xupt.edu.cn
– sequence: 4
  givenname: Shuang
  surname: Xie
  fullname: Xie, Shuang
  email: 277308729@qq.com
– sequence: 5
  givenname: Rong
  surname: Lan
  fullname: Lan, Rong
  email: ronglanlogic@163.com
BookMark eNp9kE1LxDAQhoMouLv6BzzlD3TNx7ZpwYuIXyB40XNIk0mdpV8kWUUP_na71pOHhYEZGJ5h3mdJjvuhB0IuOFtzxovL7Rrih1kLJuSaCyEUOyILXiqZFaqSx2TBqlxlG642p2QZ45YxrhhTC_J9TT2YtAuQfQA2bwkcjbtxDBDjNI5DjFhjizGhpX739fVJbdaB6SO17S4mCNg31LTNEDC9ddT0jmKK1Ixji9YkHHo6lR3aIVDsTAM0QtNBn353Z-TEmzbC-V9fkde725ebh-zp-f7x5vops5KxlCknuJFS5a6qC--5LLzllZUKFCvzXNXSlIJ7Wbh8I70EVfiy5sYJW3HuXSVXpJzv2jAlCuC1xfmDFAy2mjO996i3eu9R7z3q2eOEin_oGKYg4fMwdDVDMIV6Rwg6WoTegsMANmk34CH8BzNdkgs
CitedBy_id crossref_primary_10_1002_cpe_70086
crossref_primary_10_1016_j_compbiomed_2025_110053
crossref_primary_10_1109_TFUZZ_2024_3405497
crossref_primary_10_3390_e26080670
crossref_primary_10_1016_j_engappai_2024_109229
crossref_primary_10_1007_s11227_025_07678_w
crossref_primary_10_3233_JIFS_238716
crossref_primary_10_1364_AO_524199
crossref_primary_10_1080_21681163_2024_2343711
crossref_primary_10_3390_info16080663
crossref_primary_10_1016_j_eswa_2025_128245
crossref_primary_10_1007_s10489_024_05813_3
crossref_primary_10_1016_j_engappai_2025_110768
crossref_primary_10_1016_j_knosys_2024_111388
crossref_primary_10_1016_j_neucom_2024_129176
crossref_primary_10_1007_s11042_025_20848_5
crossref_primary_10_1016_j_engappai_2025_110902
crossref_primary_10_1016_j_eswa_2024_125431
crossref_primary_10_1016_j_eswa_2024_126035
crossref_primary_10_1016_j_neunet_2024_106489
Cites_doi 10.1016/j.visinf.2021.12.001
10.1109/FSKD.2014.6980811
10.1016/j.neucom.2022.09.120
10.1109/TFUZZ.2021.3058572
10.2478/ausi-2020-0018
10.1007/s40815-018-0537-9
10.1016/S0167-8655(02)00401-4
10.1016/j.asoc.2019.02.027
10.1109/TCYB.2019.2921779
10.1109/TFUZZ.2022.3141752
10.1016/j.neucom.2014.02.027
10.1016/j.eswa.2016.07.003
10.1016/j.eswa.2022.117015
10.1007/s10489-010-0219-2
10.1016/j.eswa.2022.118280
10.1016/j.asoc.2017.12.024
10.1109/TPAMI.2010.161
10.1016/j.neucom.2016.09.025
10.1007/978-3-319-23240-9_11
10.1109/ICDS53782.2021.9626706
10.1016/j.engappai.2022.104960
10.1109/TFUZZ.2020.2968879
10.1109/WAC.2006.376056
10.1016/0098-3004(84)90020-7
10.1109/TPAMI.2018.2833467
10.1016/j.ijar.2022.05.007
10.1016/j.asoc.2021.108005
10.1016/j.asoc.2019.02.038
10.1109/TFUZZ.2018.2883033
10.1109/TFUZZ.2021.3063818
10.1016/j.asoc.2021.107245
10.1016/j.patcog.2003.08.002
10.1109/TFUZZ.2020.2985004
10.1016/j.fss.2018.01.019
10.1016/j.neucom.2022.06.083
10.1109/TITS.2018.2875159
10.1016/j.asoc.2015.06.028
10.1109/SSCI.2017.8285358
10.1109/ICCAIS.2014.7020552
10.1016/j.neucom.2015.09.127
10.1007/978-3-642-22589-5_15
10.1109/91.227387
10.1109/TFUZZ.2004.840099
10.1109/TFUZZ.2020.2973121
10.1016/j.eswa.2020.113856
10.1016/j.patcog.2021.108064
10.1109/TFUZZ.2018.2796074
10.1109/TPAMI.2005.95
10.1016/j.asoc.2016.12.049
10.1016/j.neucom.2018.01.091
10.1109/TFUZZ.2019.2930030
10.1016/j.egyr.2021.10.049
10.1016/j.ygeno.2017.09.010
10.1016/j.knosys.2021.107089
10.1109/TFUZZ.2018.2889018
10.1109/TFUZZ.2017.2686804
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.122270
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_122270
S0957417423027720
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY1
LY7
M41
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-7d21a3375d9b6ff136fc19c37e708557b3a821f36d543f3e76f8b1ad2c911fd93
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001129583600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 07:07:08 EST 2025
Tue Nov 18 21:47:15 EST 2025
Sat Feb 17 16:07:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Suppressed competitive learning
Image segmentation
Feature weight
Fuzzy c-means clustering (FCM)
Possibilistic fuzzy c-means clustering (PFCM)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-7d21a3375d9b6ff136fc19c37e708557b3a821f36d543f3e76f8b1ad2c911fd93
ORCID 0000-0002-7553-204X
0000-0002-5736-5911
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2023_122270
crossref_primary_10_1016_j_eswa_2023_122270
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_122270
PublicationCentury 2000
PublicationDate 2024-05-01
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Pedrycz, Yang, Zhou, Li (b0245) 2020; 50
Yu, Fan, Lan (b0310) 2019; 80
Benjamin, Yang (b0045) 2022; 30
Szilágyi, Lefkovits, Iclanzan (b0240) 2020; 12
Chen, Chen, Chen, Lin (b0070) 2016; 63
Frigui, Nasraoui (b0080) 2004; 37
(pp.1-7).
Yu, Fan (b0305) 2018; 64
Garcia-Lamont, Cervantes, López, Rodriguez (b0085) 2018; 292
Askari, Montazerin, Zarandi, Hakimi (b0020) 2017; 219
Azzouzi, S., El-Mekkaoui, J., Hjouji, A., & Khalfi, A. E. (2021). An effective modified possibilistic fuzzy c-means clustering algorithm for noisy data problems. In
(pp. 170-175). https://doi.org/10.1109//ICCAIS.2014.7020552.
Zhang, Bai, Fan, Wang (b0320) 2019; 27
Szilágyi, L. (2011). Fuzzy-possibilistic product partition: A novel robust approach to c-means clustering. In
(pp.129–140). https://doi.org/10.1007/978-3-319-23240-9_11.
Wu, Zhang (b0280) 2022; 209
Ojeda-Magaña, B., Ruelas, R., Corona-Nakamura, M. A., & Andina, D. (2006). An improvement to the possibilistic fuzzy c-means clustering algorithm. In
Yang, Sinaga (b0295) 2021; 119
Saberi, Sharbati, Farzanegan (b0220) 2022; 191
Yang, Benjamin (b0290) 2021; 29
Zare, A., Young, N., Suen, D., Nabelek, T., Galusha, A., & Keller, J. (2017). Possibilistic fuzzy local information c-means for sonar image segmentation. In
Memon, Lee (b0185) 2018; 340
Memon, Memon, Qureshi, Alvi, Kumar, Shah (b0190) 2019; 21
13(4): 517-530. https://doi.org/10.119/TFUZZ.2004.840099.
Jing, Liu, Wang, Zhang, Sun (b0130) 2022; 503
Szilágyi, Szilágyi (b0235) 2014; 1392
Bezdek, Ehrlich, Full (b0050) 1984; 10
Ma, Yue (b0175) 2022; 113
Liu, Su, Chai, Qin (b0170) 2022; 514
82-87. https://doi.org/10.1109/FSKD.2014.6980811.
Szilágyi, L. (2015). A unified theory of fuzzy c-means clustering models with improved partition. In
Arbelaez, Maire, Fowlkes, Malik (b0005) 2011; 33
Askari (b0010) 2021; 165
Mohammad, Abbas (b0195) 2022; 126
Lei, Liu, Jia, Zhang, Meng, Nandi (b0160) 2020; 28
Campbell, Kulis, How (b0065) 2019; 41
Pal, N. R., Pal, K., Keller, J. M., & Bezdek, J. C. (2005). A possibilistic fuzzy c-means clustering algorithm. In
(pp. 150-161).
Lei, Jia, Zhang, He, Meng, Nandi (b0155) 2018; 26
Golzari Oskouei, Hashemzadeh, Asheghi, Balafar (b0095) 2021; 113
Krishnapuram, Keller (b0135) 1993; 1
Ni, Qi, Mu (b0200) 2018; 110
Hashemzadeh, Golzari Oskouei, Farajzadeh (b0115) 2019; 78
Zhao, Liu, Liu, Fan (b0330) 2022; 200
Bian, Chung, Wang (b0055) 2021; 29
Wu, Guo (b0270) 2022; 148
Huang, Ng, Rong, Li (b0120) 2005; 27
Zhao, Zeng, Liu, Lan, Fan (b0335) 2020; 28
Bahrampour, Moshiri, Salahshoor (b0035) 2011; 35
(pp. 1-8). https://doi.org/10.1109/WAC.2006.376056.
Wang, Wang, Fang, Jiao (b0255) 2021; 105
(pp.1-8). https://doi.org/10.1109/SSCI.2017.8285358.
Wang, Bai (b0260) 2019; 20
Askari, Montazerin, Zarandi (b0015) 2015; 35
Fan, Zhen, Xie (b0075) 2003; 24
Gu, Jiao, Yang, Liu (b0100) 2018; 26
Lei, Fan (b0145) 2022; 203
Lei, Jia, Zhang, Liu, Meng, Nandi (b0150) 2019; 27
Li, J., & Fan, J. L. (2014). Parameter selection for suppressed fuzzy c-means clustering algorithm based on fuzzy partition entropy. In
Gwak, J., & Jeon, M. (2014). An improved kernel-induced possibilistic fuzzy c-means clustering algorithm based on dispersion control. In
Lei, Fan (b0140) 2021; 225
Wu, Zhang (b0275) 2022; 30
Ghosh, Hazarika, Chandra, Mudi (b0090) 2021; 5
Zhao, Cao, Liu, Tang, Fan (b0325) 2022; 30
Yao, Xing, Iin (b0300) 2021; 7
Zhou, Chen, Philip Chen, Zhang, Li (b0340) 2016; 198
Askaria, Montazerina, Fazel Zarandi (b0025) 2017; 53
Huang (10.1016/j.eswa.2023.122270_b0120) 2005; 27
Yu (10.1016/j.eswa.2023.122270_b0310) 2019; 80
Garcia-Lamont (10.1016/j.eswa.2023.122270_b0085) 2018; 292
Yu (10.1016/j.eswa.2023.122270_b0305) 2018; 64
Zhou (10.1016/j.eswa.2023.122270_b0340) 2016; 198
10.1016/j.eswa.2023.122270_b0165
Zhang (10.1016/j.eswa.2023.122270_b0320) 2019; 27
Golzari Oskouei (10.1016/j.eswa.2023.122270_b0095) 2021; 113
Zhao (10.1016/j.eswa.2023.122270_b0325) 2022; 30
Lei (10.1016/j.eswa.2023.122270_b0160) 2020; 28
Yang (10.1016/j.eswa.2023.122270_b0295) 2021; 119
10.1016/j.eswa.2023.122270_b0205
Wu (10.1016/j.eswa.2023.122270_b0270) 2022; 148
Askari (10.1016/j.eswa.2023.122270_b0010) 2021; 165
Bian (10.1016/j.eswa.2023.122270_b0055) 2021; 29
Askari (10.1016/j.eswa.2023.122270_b0020) 2017; 219
Campbell (10.1016/j.eswa.2023.122270_b0065) 2019; 41
Wang (10.1016/j.eswa.2023.122270_b0245) 2020; 50
10.1016/j.eswa.2023.122270_b0210
Lei (10.1016/j.eswa.2023.122270_b0145) 2022; 203
Szilágyi (10.1016/j.eswa.2023.122270_b0240) 2020; 12
Zhao (10.1016/j.eswa.2023.122270_b0330) 2022; 200
Memon (10.1016/j.eswa.2023.122270_b0185) 2018; 340
Krishnapuram (10.1016/j.eswa.2023.122270_b0135) 1993; 1
Lei (10.1016/j.eswa.2023.122270_b0155) 2018; 26
Zhao (10.1016/j.eswa.2023.122270_b0335) 2020; 28
Jing (10.1016/j.eswa.2023.122270_b0130) 2022; 503
Wu (10.1016/j.eswa.2023.122270_b0275) 2022; 30
Bahrampour (10.1016/j.eswa.2023.122270_b0035) 2011; 35
Ma (10.1016/j.eswa.2023.122270_b0175) 2022; 113
Arbelaez (10.1016/j.eswa.2023.122270_b0005) 2011; 33
Liu (10.1016/j.eswa.2023.122270_b0170) 2022; 514
Szilágyi (10.1016/j.eswa.2023.122270_b0235) 2014; 1392
Hashemzadeh (10.1016/j.eswa.2023.122270_b0115) 2019; 78
Mohammad (10.1016/j.eswa.2023.122270_b0195) 2022; 126
Ni (10.1016/j.eswa.2023.122270_b0200) 2018; 110
Lei (10.1016/j.eswa.2023.122270_b0140) 2021; 225
10.1016/j.eswa.2023.122270_b0225
Wang (10.1016/j.eswa.2023.122270_b0255) 2021; 105
Chen (10.1016/j.eswa.2023.122270_b0070) 2016; 63
Askari (10.1016/j.eswa.2023.122270_b0015) 2015; 35
Wang (10.1016/j.eswa.2023.122270_b0260) 2019; 20
Wu (10.1016/j.eswa.2023.122270_b0280) 2022; 209
Ghosh (10.1016/j.eswa.2023.122270_b0090) 2021; 5
Fan (10.1016/j.eswa.2023.122270_b0075) 2003; 24
10.1016/j.eswa.2023.122270_b0110
10.1016/j.eswa.2023.122270_b0230
Yao (10.1016/j.eswa.2023.122270_b0300) 2021; 7
10.1016/j.eswa.2023.122270_b0030
Frigui (10.1016/j.eswa.2023.122270_b0080) 2004; 37
Gu (10.1016/j.eswa.2023.122270_b0100) 2018; 26
Saberi (10.1016/j.eswa.2023.122270_b0220) 2022; 191
Yang (10.1016/j.eswa.2023.122270_b0290) 2021; 29
Askaria (10.1016/j.eswa.2023.122270_b0025) 2017; 53
Benjamin (10.1016/j.eswa.2023.122270_b0045) 2022; 30
Lei (10.1016/j.eswa.2023.122270_b0150) 2019; 27
Memon (10.1016/j.eswa.2023.122270_b0190) 2019; 21
10.1016/j.eswa.2023.122270_b0315
Bezdek (10.1016/j.eswa.2023.122270_b0050) 1984; 10
References_xml – volume: 35
  start-page: 269
  year: 2011
  end-page: 284
  ident: b0035
  article-title: Weighted and constrained possibilistic c-means clustering for online fault detection and isolation
  publication-title: Applied Intelligence
– volume: 7
  start-page: 106
  year: 2021
  end-page: 115
  ident: b0300
  article-title: Distributed generation parameter optimization method based on fuzzy C-means clustering under the Internet of Things architecture
  publication-title: Energy Reports
– volume: 110
  start-page: 180
  year: 2018
  end-page: 190
  ident: b0200
  article-title: Applying MSSIM combined chaos game representation to genome sequences analysis
  publication-title: Genomics
– volume: 21
  start-page: 321
  year: 2019
  end-page: 332
  ident: b0190
  article-title: Kernel possibilistic fuzzy c-means clustering with local information for image segmentation
  publication-title: International Journal of Fuzzy Systems
– volume: 28
  start-page: 1023
  year: 2020
  end-page: 1034
  ident: b0335
  article-title: Semisupervised approach to surrogate-assisted multiobjective kernel intuitionistic fuzzy clustering algorithm for color image segmentation
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 113
  start-page: 1
  year: 2021
  end-page: 24
  ident: b0095
  article-title: CGFFCM: Cluster-weight and group-local feature-weight learning in fuzzy c-means clustering algorithm for color image segmentation
  publication-title: Applied Soft Computing
– reference: (pp. 1-8). https://doi.org/10.1109/WAC.2006.376056.
– volume: 53
  start-page: 262
  year: 2017
  end-page: 283
  ident: b0025
  article-title: Generalized possibilistic fuzzy c-means with novel cluster validity indices for clustering noisy data
  publication-title: Applied Soft Computing
– volume: 50
  start-page: 3938
  year: 2020
  end-page: 3949
  ident: b0245
  article-title: Wavelet frame-based fuzzy c-means clustering for segmenting images on graphs
  publication-title: IEEE Transactions on Cybernetics
– volume: 200
  start-page: 1
  year: 2022
  end-page: 12
  ident: b0330
  article-title: Broad learning approach to Surrogate-Assisted Multi-Objective evolutionary fuzzy clustering algorithm based on reference points for color image segmentation
  publication-title: Expert Systems with Applications
– reference: Gwak, J., & Jeon, M. (2014). An improved kernel-induced possibilistic fuzzy c-means clustering algorithm based on dispersion control. In
– volume: 219
  start-page: 186
  year: 2017
  end-page: 202
  ident: b0020
  article-title: Generalized entropy based possibilistic fuzzy c-means for clustering noisy data and its convergence proof
  publication-title: Neurocomputing
– volume: 30
  start-page: 1357
  year: 2022
  end-page: 1370
  ident: b0045
  article-title: Weighted Multiview possibilistic c-means clustering with L2 regularization
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 30
  start-page: 1624
  year: 2022
  end-page: 1639
  ident: b0275
  article-title: A novel kernelized total Bregman divergence-driven possibilistic fuzzy clustering with multiple information constraints for image segmentation
  publication-title: IEEE Transactions on Fuzzy Systems
– reference: (pp.1-8). https://doi.org/10.1109/SSCI.2017.8285358.
– volume: 27
  start-page: 185
  year: 2019
  end-page: 199
  ident: b0320
  article-title: Deviation-sparse fuzzy c-means with neighbor information constraint
  publication-title: IEEE Transactions on Fuzzy Systems
– reference: Zare, A., Young, N., Suen, D., Nabelek, T., Galusha, A., & Keller, J. (2017). Possibilistic fuzzy local information c-means for sonar image segmentation. In
– volume: 26
  start-page: 3027
  year: 2018
  end-page: 3041
  ident: b0155
  article-title: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering
  publication-title: IEEE Transactions on Fuzzy Systems
– reference: (pp.129–140). https://doi.org/10.1007/978-3-319-23240-9_11.
– volume: 191
  start-page: 1
  year: 2022
  end-page: 20
  ident: b0220
  article-title: A gradient ascent algorithm based on possibilistic fuzzy c-means for clustering noisy data
  publication-title: Expert Systems with Applications
– volume: 225
  start-page: 1
  year: 2021
  end-page: 12
  ident: b0140
  article-title: Infrared pedestrian segmentation algorithm based on the two-dimensional Kaniadakis entropy thresholding
  publication-title: Knowledge-Based Systems
– volume: 37
  start-page: 567
  year: 2004
  end-page: 581
  ident: b0080
  article-title: Unsupervised learning of prototypes and attribute weights
  publication-title: Pattern Recognition
– volume: 80
  start-page: 845
  year: 2019
  end-page: 872
  ident: b0310
  article-title: Suppressed possibilistic c-means clustering algorithm
  publication-title: Applied Soft Computing
– volume: 340
  start-page: 91
  year: 2018
  end-page: 108
  ident: b0185
  article-title: Generalised kernel weighted fuzzy c-means clustering algorithm with local information
  publication-title: Fuzzy Sets and Systems
– reference: 13(4): 517-530. https://doi.org/10.119/TFUZZ.2004.840099.
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: b0050
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Computer & Geosciences
– volume: 165
  year: 2021
  ident: b0010
  article-title: Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development
  publication-title: Expert Systems with Applications
– volume: 24
  start-page: 1607
  year: 2003
  end-page: 1612
  ident: b0075
  article-title: Suppressed fuzzy c-means clustering algorithm
  publication-title: Pattern Recognition Letters
– volume: 26
  start-page: 612
  year: 2018
  end-page: 626
  ident: b0100
  article-title: Fuzzy double c-means clustering based on sparse self- representation
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 503
  start-page: 259
  year: 2022
  end-page: 271
  ident: b0130
  article-title: Recent advances on image edge detection: A comprehensive review
  publication-title: Neurocomputing
– volume: 113
  start-page: 1
  year: 2022
  end-page: 28
  ident: b0175
  article-title: An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu method
  publication-title: Engineering Applications of Artificial Intelligence
– reference: Azzouzi, S., El-Mekkaoui, J., Hjouji, A., & Khalfi, A. E. (2021). An effective modified possibilistic fuzzy c-means clustering algorithm for noisy data problems. In
– volume: 28
  start-page: 2078
  year: 2020
  end-page: 2092
  ident: b0160
  article-title: Automatic fuzzy clustering framework for image segmentation
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 33
  start-page: 898
  year: 2011
  end-page: 916
  ident: b0005
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 63
  start-page: 198
  year: 2016
  end-page: 207
  ident: b0070
  article-title: An automatic filtering convergence method for iterative impulse noise filters based on PSNR checking and filtered pixels detection
  publication-title: Expert Systems with Applications
– volume: 514
  start-page: 127
  year: 2022
  end-page: 136
  ident: b0170
  article-title: Feedback neural network for constrained bi-objective convex optimization
  publication-title: Neurocomputing
– volume: 12
  start-page: 302
  year: 2020
  end-page: 324
  ident: b0240
  article-title: A review on suppressed fuzzy c-means clustering models
  publication-title: Acta Universitatis Sapientiae Informatica
– reference: Li, J., & Fan, J. L. (2014). Parameter selection for suppressed fuzzy c-means clustering algorithm based on fuzzy partition entropy. In
– reference: Ojeda-Magaña, B., Ruelas, R., Corona-Nakamura, M. A., & Andina, D. (2006). An improvement to the possibilistic fuzzy c-means clustering algorithm. In
– reference: Pal, N. R., Pal, K., Keller, J. M., & Bezdek, J. C. (2005). A possibilistic fuzzy c-means clustering algorithm. In
– volume: 1
  start-page: 98
  year: 1993
  end-page: 110
  ident: b0135
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 27
  start-page: 657
  year: 2005
  end-page: 668
  ident: b0120
  article-title: Automated variable weighting in k-means type clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: (pp. 150-161).
– volume: 29
  start-page: 1093
  year: 2021
  end-page: 1106
  ident: b0290
  article-title: Feature-weighted possibilistic c-means clustering with a feature-reduction framework
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 29
  start-page: 1725
  year: 2021
  end-page: 1738
  ident: b0055
  article-title: Fuzzy density peaks clustering
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 1392
  start-page: 298
  year: 2014
  end-page: 309
  ident: b0235
  article-title: Generalization rules for the suppressed fuzzy c-means clustering algorithm
  publication-title: Neurocomputing
– volume: 148
  start-page: 80
  year: 2022
  end-page: 116
  ident: b0270
  article-title: A novel interval-valued data driven type-2 possibilistic local information c-means clustering for land cover classification
  publication-title: International Journal of Approximate Reasoning
– reference: Szilágyi, L. (2011). Fuzzy-possibilistic product partition: A novel robust approach to c-means clustering. In
– reference: (pp. 170-175). https://doi.org/10.1109//ICCAIS.2014.7020552.
– reference: (pp.1-7).
– volume: 41
  start-page: 1338
  year: 2019
  end-page: 1352
  ident: b0065
  article-title: Dynamic clustering algorithms via small-variance analysis of Markov chain mixture models
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 30
  start-page: 4227
  year: 2022
  end-page: 14141
  ident: b0325
  article-title: Particle competitive mechanism based multiobjective rough clustering algorithm for image segmentation
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 292
  start-page: 1
  year: 2018
  end-page: 27
  ident: b0085
  article-title: Segmentation of images by color features: A survey
  publication-title: Neurocomputing.
– volume: 64
  start-page: 401
  year: 2018
  end-page: 422
  ident: b0305
  article-title: Cutset-type possibilistic c-means clustering algorithm
  publication-title: Applied Soft Computing
– volume: 5
  start-page: 67
  year: 2021
  end-page: 80
  ident: b0090
  article-title: Adaptive neighbor constrained deviation sparse variant fuzzy c-means clustering for brain MRI of AD subject
  publication-title: Visual Informatics
– volume: 203
  start-page: 1
  year: 2022
  end-page: 13
  ident: b0145
  article-title: Adaptive granulation Renyi rough entropy image thresholding method with nested optimization
  publication-title: Expert Systems With Applications
– volume: 27
  start-page: 1753
  year: 2019
  end-page: 1766
  ident: b0150
  article-title: Superpixel-based fast fuzzy c-means clustering for color image segmentation
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 35
  start-page: 151
  year: 2015
  end-page: 160
  ident: b0015
  article-title: A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of independent variables
  publication-title: Applied Soft Computing
– volume: 126
  start-page: 1
  year: 2022
  end-page: 18
  ident: b0195
  article-title: Applications of dynamic feature selection and clustering methods to medical diagnosis
  publication-title: Applied Soft Computing
– reference: Szilágyi, L. (2015). A unified theory of fuzzy c-means clustering models with improved partition. In
– volume: 105
  year: 2021
  ident: b0255
  article-title: Fuzzy image clustering incorporating local and region-level information with median memberships
  publication-title: Applied Soft Computing
– volume: 119
  start-page: 1
  year: 2021
  end-page: 15
  ident: b0295
  article-title: Collaborative feature-weighted multi-view fuzzy c-means clustering
  publication-title: Pattern Recognition
– reference: 82-87. https://doi.org/10.1109/FSKD.2014.6980811.
– volume: 209
  year: 2022
  ident: b0280
  article-title: A self-learning iterative weighted possibilistic fuzzy c-means clustering via adaptive fusion
  publication-title: Expert Systems with Applications
– volume: 78
  start-page: 324
  year: 2019
  end-page: 345
  ident: b0115
  article-title: New fuzzy c-means clustering method based on feature-weight and cluster-weight learning
  publication-title: Applied Soft Computing
– volume: 20
  start-page: 3361
  year: 2019
  end-page: 3374
  ident: b0260
  article-title: Intensity inhomogeneity suppressed fuzzy c-means for infrared pedestrian segmentation
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 198
  start-page: 125
  year: 2016
  end-page: 134
  ident: b0340
  article-title: Fuzzy clustering with the entropy of attribute weights
  publication-title: Neurocomputing
– volume: 5
  start-page: 67
  issue: 4
  year: 2021
  ident: 10.1016/j.eswa.2023.122270_b0090
  article-title: Adaptive neighbor constrained deviation sparse variant fuzzy c-means clustering for brain MRI of AD subject
  publication-title: Visual Informatics
  doi: 10.1016/j.visinf.2021.12.001
– ident: 10.1016/j.eswa.2023.122270_b0165
  doi: 10.1109/FSKD.2014.6980811
– volume: 514
  start-page: 127
  year: 2022
  ident: 10.1016/j.eswa.2023.122270_b0170
  article-title: Feedback neural network for constrained bi-objective convex optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.09.120
– volume: 30
  start-page: 1357
  issue: 5
  year: 2022
  ident: 10.1016/j.eswa.2023.122270_b0045
  article-title: Weighted Multiview possibilistic c-means clustering with L2 regularization
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2021.3058572
– volume: 12
  start-page: 302
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2023.122270_b0240
  article-title: A review on suppressed fuzzy c-means clustering models
  publication-title: Acta Universitatis Sapientiae Informatica
  doi: 10.2478/ausi-2020-0018
– volume: 21
  start-page: 321
  year: 2019
  ident: 10.1016/j.eswa.2023.122270_b0190
  article-title: Kernel possibilistic fuzzy c-means clustering with local information for image segmentation
  publication-title: International Journal of Fuzzy Systems
  doi: 10.1007/s40815-018-0537-9
– volume: 24
  start-page: 1607
  issue: 9–10
  year: 2003
  ident: 10.1016/j.eswa.2023.122270_b0075
  article-title: Suppressed fuzzy c-means clustering algorithm
  publication-title: Pattern Recognition Letters
  doi: 10.1016/S0167-8655(02)00401-4
– volume: 80
  start-page: 845
  year: 2019
  ident: 10.1016/j.eswa.2023.122270_b0310
  article-title: Suppressed possibilistic c-means clustering algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.02.027
– volume: 50
  start-page: 3938
  issue: 9
  year: 2020
  ident: 10.1016/j.eswa.2023.122270_b0245
  article-title: Wavelet frame-based fuzzy c-means clustering for segmenting images on graphs
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2019.2921779
– volume: 30
  start-page: 4227
  issue: 10
  year: 2022
  ident: 10.1016/j.eswa.2023.122270_b0325
  article-title: Particle competitive mechanism based multiobjective rough clustering algorithm for image segmentation
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2022.3141752
– volume: 1392
  start-page: 298
  year: 2014
  ident: 10.1016/j.eswa.2023.122270_b0235
  article-title: Generalization rules for the suppressed fuzzy c-means clustering algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.02.027
– volume: 63
  start-page: 198
  year: 2016
  ident: 10.1016/j.eswa.2023.122270_b0070
  article-title: An automatic filtering convergence method for iterative impulse noise filters based on PSNR checking and filtered pixels detection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.07.003
– volume: 200
  start-page: 1
  year: 2022
  ident: 10.1016/j.eswa.2023.122270_b0330
  article-title: Broad learning approach to Surrogate-Assisted Multi-Objective evolutionary fuzzy clustering algorithm based on reference points for color image segmentation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117015
– volume: 35
  start-page: 269
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2023.122270_b0035
  article-title: Weighted and constrained possibilistic c-means clustering for online fault detection and isolation
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-010-0219-2
– volume: 209
  year: 2022
  ident: 10.1016/j.eswa.2023.122270_b0280
  article-title: A self-learning iterative weighted possibilistic fuzzy c-means clustering via adaptive fusion
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.118280
– volume: 64
  start-page: 401
  year: 2018
  ident: 10.1016/j.eswa.2023.122270_b0305
  article-title: Cutset-type possibilistic c-means clustering algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.12.024
– volume: 33
  start-page: 898
  issue: 5
  year: 2011
  ident: 10.1016/j.eswa.2023.122270_b0005
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2010.161
– volume: 219
  start-page: 186
  year: 2017
  ident: 10.1016/j.eswa.2023.122270_b0020
  article-title: Generalized entropy based possibilistic fuzzy c-means for clustering noisy data and its convergence proof
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.025
– ident: 10.1016/j.eswa.2023.122270_b0230
  doi: 10.1007/978-3-319-23240-9_11
– ident: 10.1016/j.eswa.2023.122270_b0030
  doi: 10.1109/ICDS53782.2021.9626706
– volume: 113
  start-page: 1
  year: 2022
  ident: 10.1016/j.eswa.2023.122270_b0175
  article-title: An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu method
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2022.104960
– volume: 29
  start-page: 1093
  issue: 5
  year: 2021
  ident: 10.1016/j.eswa.2023.122270_b0290
  article-title: Feature-weighted possibilistic c-means clustering with a feature-reduction framework
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2020.2968879
– ident: 10.1016/j.eswa.2023.122270_b0205
  doi: 10.1109/WAC.2006.376056
– volume: 10
  start-page: 191
  issue: 2–3
  year: 1984
  ident: 10.1016/j.eswa.2023.122270_b0050
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Computer & Geosciences
  doi: 10.1016/0098-3004(84)90020-7
– volume: 41
  start-page: 1338
  issue: 6
  year: 2019
  ident: 10.1016/j.eswa.2023.122270_b0065
  article-title: Dynamic clustering algorithms via small-variance analysis of Markov chain mixture models
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2018.2833467
– volume: 148
  start-page: 80
  year: 2022
  ident: 10.1016/j.eswa.2023.122270_b0270
  article-title: A novel interval-valued data driven type-2 possibilistic local information c-means clustering for land cover classification
  publication-title: International Journal of Approximate Reasoning
  doi: 10.1016/j.ijar.2022.05.007
– volume: 113
  start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.122270_b0095
  article-title: CGFFCM: Cluster-weight and group-local feature-weight learning in fuzzy c-means clustering algorithm for color image segmentation
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.108005
– volume: 78
  start-page: 324
  year: 2019
  ident: 10.1016/j.eswa.2023.122270_b0115
  article-title: New fuzzy c-means clustering method based on feature-weight and cluster-weight learning
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.02.038
– volume: 191
  start-page: 1
  issue: 116153
  year: 2022
  ident: 10.1016/j.eswa.2023.122270_b0220
  article-title: A gradient ascent algorithm based on possibilistic fuzzy c-means for clustering noisy data
  publication-title: Expert Systems with Applications
– volume: 27
  start-page: 185
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2023.122270_b0320
  article-title: Deviation-sparse fuzzy c-means with neighbor information constraint
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2018.2883033
– volume: 30
  start-page: 1624
  issue: 6
  year: 2022
  ident: 10.1016/j.eswa.2023.122270_b0275
  article-title: A novel kernelized total Bregman divergence-driven possibilistic fuzzy clustering with multiple information constraints for image segmentation
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2021.3063818
– volume: 105
  year: 2021
  ident: 10.1016/j.eswa.2023.122270_b0255
  article-title: Fuzzy image clustering incorporating local and region-level information with median memberships
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.107245
– volume: 37
  start-page: 567
  issue: 3
  year: 2004
  ident: 10.1016/j.eswa.2023.122270_b0080
  article-title: Unsupervised learning of prototypes and attribute weights
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2003.08.002
– volume: 29
  start-page: 1725
  issue: 7
  year: 2021
  ident: 10.1016/j.eswa.2023.122270_b0055
  article-title: Fuzzy density peaks clustering
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2020.2985004
– volume: 340
  start-page: 91
  year: 2018
  ident: 10.1016/j.eswa.2023.122270_b0185
  article-title: Generalised kernel weighted fuzzy c-means clustering algorithm with local information
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2018.01.019
– volume: 503
  start-page: 259
  year: 2022
  ident: 10.1016/j.eswa.2023.122270_b0130
  article-title: Recent advances on image edge detection: A comprehensive review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.06.083
– volume: 126
  start-page: 1
  year: 2022
  ident: 10.1016/j.eswa.2023.122270_b0195
  article-title: Applications of dynamic feature selection and clustering methods to medical diagnosis
  publication-title: Applied Soft Computing
– volume: 20
  start-page: 3361
  issue: 9
  year: 2019
  ident: 10.1016/j.eswa.2023.122270_b0260
  article-title: Intensity inhomogeneity suppressed fuzzy c-means for infrared pedestrian segmentation
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2018.2875159
– volume: 35
  start-page: 151
  year: 2015
  ident: 10.1016/j.eswa.2023.122270_b0015
  article-title: A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of independent variables
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.06.028
– ident: 10.1016/j.eswa.2023.122270_b0315
  doi: 10.1109/SSCI.2017.8285358
– ident: 10.1016/j.eswa.2023.122270_b0110
  doi: 10.1109/ICCAIS.2014.7020552
– volume: 198
  start-page: 125
  year: 2016
  ident: 10.1016/j.eswa.2023.122270_b0340
  article-title: Fuzzy clustering with the entropy of attribute weights
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.127
– ident: 10.1016/j.eswa.2023.122270_b0225
  doi: 10.1007/978-3-642-22589-5_15
– volume: 1
  start-page: 98
  issue: 2
  year: 1993
  ident: 10.1016/j.eswa.2023.122270_b0135
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/91.227387
– volume: 203
  start-page: 1
  issue: 117378
  year: 2022
  ident: 10.1016/j.eswa.2023.122270_b0145
  article-title: Adaptive granulation Renyi rough entropy image thresholding method with nested optimization
  publication-title: Expert Systems With Applications
– ident: 10.1016/j.eswa.2023.122270_b0210
  doi: 10.1109/TFUZZ.2004.840099
– volume: 28
  start-page: 1023
  issue: 6
  year: 2020
  ident: 10.1016/j.eswa.2023.122270_b0335
  article-title: Semisupervised approach to surrogate-assisted multiobjective kernel intuitionistic fuzzy clustering algorithm for color image segmentation
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2020.2973121
– volume: 165
  year: 2021
  ident: 10.1016/j.eswa.2023.122270_b0010
  article-title: Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113856
– volume: 119
  start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.122270_b0295
  article-title: Collaborative feature-weighted multi-view fuzzy c-means clustering
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2021.108064
– volume: 26
  start-page: 3027
  issue: 5
  year: 2018
  ident: 10.1016/j.eswa.2023.122270_b0155
  article-title: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2018.2796074
– volume: 27
  start-page: 657
  issue: 5
  year: 2005
  ident: 10.1016/j.eswa.2023.122270_b0120
  article-title: Automated variable weighting in k-means type clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2005.95
– volume: 53
  start-page: 262
  year: 2017
  ident: 10.1016/j.eswa.2023.122270_b0025
  article-title: Generalized possibilistic fuzzy c-means with novel cluster validity indices for clustering noisy data
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.12.049
– volume: 292
  start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2023.122270_b0085
  article-title: Segmentation of images by color features: A survey
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2018.01.091
– volume: 28
  start-page: 2078
  issue: 9
  year: 2020
  ident: 10.1016/j.eswa.2023.122270_b0160
  article-title: Automatic fuzzy clustering framework for image segmentation
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2019.2930030
– volume: 7
  start-page: 106
  issue: 7
  year: 2021
  ident: 10.1016/j.eswa.2023.122270_b0300
  article-title: Distributed generation parameter optimization method based on fuzzy C-means clustering under the Internet of Things architecture
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2021.10.049
– volume: 110
  start-page: 180
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2023.122270_b0200
  article-title: Applying MSSIM combined chaos game representation to genome sequences analysis
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2017.09.010
– volume: 225
  start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.122270_b0140
  article-title: Infrared pedestrian segmentation algorithm based on the two-dimensional Kaniadakis entropy thresholding
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107089
– volume: 27
  start-page: 1753
  issue: 9
  year: 2019
  ident: 10.1016/j.eswa.2023.122270_b0150
  article-title: Superpixel-based fast fuzzy c-means clustering for color image segmentation
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2018.2889018
– volume: 26
  start-page: 612
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2023.122270_b0100
  article-title: Fuzzy double c-means clustering based on sparse self- representation
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2017.2686804
SSID ssj0017007
Score 2.5384734
Snippet The possibilistic fuzzy c-means clustering (PFCM) algorithm is a hybridization of possibilistic c-means clustering (PCM) and fuzzy c-means clustering (FCM)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 122270
SubjectTerms Feature weight
Fuzzy c-means clustering (FCM)
Image segmentation
Possibilistic fuzzy c-means clustering (PFCM)
Suppressed competitive learning
Title A feature-weighted suppressed possibilistic fuzzy c-means clustering algorithm and its application on color image segmentation
URI https://dx.doi.org/10.1016/j.eswa.2023.122270
Volume 241
WOSCitedRecordID wos001129583600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ja9wwFBbTpIdeupemGzr0ZhTGlmzZx6GktCGEQtMyN-OR5cTB4xm8ZDv0j_TP9mnxMkMamkNhMMZIGjPvm_ee3vIJoY_MlyFsdiRJIxEQxlhKQi9JCZdMhEyGGddd_D-P-PFxOJ9H3yaT310vzEXByzK8uorW_1XU8AyErVpn7yHuflF4APcgdLiC2OH6T4KfOZnUbJ3kUoc9waOs27Wud4Xb9ao2BbGKn9nJ2puba0eQpQSL5YiiVbQJum2xOF1VeXO27JMLo0y3SjAosuvKyZeq5KeWp0vbwlRuRPoVjXJjyaK7NrpRwrzXOK02gEl-PUD1MLeB7CNZrax11ZyRppckb4u2Hzs3OZbvZ21iR9owhseGosE-HskJc82RPZ1q9gwpllWururbnd6q900I4nxf1peKTMqj-8PgTZLtLePXlyR21W7nsVojVmvEZo0HaNfjfgQqc3f29WB-2Cep-NR043dvbnuyTPng9pvc7veMfJmTp-ix3YTgmQHPMzSR5XP0pDvgA1t9_wL9muFtLOEBS3gDS1hjCVss4QFLuMcSBixhwBIegQDDR2MJayzhMZZeoh-fD04-fSH2wA4i6HTaEJ56bkIp99NoEWSZS4NMuJGgXHJVDskXNAk9N6NB6jOaUcmDLFy4SeoJMLlZGtFXaKdclfI1wrArV5OSVCTg0TMRUZpSKSOZMCbA5d9DbvdzxsKy2atDVYr474LcQ04_Z224XO4c7XdSiq03arzMGEB3x7w39_qWt-jR8G94h3aaqpXv0UNx0eR19cEi7g9HjLIv
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+feature-weighted+suppressed+possibilistic+fuzzy+c-means+clustering+algorithm+and+its+application+on+color+image+segmentation&rft.jtitle=Expert+systems+with+applications&rft.au=Yu%2C+Haiyan&rft.au=Jiang%2C+Lerong&rft.au=Fan%2C+Jiulun&rft.au=Xie%2C+Shuang&rft.date=2024-05-01&rft.issn=0957-4174&rft.volume=241&rft.spage=122270&rft_id=info:doi/10.1016%2Fj.eswa.2023.122270&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_122270
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon