A feature-weighted suppressed possibilistic fuzzy c-means clustering algorithm and its application on color image segmentation
The possibilistic fuzzy c-means clustering (PFCM) algorithm is a hybridization of possibilistic c-means clustering (PCM) and fuzzy c-means clustering (FCM) algorithms. However, there are two main problems in PFCM. One is that the Euclidean distance employed in PFCM always disregards the imbalance am...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 241; S. 122270 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.05.2024
|
| Schlagworte: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The possibilistic fuzzy c-means clustering (PFCM) algorithm is a hybridization of possibilistic c-means clustering (PCM) and fuzzy c-means clustering (FCM) algorithms. However, there are two main problems in PFCM. One is that the Euclidean distance employed in PFCM always disregards the imbalance among sample features because it treats all features of data equally, which easily causes misclassification for feature-imbalanced multidimensional data. The other is that PFCM always produces significant center deviations and overlapping centers for multiclass datasets with strong noise injection, due to the difficulty of PFCM in the membership-weight parameter setting and the lack of between-class relationships in possibilistic memberships. Therefore, a feature-weighted suppressed possibilistic fuzzy c-means clustering (FW-S-PFCM) algorithm is presented by introducing a feature-weighted method and “suppressed competitive learning” strategy into the PFCM algorithm in this paper. First, the FW-S-PFCM algorithm introduces a feature-weight matrix into the objective function that can automatically assign feature-weight values to different features and different clusters according to the distribution of samples, thus overcoming the influence of feature imbalance and improving clustering effects for noisy multidimensional datasets. Second, combined with the feature-weight matrix, a “suppressed competitive learning” strategy is designed to resolve the center-overlapping problem in noisy multiclass dataset clustering. Specifically, partial crucial points of each class near the center are selected according to a cluster core generated by a cross-section of a threshold on the possibilistic membership surface. Third, their possibilistic memberships participate in the suppressed learning process to overcome the lack of between-class relationships. Last, a segmentation algorithm for noisy color images based on FW-S-PFCM is proposed combined with the feature-weight method and noise-identification ability of possibilistic memberships. Experiments on synthetic data, UCI data and color image segmentation demonstrate that the proposed FW-S-PFCM algorithm can overcome the partial center-overlapping problem and improve clustering performance on complex datasets with feature imbalance and strong noise injection. The proposed algorithm can also reduce the iteration number, sensitivity to membership weights, and initializations of PFCM. |
|---|---|
| AbstractList | The possibilistic fuzzy c-means clustering (PFCM) algorithm is a hybridization of possibilistic c-means clustering (PCM) and fuzzy c-means clustering (FCM) algorithms. However, there are two main problems in PFCM. One is that the Euclidean distance employed in PFCM always disregards the imbalance among sample features because it treats all features of data equally, which easily causes misclassification for feature-imbalanced multidimensional data. The other is that PFCM always produces significant center deviations and overlapping centers for multiclass datasets with strong noise injection, due to the difficulty of PFCM in the membership-weight parameter setting and the lack of between-class relationships in possibilistic memberships. Therefore, a feature-weighted suppressed possibilistic fuzzy c-means clustering (FW-S-PFCM) algorithm is presented by introducing a feature-weighted method and “suppressed competitive learning” strategy into the PFCM algorithm in this paper. First, the FW-S-PFCM algorithm introduces a feature-weight matrix into the objective function that can automatically assign feature-weight values to different features and different clusters according to the distribution of samples, thus overcoming the influence of feature imbalance and improving clustering effects for noisy multidimensional datasets. Second, combined with the feature-weight matrix, a “suppressed competitive learning” strategy is designed to resolve the center-overlapping problem in noisy multiclass dataset clustering. Specifically, partial crucial points of each class near the center are selected according to a cluster core generated by a cross-section of a threshold on the possibilistic membership surface. Third, their possibilistic memberships participate in the suppressed learning process to overcome the lack of between-class relationships. Last, a segmentation algorithm for noisy color images based on FW-S-PFCM is proposed combined with the feature-weight method and noise-identification ability of possibilistic memberships. Experiments on synthetic data, UCI data and color image segmentation demonstrate that the proposed FW-S-PFCM algorithm can overcome the partial center-overlapping problem and improve clustering performance on complex datasets with feature imbalance and strong noise injection. The proposed algorithm can also reduce the iteration number, sensitivity to membership weights, and initializations of PFCM. |
| ArticleNumber | 122270 |
| Author | Xie, Shuang Yu, Haiyan Fan, Jiulun Lan, Rong Jiang, Lerong |
| Author_xml | – sequence: 1 givenname: Haiyan surname: Yu fullname: Yu, Haiyan email: yuhaiyan2010@126.com – sequence: 2 givenname: Lerong orcidid: 0000-0002-5736-5911 surname: Jiang fullname: Jiang, Lerong email: jlrong00kl@163.com – sequence: 3 givenname: Jiulun orcidid: 0000-0002-7553-204X surname: Fan fullname: Fan, Jiulun email: jiulunf@xupt.edu.cn – sequence: 4 givenname: Shuang surname: Xie fullname: Xie, Shuang email: 277308729@qq.com – sequence: 5 givenname: Rong surname: Lan fullname: Lan, Rong email: ronglanlogic@163.com |
| BookMark | eNp9kE1LxDAQhoMouLv6BzzlD3TNx7ZpwYuIXyB40XNIk0mdpV8kWUUP_na71pOHhYEZGJ5h3mdJjvuhB0IuOFtzxovL7Rrih1kLJuSaCyEUOyILXiqZFaqSx2TBqlxlG642p2QZ45YxrhhTC_J9TT2YtAuQfQA2bwkcjbtxDBDjNI5DjFhjizGhpX739fVJbdaB6SO17S4mCNg31LTNEDC9ddT0jmKK1Ixji9YkHHo6lR3aIVDsTAM0QtNBn353Z-TEmzbC-V9fkde725ebh-zp-f7x5vops5KxlCknuJFS5a6qC--5LLzllZUKFCvzXNXSlIJ7Wbh8I70EVfiy5sYJW3HuXSVXpJzv2jAlCuC1xfmDFAy2mjO996i3eu9R7z3q2eOEin_oGKYg4fMwdDVDMIV6Rwg6WoTegsMANmk34CH8BzNdkgs |
| CitedBy_id | crossref_primary_10_1002_cpe_70086 crossref_primary_10_1016_j_compbiomed_2025_110053 crossref_primary_10_1109_TFUZZ_2024_3405497 crossref_primary_10_3390_e26080670 crossref_primary_10_1016_j_engappai_2024_109229 crossref_primary_10_1007_s11227_025_07678_w crossref_primary_10_3233_JIFS_238716 crossref_primary_10_1364_AO_524199 crossref_primary_10_1080_21681163_2024_2343711 crossref_primary_10_3390_info16080663 crossref_primary_10_1016_j_eswa_2025_128245 crossref_primary_10_1007_s10489_024_05813_3 crossref_primary_10_1016_j_engappai_2025_110768 crossref_primary_10_1016_j_knosys_2024_111388 crossref_primary_10_1016_j_neucom_2024_129176 crossref_primary_10_1007_s11042_025_20848_5 crossref_primary_10_1016_j_engappai_2025_110902 crossref_primary_10_1016_j_eswa_2024_125431 crossref_primary_10_1016_j_eswa_2024_126035 crossref_primary_10_1016_j_neunet_2024_106489 |
| Cites_doi | 10.1016/j.visinf.2021.12.001 10.1109/FSKD.2014.6980811 10.1016/j.neucom.2022.09.120 10.1109/TFUZZ.2021.3058572 10.2478/ausi-2020-0018 10.1007/s40815-018-0537-9 10.1016/S0167-8655(02)00401-4 10.1016/j.asoc.2019.02.027 10.1109/TCYB.2019.2921779 10.1109/TFUZZ.2022.3141752 10.1016/j.neucom.2014.02.027 10.1016/j.eswa.2016.07.003 10.1016/j.eswa.2022.117015 10.1007/s10489-010-0219-2 10.1016/j.eswa.2022.118280 10.1016/j.asoc.2017.12.024 10.1109/TPAMI.2010.161 10.1016/j.neucom.2016.09.025 10.1007/978-3-319-23240-9_11 10.1109/ICDS53782.2021.9626706 10.1016/j.engappai.2022.104960 10.1109/TFUZZ.2020.2968879 10.1109/WAC.2006.376056 10.1016/0098-3004(84)90020-7 10.1109/TPAMI.2018.2833467 10.1016/j.ijar.2022.05.007 10.1016/j.asoc.2021.108005 10.1016/j.asoc.2019.02.038 10.1109/TFUZZ.2018.2883033 10.1109/TFUZZ.2021.3063818 10.1016/j.asoc.2021.107245 10.1016/j.patcog.2003.08.002 10.1109/TFUZZ.2020.2985004 10.1016/j.fss.2018.01.019 10.1016/j.neucom.2022.06.083 10.1109/TITS.2018.2875159 10.1016/j.asoc.2015.06.028 10.1109/SSCI.2017.8285358 10.1109/ICCAIS.2014.7020552 10.1016/j.neucom.2015.09.127 10.1007/978-3-642-22589-5_15 10.1109/91.227387 10.1109/TFUZZ.2004.840099 10.1109/TFUZZ.2020.2973121 10.1016/j.eswa.2020.113856 10.1016/j.patcog.2021.108064 10.1109/TFUZZ.2018.2796074 10.1109/TPAMI.2005.95 10.1016/j.asoc.2016.12.049 10.1016/j.neucom.2018.01.091 10.1109/TFUZZ.2019.2930030 10.1016/j.egyr.2021.10.049 10.1016/j.ygeno.2017.09.010 10.1016/j.knosys.2021.107089 10.1109/TFUZZ.2018.2889018 10.1109/TFUZZ.2017.2686804 |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2023.122270 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2023_122270 S0957417423027720 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY1 LY7 M41 R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c300t-7d21a3375d9b6ff136fc19c37e708557b3a821f36d543f3e76f8b1ad2c911fd93 |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001129583600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sat Nov 29 07:07:08 EST 2025 Tue Nov 18 21:47:15 EST 2025 Sat Feb 17 16:07:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Suppressed competitive learning Image segmentation Feature weight Fuzzy c-means clustering (FCM) Possibilistic fuzzy c-means clustering (PFCM) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-7d21a3375d9b6ff136fc19c37e708557b3a821f36d543f3e76f8b1ad2c911fd93 |
| ORCID | 0000-0002-7553-204X 0000-0002-5736-5911 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2023_122270 crossref_primary_10_1016_j_eswa_2023_122270 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_122270 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 2024-05-00 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wang, Pedrycz, Yang, Zhou, Li (b0245) 2020; 50 Yu, Fan, Lan (b0310) 2019; 80 Benjamin, Yang (b0045) 2022; 30 Szilágyi, Lefkovits, Iclanzan (b0240) 2020; 12 Chen, Chen, Chen, Lin (b0070) 2016; 63 Frigui, Nasraoui (b0080) 2004; 37 (pp.1-7). Yu, Fan (b0305) 2018; 64 Garcia-Lamont, Cervantes, López, Rodriguez (b0085) 2018; 292 Askari, Montazerin, Zarandi, Hakimi (b0020) 2017; 219 Azzouzi, S., El-Mekkaoui, J., Hjouji, A., & Khalfi, A. E. (2021). An effective modified possibilistic fuzzy c-means clustering algorithm for noisy data problems. In (pp. 170-175). https://doi.org/10.1109//ICCAIS.2014.7020552. Zhang, Bai, Fan, Wang (b0320) 2019; 27 Szilágyi, L. (2011). Fuzzy-possibilistic product partition: A novel robust approach to c-means clustering. In (pp.129–140). https://doi.org/10.1007/978-3-319-23240-9_11. Wu, Zhang (b0280) 2022; 209 Ojeda-Magaña, B., Ruelas, R., Corona-Nakamura, M. A., & Andina, D. (2006). An improvement to the possibilistic fuzzy c-means clustering algorithm. In Yang, Sinaga (b0295) 2021; 119 Saberi, Sharbati, Farzanegan (b0220) 2022; 191 Yang, Benjamin (b0290) 2021; 29 Zare, A., Young, N., Suen, D., Nabelek, T., Galusha, A., & Keller, J. (2017). Possibilistic fuzzy local information c-means for sonar image segmentation. In Memon, Lee (b0185) 2018; 340 Memon, Memon, Qureshi, Alvi, Kumar, Shah (b0190) 2019; 21 13(4): 517-530. https://doi.org/10.119/TFUZZ.2004.840099. Jing, Liu, Wang, Zhang, Sun (b0130) 2022; 503 Szilágyi, Szilágyi (b0235) 2014; 1392 Bezdek, Ehrlich, Full (b0050) 1984; 10 Ma, Yue (b0175) 2022; 113 Liu, Su, Chai, Qin (b0170) 2022; 514 82-87. https://doi.org/10.1109/FSKD.2014.6980811. Szilágyi, L. (2015). A unified theory of fuzzy c-means clustering models with improved partition. In Arbelaez, Maire, Fowlkes, Malik (b0005) 2011; 33 Askari (b0010) 2021; 165 Mohammad, Abbas (b0195) 2022; 126 Lei, Liu, Jia, Zhang, Meng, Nandi (b0160) 2020; 28 Campbell, Kulis, How (b0065) 2019; 41 Pal, N. R., Pal, K., Keller, J. M., & Bezdek, J. C. (2005). A possibilistic fuzzy c-means clustering algorithm. In (pp. 150-161). Lei, Jia, Zhang, He, Meng, Nandi (b0155) 2018; 26 Golzari Oskouei, Hashemzadeh, Asheghi, Balafar (b0095) 2021; 113 Krishnapuram, Keller (b0135) 1993; 1 Ni, Qi, Mu (b0200) 2018; 110 Hashemzadeh, Golzari Oskouei, Farajzadeh (b0115) 2019; 78 Zhao, Liu, Liu, Fan (b0330) 2022; 200 Bian, Chung, Wang (b0055) 2021; 29 Wu, Guo (b0270) 2022; 148 Huang, Ng, Rong, Li (b0120) 2005; 27 Zhao, Zeng, Liu, Lan, Fan (b0335) 2020; 28 Bahrampour, Moshiri, Salahshoor (b0035) 2011; 35 (pp. 1-8). https://doi.org/10.1109/WAC.2006.376056. Wang, Wang, Fang, Jiao (b0255) 2021; 105 (pp.1-8). https://doi.org/10.1109/SSCI.2017.8285358. Wang, Bai (b0260) 2019; 20 Askari, Montazerin, Zarandi (b0015) 2015; 35 Fan, Zhen, Xie (b0075) 2003; 24 Gu, Jiao, Yang, Liu (b0100) 2018; 26 Lei, Fan (b0145) 2022; 203 Lei, Jia, Zhang, Liu, Meng, Nandi (b0150) 2019; 27 Li, J., & Fan, J. L. (2014). Parameter selection for suppressed fuzzy c-means clustering algorithm based on fuzzy partition entropy. In Gwak, J., & Jeon, M. (2014). An improved kernel-induced possibilistic fuzzy c-means clustering algorithm based on dispersion control. In Lei, Fan (b0140) 2021; 225 Wu, Zhang (b0275) 2022; 30 Ghosh, Hazarika, Chandra, Mudi (b0090) 2021; 5 Zhao, Cao, Liu, Tang, Fan (b0325) 2022; 30 Yao, Xing, Iin (b0300) 2021; 7 Zhou, Chen, Philip Chen, Zhang, Li (b0340) 2016; 198 Askaria, Montazerina, Fazel Zarandi (b0025) 2017; 53 Huang (10.1016/j.eswa.2023.122270_b0120) 2005; 27 Yu (10.1016/j.eswa.2023.122270_b0310) 2019; 80 Garcia-Lamont (10.1016/j.eswa.2023.122270_b0085) 2018; 292 Yu (10.1016/j.eswa.2023.122270_b0305) 2018; 64 Zhou (10.1016/j.eswa.2023.122270_b0340) 2016; 198 10.1016/j.eswa.2023.122270_b0165 Zhang (10.1016/j.eswa.2023.122270_b0320) 2019; 27 Golzari Oskouei (10.1016/j.eswa.2023.122270_b0095) 2021; 113 Zhao (10.1016/j.eswa.2023.122270_b0325) 2022; 30 Lei (10.1016/j.eswa.2023.122270_b0160) 2020; 28 Yang (10.1016/j.eswa.2023.122270_b0295) 2021; 119 10.1016/j.eswa.2023.122270_b0205 Wu (10.1016/j.eswa.2023.122270_b0270) 2022; 148 Askari (10.1016/j.eswa.2023.122270_b0010) 2021; 165 Bian (10.1016/j.eswa.2023.122270_b0055) 2021; 29 Askari (10.1016/j.eswa.2023.122270_b0020) 2017; 219 Campbell (10.1016/j.eswa.2023.122270_b0065) 2019; 41 Wang (10.1016/j.eswa.2023.122270_b0245) 2020; 50 10.1016/j.eswa.2023.122270_b0210 Lei (10.1016/j.eswa.2023.122270_b0145) 2022; 203 Szilágyi (10.1016/j.eswa.2023.122270_b0240) 2020; 12 Zhao (10.1016/j.eswa.2023.122270_b0330) 2022; 200 Memon (10.1016/j.eswa.2023.122270_b0185) 2018; 340 Krishnapuram (10.1016/j.eswa.2023.122270_b0135) 1993; 1 Lei (10.1016/j.eswa.2023.122270_b0155) 2018; 26 Zhao (10.1016/j.eswa.2023.122270_b0335) 2020; 28 Jing (10.1016/j.eswa.2023.122270_b0130) 2022; 503 Wu (10.1016/j.eswa.2023.122270_b0275) 2022; 30 Bahrampour (10.1016/j.eswa.2023.122270_b0035) 2011; 35 Ma (10.1016/j.eswa.2023.122270_b0175) 2022; 113 Arbelaez (10.1016/j.eswa.2023.122270_b0005) 2011; 33 Liu (10.1016/j.eswa.2023.122270_b0170) 2022; 514 Szilágyi (10.1016/j.eswa.2023.122270_b0235) 2014; 1392 Hashemzadeh (10.1016/j.eswa.2023.122270_b0115) 2019; 78 Mohammad (10.1016/j.eswa.2023.122270_b0195) 2022; 126 Ni (10.1016/j.eswa.2023.122270_b0200) 2018; 110 Lei (10.1016/j.eswa.2023.122270_b0140) 2021; 225 10.1016/j.eswa.2023.122270_b0225 Wang (10.1016/j.eswa.2023.122270_b0255) 2021; 105 Chen (10.1016/j.eswa.2023.122270_b0070) 2016; 63 Askari (10.1016/j.eswa.2023.122270_b0015) 2015; 35 Wang (10.1016/j.eswa.2023.122270_b0260) 2019; 20 Wu (10.1016/j.eswa.2023.122270_b0280) 2022; 209 Ghosh (10.1016/j.eswa.2023.122270_b0090) 2021; 5 Fan (10.1016/j.eswa.2023.122270_b0075) 2003; 24 10.1016/j.eswa.2023.122270_b0110 10.1016/j.eswa.2023.122270_b0230 Yao (10.1016/j.eswa.2023.122270_b0300) 2021; 7 10.1016/j.eswa.2023.122270_b0030 Frigui (10.1016/j.eswa.2023.122270_b0080) 2004; 37 Gu (10.1016/j.eswa.2023.122270_b0100) 2018; 26 Saberi (10.1016/j.eswa.2023.122270_b0220) 2022; 191 Yang (10.1016/j.eswa.2023.122270_b0290) 2021; 29 Askaria (10.1016/j.eswa.2023.122270_b0025) 2017; 53 Benjamin (10.1016/j.eswa.2023.122270_b0045) 2022; 30 Lei (10.1016/j.eswa.2023.122270_b0150) 2019; 27 Memon (10.1016/j.eswa.2023.122270_b0190) 2019; 21 10.1016/j.eswa.2023.122270_b0315 Bezdek (10.1016/j.eswa.2023.122270_b0050) 1984; 10 |
| References_xml | – volume: 35 start-page: 269 year: 2011 end-page: 284 ident: b0035 article-title: Weighted and constrained possibilistic c-means clustering for online fault detection and isolation publication-title: Applied Intelligence – volume: 7 start-page: 106 year: 2021 end-page: 115 ident: b0300 article-title: Distributed generation parameter optimization method based on fuzzy C-means clustering under the Internet of Things architecture publication-title: Energy Reports – volume: 110 start-page: 180 year: 2018 end-page: 190 ident: b0200 article-title: Applying MSSIM combined chaos game representation to genome sequences analysis publication-title: Genomics – volume: 21 start-page: 321 year: 2019 end-page: 332 ident: b0190 article-title: Kernel possibilistic fuzzy c-means clustering with local information for image segmentation publication-title: International Journal of Fuzzy Systems – volume: 28 start-page: 1023 year: 2020 end-page: 1034 ident: b0335 article-title: Semisupervised approach to surrogate-assisted multiobjective kernel intuitionistic fuzzy clustering algorithm for color image segmentation publication-title: IEEE Transactions on Fuzzy Systems – volume: 113 start-page: 1 year: 2021 end-page: 24 ident: b0095 article-title: CGFFCM: Cluster-weight and group-local feature-weight learning in fuzzy c-means clustering algorithm for color image segmentation publication-title: Applied Soft Computing – reference: (pp. 1-8). https://doi.org/10.1109/WAC.2006.376056. – volume: 53 start-page: 262 year: 2017 end-page: 283 ident: b0025 article-title: Generalized possibilistic fuzzy c-means with novel cluster validity indices for clustering noisy data publication-title: Applied Soft Computing – volume: 50 start-page: 3938 year: 2020 end-page: 3949 ident: b0245 article-title: Wavelet frame-based fuzzy c-means clustering for segmenting images on graphs publication-title: IEEE Transactions on Cybernetics – volume: 200 start-page: 1 year: 2022 end-page: 12 ident: b0330 article-title: Broad learning approach to Surrogate-Assisted Multi-Objective evolutionary fuzzy clustering algorithm based on reference points for color image segmentation publication-title: Expert Systems with Applications – reference: Gwak, J., & Jeon, M. (2014). An improved kernel-induced possibilistic fuzzy c-means clustering algorithm based on dispersion control. In – volume: 219 start-page: 186 year: 2017 end-page: 202 ident: b0020 article-title: Generalized entropy based possibilistic fuzzy c-means for clustering noisy data and its convergence proof publication-title: Neurocomputing – volume: 30 start-page: 1357 year: 2022 end-page: 1370 ident: b0045 article-title: Weighted Multiview possibilistic c-means clustering with L2 regularization publication-title: IEEE Transactions on Fuzzy Systems – volume: 30 start-page: 1624 year: 2022 end-page: 1639 ident: b0275 article-title: A novel kernelized total Bregman divergence-driven possibilistic fuzzy clustering with multiple information constraints for image segmentation publication-title: IEEE Transactions on Fuzzy Systems – reference: (pp.1-8). https://doi.org/10.1109/SSCI.2017.8285358. – volume: 27 start-page: 185 year: 2019 end-page: 199 ident: b0320 article-title: Deviation-sparse fuzzy c-means with neighbor information constraint publication-title: IEEE Transactions on Fuzzy Systems – reference: Zare, A., Young, N., Suen, D., Nabelek, T., Galusha, A., & Keller, J. (2017). Possibilistic fuzzy local information c-means for sonar image segmentation. In – volume: 26 start-page: 3027 year: 2018 end-page: 3041 ident: b0155 article-title: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering publication-title: IEEE Transactions on Fuzzy Systems – reference: (pp.129–140). https://doi.org/10.1007/978-3-319-23240-9_11. – volume: 191 start-page: 1 year: 2022 end-page: 20 ident: b0220 article-title: A gradient ascent algorithm based on possibilistic fuzzy c-means for clustering noisy data publication-title: Expert Systems with Applications – volume: 225 start-page: 1 year: 2021 end-page: 12 ident: b0140 article-title: Infrared pedestrian segmentation algorithm based on the two-dimensional Kaniadakis entropy thresholding publication-title: Knowledge-Based Systems – volume: 37 start-page: 567 year: 2004 end-page: 581 ident: b0080 article-title: Unsupervised learning of prototypes and attribute weights publication-title: Pattern Recognition – volume: 80 start-page: 845 year: 2019 end-page: 872 ident: b0310 article-title: Suppressed possibilistic c-means clustering algorithm publication-title: Applied Soft Computing – volume: 340 start-page: 91 year: 2018 end-page: 108 ident: b0185 article-title: Generalised kernel weighted fuzzy c-means clustering algorithm with local information publication-title: Fuzzy Sets and Systems – reference: 13(4): 517-530. https://doi.org/10.119/TFUZZ.2004.840099. – volume: 10 start-page: 191 year: 1984 end-page: 203 ident: b0050 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Computer & Geosciences – volume: 165 year: 2021 ident: b0010 article-title: Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development publication-title: Expert Systems with Applications – volume: 24 start-page: 1607 year: 2003 end-page: 1612 ident: b0075 article-title: Suppressed fuzzy c-means clustering algorithm publication-title: Pattern Recognition Letters – volume: 26 start-page: 612 year: 2018 end-page: 626 ident: b0100 article-title: Fuzzy double c-means clustering based on sparse self- representation publication-title: IEEE Transactions on Fuzzy Systems – volume: 503 start-page: 259 year: 2022 end-page: 271 ident: b0130 article-title: Recent advances on image edge detection: A comprehensive review publication-title: Neurocomputing – volume: 113 start-page: 1 year: 2022 end-page: 28 ident: b0175 article-title: An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu method publication-title: Engineering Applications of Artificial Intelligence – reference: Azzouzi, S., El-Mekkaoui, J., Hjouji, A., & Khalfi, A. E. (2021). An effective modified possibilistic fuzzy c-means clustering algorithm for noisy data problems. In – volume: 28 start-page: 2078 year: 2020 end-page: 2092 ident: b0160 article-title: Automatic fuzzy clustering framework for image segmentation publication-title: IEEE Transactions on Fuzzy Systems – volume: 33 start-page: 898 year: 2011 end-page: 916 ident: b0005 article-title: Contour detection and hierarchical image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 63 start-page: 198 year: 2016 end-page: 207 ident: b0070 article-title: An automatic filtering convergence method for iterative impulse noise filters based on PSNR checking and filtered pixels detection publication-title: Expert Systems with Applications – volume: 514 start-page: 127 year: 2022 end-page: 136 ident: b0170 article-title: Feedback neural network for constrained bi-objective convex optimization publication-title: Neurocomputing – volume: 12 start-page: 302 year: 2020 end-page: 324 ident: b0240 article-title: A review on suppressed fuzzy c-means clustering models publication-title: Acta Universitatis Sapientiae Informatica – reference: Li, J., & Fan, J. L. (2014). Parameter selection for suppressed fuzzy c-means clustering algorithm based on fuzzy partition entropy. In – reference: Ojeda-Magaña, B., Ruelas, R., Corona-Nakamura, M. A., & Andina, D. (2006). An improvement to the possibilistic fuzzy c-means clustering algorithm. In – reference: Pal, N. R., Pal, K., Keller, J. M., & Bezdek, J. C. (2005). A possibilistic fuzzy c-means clustering algorithm. In – volume: 1 start-page: 98 year: 1993 end-page: 110 ident: b0135 article-title: A possibilistic approach to clustering publication-title: IEEE Transactions on Fuzzy Systems – volume: 27 start-page: 657 year: 2005 end-page: 668 ident: b0120 article-title: Automated variable weighting in k-means type clustering publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: (pp. 150-161). – volume: 29 start-page: 1093 year: 2021 end-page: 1106 ident: b0290 article-title: Feature-weighted possibilistic c-means clustering with a feature-reduction framework publication-title: IEEE Transactions on Fuzzy Systems – volume: 29 start-page: 1725 year: 2021 end-page: 1738 ident: b0055 article-title: Fuzzy density peaks clustering publication-title: IEEE Transactions on Fuzzy Systems – volume: 1392 start-page: 298 year: 2014 end-page: 309 ident: b0235 article-title: Generalization rules for the suppressed fuzzy c-means clustering algorithm publication-title: Neurocomputing – volume: 148 start-page: 80 year: 2022 end-page: 116 ident: b0270 article-title: A novel interval-valued data driven type-2 possibilistic local information c-means clustering for land cover classification publication-title: International Journal of Approximate Reasoning – reference: Szilágyi, L. (2011). Fuzzy-possibilistic product partition: A novel robust approach to c-means clustering. In – reference: (pp. 170-175). https://doi.org/10.1109//ICCAIS.2014.7020552. – reference: (pp.1-7). – volume: 41 start-page: 1338 year: 2019 end-page: 1352 ident: b0065 article-title: Dynamic clustering algorithms via small-variance analysis of Markov chain mixture models publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 30 start-page: 4227 year: 2022 end-page: 14141 ident: b0325 article-title: Particle competitive mechanism based multiobjective rough clustering algorithm for image segmentation publication-title: IEEE Transactions on Fuzzy Systems – volume: 292 start-page: 1 year: 2018 end-page: 27 ident: b0085 article-title: Segmentation of images by color features: A survey publication-title: Neurocomputing. – volume: 64 start-page: 401 year: 2018 end-page: 422 ident: b0305 article-title: Cutset-type possibilistic c-means clustering algorithm publication-title: Applied Soft Computing – volume: 5 start-page: 67 year: 2021 end-page: 80 ident: b0090 article-title: Adaptive neighbor constrained deviation sparse variant fuzzy c-means clustering for brain MRI of AD subject publication-title: Visual Informatics – volume: 203 start-page: 1 year: 2022 end-page: 13 ident: b0145 article-title: Adaptive granulation Renyi rough entropy image thresholding method with nested optimization publication-title: Expert Systems With Applications – volume: 27 start-page: 1753 year: 2019 end-page: 1766 ident: b0150 article-title: Superpixel-based fast fuzzy c-means clustering for color image segmentation publication-title: IEEE Transactions on Fuzzy Systems – volume: 35 start-page: 151 year: 2015 end-page: 160 ident: b0015 article-title: A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of independent variables publication-title: Applied Soft Computing – volume: 126 start-page: 1 year: 2022 end-page: 18 ident: b0195 article-title: Applications of dynamic feature selection and clustering methods to medical diagnosis publication-title: Applied Soft Computing – reference: Szilágyi, L. (2015). A unified theory of fuzzy c-means clustering models with improved partition. In – volume: 105 year: 2021 ident: b0255 article-title: Fuzzy image clustering incorporating local and region-level information with median memberships publication-title: Applied Soft Computing – volume: 119 start-page: 1 year: 2021 end-page: 15 ident: b0295 article-title: Collaborative feature-weighted multi-view fuzzy c-means clustering publication-title: Pattern Recognition – reference: 82-87. https://doi.org/10.1109/FSKD.2014.6980811. – volume: 209 year: 2022 ident: b0280 article-title: A self-learning iterative weighted possibilistic fuzzy c-means clustering via adaptive fusion publication-title: Expert Systems with Applications – volume: 78 start-page: 324 year: 2019 end-page: 345 ident: b0115 article-title: New fuzzy c-means clustering method based on feature-weight and cluster-weight learning publication-title: Applied Soft Computing – volume: 20 start-page: 3361 year: 2019 end-page: 3374 ident: b0260 article-title: Intensity inhomogeneity suppressed fuzzy c-means for infrared pedestrian segmentation publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 198 start-page: 125 year: 2016 end-page: 134 ident: b0340 article-title: Fuzzy clustering with the entropy of attribute weights publication-title: Neurocomputing – volume: 5 start-page: 67 issue: 4 year: 2021 ident: 10.1016/j.eswa.2023.122270_b0090 article-title: Adaptive neighbor constrained deviation sparse variant fuzzy c-means clustering for brain MRI of AD subject publication-title: Visual Informatics doi: 10.1016/j.visinf.2021.12.001 – ident: 10.1016/j.eswa.2023.122270_b0165 doi: 10.1109/FSKD.2014.6980811 – volume: 514 start-page: 127 year: 2022 ident: 10.1016/j.eswa.2023.122270_b0170 article-title: Feedback neural network for constrained bi-objective convex optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.09.120 – volume: 30 start-page: 1357 issue: 5 year: 2022 ident: 10.1016/j.eswa.2023.122270_b0045 article-title: Weighted Multiview possibilistic c-means clustering with L2 regularization publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2021.3058572 – volume: 12 start-page: 302 issue: 2 year: 2020 ident: 10.1016/j.eswa.2023.122270_b0240 article-title: A review on suppressed fuzzy c-means clustering models publication-title: Acta Universitatis Sapientiae Informatica doi: 10.2478/ausi-2020-0018 – volume: 21 start-page: 321 year: 2019 ident: 10.1016/j.eswa.2023.122270_b0190 article-title: Kernel possibilistic fuzzy c-means clustering with local information for image segmentation publication-title: International Journal of Fuzzy Systems doi: 10.1007/s40815-018-0537-9 – volume: 24 start-page: 1607 issue: 9–10 year: 2003 ident: 10.1016/j.eswa.2023.122270_b0075 article-title: Suppressed fuzzy c-means clustering algorithm publication-title: Pattern Recognition Letters doi: 10.1016/S0167-8655(02)00401-4 – volume: 80 start-page: 845 year: 2019 ident: 10.1016/j.eswa.2023.122270_b0310 article-title: Suppressed possibilistic c-means clustering algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.02.027 – volume: 50 start-page: 3938 issue: 9 year: 2020 ident: 10.1016/j.eswa.2023.122270_b0245 article-title: Wavelet frame-based fuzzy c-means clustering for segmenting images on graphs publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2019.2921779 – volume: 30 start-page: 4227 issue: 10 year: 2022 ident: 10.1016/j.eswa.2023.122270_b0325 article-title: Particle competitive mechanism based multiobjective rough clustering algorithm for image segmentation publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2022.3141752 – volume: 1392 start-page: 298 year: 2014 ident: 10.1016/j.eswa.2023.122270_b0235 article-title: Generalization rules for the suppressed fuzzy c-means clustering algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.02.027 – volume: 63 start-page: 198 year: 2016 ident: 10.1016/j.eswa.2023.122270_b0070 article-title: An automatic filtering convergence method for iterative impulse noise filters based on PSNR checking and filtered pixels detection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.07.003 – volume: 200 start-page: 1 year: 2022 ident: 10.1016/j.eswa.2023.122270_b0330 article-title: Broad learning approach to Surrogate-Assisted Multi-Objective evolutionary fuzzy clustering algorithm based on reference points for color image segmentation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117015 – volume: 35 start-page: 269 issue: 2 year: 2011 ident: 10.1016/j.eswa.2023.122270_b0035 article-title: Weighted and constrained possibilistic c-means clustering for online fault detection and isolation publication-title: Applied Intelligence doi: 10.1007/s10489-010-0219-2 – volume: 209 year: 2022 ident: 10.1016/j.eswa.2023.122270_b0280 article-title: A self-learning iterative weighted possibilistic fuzzy c-means clustering via adaptive fusion publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.118280 – volume: 64 start-page: 401 year: 2018 ident: 10.1016/j.eswa.2023.122270_b0305 article-title: Cutset-type possibilistic c-means clustering algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.12.024 – volume: 33 start-page: 898 issue: 5 year: 2011 ident: 10.1016/j.eswa.2023.122270_b0005 article-title: Contour detection and hierarchical image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2010.161 – volume: 219 start-page: 186 year: 2017 ident: 10.1016/j.eswa.2023.122270_b0020 article-title: Generalized entropy based possibilistic fuzzy c-means for clustering noisy data and its convergence proof publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.025 – ident: 10.1016/j.eswa.2023.122270_b0230 doi: 10.1007/978-3-319-23240-9_11 – ident: 10.1016/j.eswa.2023.122270_b0030 doi: 10.1109/ICDS53782.2021.9626706 – volume: 113 start-page: 1 year: 2022 ident: 10.1016/j.eswa.2023.122270_b0175 article-title: An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu method publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2022.104960 – volume: 29 start-page: 1093 issue: 5 year: 2021 ident: 10.1016/j.eswa.2023.122270_b0290 article-title: Feature-weighted possibilistic c-means clustering with a feature-reduction framework publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2020.2968879 – ident: 10.1016/j.eswa.2023.122270_b0205 doi: 10.1109/WAC.2006.376056 – volume: 10 start-page: 191 issue: 2–3 year: 1984 ident: 10.1016/j.eswa.2023.122270_b0050 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Computer & Geosciences doi: 10.1016/0098-3004(84)90020-7 – volume: 41 start-page: 1338 issue: 6 year: 2019 ident: 10.1016/j.eswa.2023.122270_b0065 article-title: Dynamic clustering algorithms via small-variance analysis of Markov chain mixture models publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2018.2833467 – volume: 148 start-page: 80 year: 2022 ident: 10.1016/j.eswa.2023.122270_b0270 article-title: A novel interval-valued data driven type-2 possibilistic local information c-means clustering for land cover classification publication-title: International Journal of Approximate Reasoning doi: 10.1016/j.ijar.2022.05.007 – volume: 113 start-page: 1 year: 2021 ident: 10.1016/j.eswa.2023.122270_b0095 article-title: CGFFCM: Cluster-weight and group-local feature-weight learning in fuzzy c-means clustering algorithm for color image segmentation publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.108005 – volume: 78 start-page: 324 year: 2019 ident: 10.1016/j.eswa.2023.122270_b0115 article-title: New fuzzy c-means clustering method based on feature-weight and cluster-weight learning publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.02.038 – volume: 191 start-page: 1 issue: 116153 year: 2022 ident: 10.1016/j.eswa.2023.122270_b0220 article-title: A gradient ascent algorithm based on possibilistic fuzzy c-means for clustering noisy data publication-title: Expert Systems with Applications – volume: 27 start-page: 185 issue: 1 year: 2019 ident: 10.1016/j.eswa.2023.122270_b0320 article-title: Deviation-sparse fuzzy c-means with neighbor information constraint publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2018.2883033 – volume: 30 start-page: 1624 issue: 6 year: 2022 ident: 10.1016/j.eswa.2023.122270_b0275 article-title: A novel kernelized total Bregman divergence-driven possibilistic fuzzy clustering with multiple information constraints for image segmentation publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2021.3063818 – volume: 105 year: 2021 ident: 10.1016/j.eswa.2023.122270_b0255 article-title: Fuzzy image clustering incorporating local and region-level information with median memberships publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.107245 – volume: 37 start-page: 567 issue: 3 year: 2004 ident: 10.1016/j.eswa.2023.122270_b0080 article-title: Unsupervised learning of prototypes and attribute weights publication-title: Pattern Recognition doi: 10.1016/j.patcog.2003.08.002 – volume: 29 start-page: 1725 issue: 7 year: 2021 ident: 10.1016/j.eswa.2023.122270_b0055 article-title: Fuzzy density peaks clustering publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2020.2985004 – volume: 340 start-page: 91 year: 2018 ident: 10.1016/j.eswa.2023.122270_b0185 article-title: Generalised kernel weighted fuzzy c-means clustering algorithm with local information publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2018.01.019 – volume: 503 start-page: 259 year: 2022 ident: 10.1016/j.eswa.2023.122270_b0130 article-title: Recent advances on image edge detection: A comprehensive review publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.06.083 – volume: 126 start-page: 1 year: 2022 ident: 10.1016/j.eswa.2023.122270_b0195 article-title: Applications of dynamic feature selection and clustering methods to medical diagnosis publication-title: Applied Soft Computing – volume: 20 start-page: 3361 issue: 9 year: 2019 ident: 10.1016/j.eswa.2023.122270_b0260 article-title: Intensity inhomogeneity suppressed fuzzy c-means for infrared pedestrian segmentation publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2018.2875159 – volume: 35 start-page: 151 year: 2015 ident: 10.1016/j.eswa.2023.122270_b0015 article-title: A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of independent variables publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.06.028 – ident: 10.1016/j.eswa.2023.122270_b0315 doi: 10.1109/SSCI.2017.8285358 – ident: 10.1016/j.eswa.2023.122270_b0110 doi: 10.1109/ICCAIS.2014.7020552 – volume: 198 start-page: 125 year: 2016 ident: 10.1016/j.eswa.2023.122270_b0340 article-title: Fuzzy clustering with the entropy of attribute weights publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.127 – ident: 10.1016/j.eswa.2023.122270_b0225 doi: 10.1007/978-3-642-22589-5_15 – volume: 1 start-page: 98 issue: 2 year: 1993 ident: 10.1016/j.eswa.2023.122270_b0135 article-title: A possibilistic approach to clustering publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/91.227387 – volume: 203 start-page: 1 issue: 117378 year: 2022 ident: 10.1016/j.eswa.2023.122270_b0145 article-title: Adaptive granulation Renyi rough entropy image thresholding method with nested optimization publication-title: Expert Systems With Applications – ident: 10.1016/j.eswa.2023.122270_b0210 doi: 10.1109/TFUZZ.2004.840099 – volume: 28 start-page: 1023 issue: 6 year: 2020 ident: 10.1016/j.eswa.2023.122270_b0335 article-title: Semisupervised approach to surrogate-assisted multiobjective kernel intuitionistic fuzzy clustering algorithm for color image segmentation publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2020.2973121 – volume: 165 year: 2021 ident: 10.1016/j.eswa.2023.122270_b0010 article-title: Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113856 – volume: 119 start-page: 1 year: 2021 ident: 10.1016/j.eswa.2023.122270_b0295 article-title: Collaborative feature-weighted multi-view fuzzy c-means clustering publication-title: Pattern Recognition doi: 10.1016/j.patcog.2021.108064 – volume: 26 start-page: 3027 issue: 5 year: 2018 ident: 10.1016/j.eswa.2023.122270_b0155 article-title: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2018.2796074 – volume: 27 start-page: 657 issue: 5 year: 2005 ident: 10.1016/j.eswa.2023.122270_b0120 article-title: Automated variable weighting in k-means type clustering publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2005.95 – volume: 53 start-page: 262 year: 2017 ident: 10.1016/j.eswa.2023.122270_b0025 article-title: Generalized possibilistic fuzzy c-means with novel cluster validity indices for clustering noisy data publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.12.049 – volume: 292 start-page: 1 year: 2018 ident: 10.1016/j.eswa.2023.122270_b0085 article-title: Segmentation of images by color features: A survey publication-title: Neurocomputing. doi: 10.1016/j.neucom.2018.01.091 – volume: 28 start-page: 2078 issue: 9 year: 2020 ident: 10.1016/j.eswa.2023.122270_b0160 article-title: Automatic fuzzy clustering framework for image segmentation publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2019.2930030 – volume: 7 start-page: 106 issue: 7 year: 2021 ident: 10.1016/j.eswa.2023.122270_b0300 article-title: Distributed generation parameter optimization method based on fuzzy C-means clustering under the Internet of Things architecture publication-title: Energy Reports doi: 10.1016/j.egyr.2021.10.049 – volume: 110 start-page: 180 issue: 3 year: 2018 ident: 10.1016/j.eswa.2023.122270_b0200 article-title: Applying MSSIM combined chaos game representation to genome sequences analysis publication-title: Genomics doi: 10.1016/j.ygeno.2017.09.010 – volume: 225 start-page: 1 year: 2021 ident: 10.1016/j.eswa.2023.122270_b0140 article-title: Infrared pedestrian segmentation algorithm based on the two-dimensional Kaniadakis entropy thresholding publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107089 – volume: 27 start-page: 1753 issue: 9 year: 2019 ident: 10.1016/j.eswa.2023.122270_b0150 article-title: Superpixel-based fast fuzzy c-means clustering for color image segmentation publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2018.2889018 – volume: 26 start-page: 612 issue: 2 year: 2018 ident: 10.1016/j.eswa.2023.122270_b0100 article-title: Fuzzy double c-means clustering based on sparse self- representation publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2017.2686804 |
| SSID | ssj0017007 |
| Score | 2.5384734 |
| Snippet | The possibilistic fuzzy c-means clustering (PFCM) algorithm is a hybridization of possibilistic c-means clustering (PCM) and fuzzy c-means clustering (FCM)... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 122270 |
| SubjectTerms | Feature weight Fuzzy c-means clustering (FCM) Image segmentation Possibilistic fuzzy c-means clustering (PFCM) Suppressed competitive learning |
| Title | A feature-weighted suppressed possibilistic fuzzy c-means clustering algorithm and its application on color image segmentation |
| URI | https://dx.doi.org/10.1016/j.eswa.2023.122270 |
| Volume | 241 |
| WOSCitedRecordID | wos001129583600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ja9wwFBbTpIdeupemGzr0ZhTGlmzZx6GktCGEQtMyN-OR5cTB4xm8ZDv0j_TP9mnxMkMamkNhMMZIGjPvm_ee3vIJoY_MlyFsdiRJIxEQxlhKQi9JCZdMhEyGGddd_D-P-PFxOJ9H3yaT310vzEXByzK8uorW_1XU8AyErVpn7yHuflF4APcgdLiC2OH6T4KfOZnUbJ3kUoc9waOs27Wud4Xb9ao2BbGKn9nJ2puba0eQpQSL5YiiVbQJum2xOF1VeXO27JMLo0y3SjAosuvKyZeq5KeWp0vbwlRuRPoVjXJjyaK7NrpRwrzXOK02gEl-PUD1MLeB7CNZrax11ZyRppckb4u2Hzs3OZbvZ21iR9owhseGosE-HskJc82RPZ1q9gwpllWururbnd6q900I4nxf1peKTMqj-8PgTZLtLePXlyR21W7nsVojVmvEZo0HaNfjfgQqc3f29WB-2Cep-NR043dvbnuyTPng9pvc7veMfJmTp-ix3YTgmQHPMzSR5XP0pDvgA1t9_wL9muFtLOEBS3gDS1hjCVss4QFLuMcSBixhwBIegQDDR2MJayzhMZZeoh-fD04-fSH2wA4i6HTaEJ56bkIp99NoEWSZS4NMuJGgXHJVDskXNAk9N6NB6jOaUcmDLFy4SeoJMLlZGtFXaKdclfI1wrArV5OSVCTg0TMRUZpSKSOZMCbA5d9DbvdzxsKy2atDVYr474LcQ04_Z224XO4c7XdSiq03arzMGEB3x7w39_qWt-jR8G94h3aaqpXv0UNx0eR19cEi7g9HjLIv |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+feature-weighted+suppressed+possibilistic+fuzzy+c-means+clustering+algorithm+and+its+application+on+color+image+segmentation&rft.jtitle=Expert+systems+with+applications&rft.au=Yu%2C+Haiyan&rft.au=Jiang%2C+Lerong&rft.au=Fan%2C+Jiulun&rft.au=Xie%2C+Shuang&rft.date=2024-05-01&rft.issn=0957-4174&rft.volume=241&rft.spage=122270&rft_id=info:doi/10.1016%2Fj.eswa.2023.122270&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_122270 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |