An ensemble learning based prediction strategy for dynamic multi-objective optimization

Prediction strategies are widely-used in dynamic multi-objective evolutionary algorithms (DMOEAs). However, the characteristics of the environmental changes are different and only use one single prediction model cannot react to the changes effectively. The mismatching of the changes and prediction m...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied soft computing Ročník 96; s. 106592
Hlavní autori: Wang, Feng, Li, Yixuan, Liao, Fanshu, Yan, Hongyang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.11.2020
Predmet:
ISSN:1568-4946, 1872-9681
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Prediction strategies are widely-used in dynamic multi-objective evolutionary algorithms (DMOEAs). However, the characteristics of the environmental changes are different and only use one single prediction model cannot react to the changes effectively. The mismatching of the changes and prediction models may make the predicted results inaccurate and unstable. To overcome this shortage, an ensemble learning based prediction strategy (ELPS) is proposed in this paper to help algorithms re-initialize a new population after a change is detected. There are four base prediction models in ELPS, i.e., linear prediction model (LP), knee point-based autoregression model (KP-AR), population-based autoregression model (P-AR) and random re-initialization model (RND). Once a change happens, these four base prediction models are trained by the historical information with ensemble learning and a strong prediction model can be constructed on these four base prediction models. The final re-initialized population is generated by this strong prediction model to react to the new environment. With the help of ELPS, the re-initialized population can adapt different environmental changes and improve the performance on prediction accuracy and robustness. The experimental results show that, compared with other state-of-the-art prediction strategies on benchmark test suite, ELPS has better performance on dealing with dynamic multi-objective optimization problems. •An ensemble learning-based prediction strategy (ELPS) is proposed.•A new linear prediction model is proposed to help re-initialize new population.•A new knee point-based autoregression model is proposed to track the change of PS/PF.•The new proposed ELPS–DMOEA can achieve great performance on both accuracy and robustness.
AbstractList Prediction strategies are widely-used in dynamic multi-objective evolutionary algorithms (DMOEAs). However, the characteristics of the environmental changes are different and only use one single prediction model cannot react to the changes effectively. The mismatching of the changes and prediction models may make the predicted results inaccurate and unstable. To overcome this shortage, an ensemble learning based prediction strategy (ELPS) is proposed in this paper to help algorithms re-initialize a new population after a change is detected. There are four base prediction models in ELPS, i.e., linear prediction model (LP), knee point-based autoregression model (KP-AR), population-based autoregression model (P-AR) and random re-initialization model (RND). Once a change happens, these four base prediction models are trained by the historical information with ensemble learning and a strong prediction model can be constructed on these four base prediction models. The final re-initialized population is generated by this strong prediction model to react to the new environment. With the help of ELPS, the re-initialized population can adapt different environmental changes and improve the performance on prediction accuracy and robustness. The experimental results show that, compared with other state-of-the-art prediction strategies on benchmark test suite, ELPS has better performance on dealing with dynamic multi-objective optimization problems. •An ensemble learning-based prediction strategy (ELPS) is proposed.•A new linear prediction model is proposed to help re-initialize new population.•A new knee point-based autoregression model is proposed to track the change of PS/PF.•The new proposed ELPS–DMOEA can achieve great performance on both accuracy and robustness.
ArticleNumber 106592
Author Li, Yixuan
Yan, Hongyang
Wang, Feng
Liao, Fanshu
Author_xml – sequence: 1
  givenname: Feng
  surname: Wang
  fullname: Wang, Feng
  email: fengwang@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, 430072, China
– sequence: 2
  givenname: Yixuan
  surname: Li
  fullname: Li, Yixuan
  organization: School of Computer Science, Wuhan University, Wuhan, 430072, China
– sequence: 3
  givenname: Fanshu
  surname: Liao
  fullname: Liao, Fanshu
  organization: School of Computer Science, Wuhan University, Wuhan, 430072, China
– sequence: 4
  givenname: Hongyang
  surname: Yan
  fullname: Yan, Hongyang
  organization: Institute of Artificial intelligence and Blockchain, Guangzhou University, Guangzhou, 510006, China
BookMark eNp9kM1qwzAMgM3oYF23F9jJL5DOdhwnhl1K2R8UdtnY0Ti2UlwSu9hZoXv6OetOO_QkIekT0neNZj54QOiOkiUlVNzvljoFs2SETQVRSXaB5rSpWSFFQ2c5r0RTcMnFFbpOaUcyJFkzR58rj8EnGNoecA86eue3uNUJLN5HsM6MLnicxqhH2B5xFyK2R68HZ_Dw1Y-uCO0O8tABcNiPbnDfeiJu0GWn-wS3f3GBPp4e39cvxebt-XW92hSmJGQsas3rphVSd7XsrCUyR806LggvJbAqt2XLtDClsGVV1tS2lBAiiDWcc1uXC9Sc9poYUorQKePG3wvyxa5XlKhJkNqpSZCaBKmToIyyf-g-ukHH43no4QRBfurgIKpkHHiTTcWsQdngzuE_7w-CnQ
CitedBy_id crossref_primary_10_1002_cpe_6773
crossref_primary_10_1016_j_knosys_2021_107366
crossref_primary_10_1016_j_ins_2021_08_065
crossref_primary_10_3390_app13084795
crossref_primary_10_1016_j_coldregions_2021_103421
crossref_primary_10_3390_math9040420
crossref_primary_10_1002_int_22790
crossref_primary_10_1016_j_swevo_2025_101918
crossref_primary_10_1016_j_asoc_2023_110796
crossref_primary_10_1109_ACCESS_2021_3126292
crossref_primary_10_1016_j_swevo_2024_101638
crossref_primary_10_1155_2021_8870356
crossref_primary_10_1007_s10489_022_03934_1
crossref_primary_10_1016_j_ins_2024_120922
crossref_primary_10_1016_j_swevo_2023_101356
crossref_primary_10_1016_j_cie_2021_107131
crossref_primary_10_1016_j_swevo_2025_102067
crossref_primary_10_1016_j_eswa_2025_128915
crossref_primary_10_1016_j_ins_2020_11_012
crossref_primary_10_1109_JIOT_2025_3527999
crossref_primary_10_1016_j_swevo_2021_101007
crossref_primary_10_1038_s41598_021_95042_2
crossref_primary_10_1007_s10515_023_00411_y
crossref_primary_10_1016_j_swevo_2025_101883
crossref_primary_10_1016_j_asoc_2021_107404
crossref_primary_10_1109_LRA_2022_3183791
crossref_primary_10_1016_j_swevo_2020_100808
crossref_primary_10_1016_j_asoc_2020_106955
crossref_primary_10_1145_3524495
crossref_primary_10_1016_j_knosys_2020_106612
crossref_primary_10_1002_cpe_6032
crossref_primary_10_26599_TST_2023_9010014
crossref_primary_10_1016_j_asoc_2023_110333
crossref_primary_10_1109_TCSS_2023_3293331
crossref_primary_10_1016_j_swevo_2023_101254
crossref_primary_10_3390_math10122117
crossref_primary_10_1016_j_jksuci_2021_10_012
crossref_primary_10_1155_2021_6614283
crossref_primary_10_1016_j_ins_2020_08_033
crossref_primary_10_1016_j_swevo_2024_101693
crossref_primary_10_1016_j_knosys_2022_108306
crossref_primary_10_1016_j_slast_2024_100161
crossref_primary_10_1109_TEVC_2022_3233642
crossref_primary_10_1002_ldr_4870
crossref_primary_10_1109_ACCESS_2025_3550015
crossref_primary_10_1016_j_asoc_2022_108493
crossref_primary_10_1007_s12652_021_03129_5
crossref_primary_10_1016_j_asoc_2023_110741
crossref_primary_10_1016_j_isatra_2023_03_038
crossref_primary_10_1016_j_isatra_2022_03_015
crossref_primary_10_3233_JIFS_201124
crossref_primary_10_3390_sym13020322
crossref_primary_10_1016_j_swevo_2022_101124
crossref_primary_10_1016_j_swevo_2025_101981
crossref_primary_10_3390_math9030205
crossref_primary_10_1016_j_eswa_2020_114418
crossref_primary_10_1002_cpe_6216
crossref_primary_10_1016_j_asoc_2025_113072
crossref_primary_10_1016_j_swevo_2021_100867
crossref_primary_10_1007_s10586_024_04773_0
crossref_primary_10_1007_s10479_022_05028_0
crossref_primary_10_1007_s12652_021_03120_0
crossref_primary_10_3390_w12113231
crossref_primary_10_1016_j_neucom_2019_12_141
crossref_primary_10_1016_j_knosys_2023_111019
crossref_primary_10_1016_j_measurement_2023_113625
crossref_primary_10_1007_s00366_021_01497_2
crossref_primary_10_3390_app14114878
crossref_primary_10_1007_s40747_021_00635_z
crossref_primary_10_1016_j_asoc_2024_111398
crossref_primary_10_32604_cmes_2021_017310
crossref_primary_10_1016_j_asoc_2024_111317
crossref_primary_10_1016_j_eswa_2023_120951
crossref_primary_10_1007_s40747_022_00745_2
crossref_primary_10_1016_j_ijar_2022_04_002
crossref_primary_10_1016_j_comnet_2025_111149
crossref_primary_10_1016_j_neucom_2024_129291
crossref_primary_10_1155_2022_9599417
crossref_primary_10_1155_2021_3594271
crossref_primary_10_1109_TEVC_2022_3144880
crossref_primary_10_1007_s40747_021_00380_3
crossref_primary_10_1109_TDSC_2023_3302284
crossref_primary_10_1061_JSUED2_SUENG_1379
crossref_primary_10_1007_s11356_021_13352_4
crossref_primary_10_1002_cpe_6074
crossref_primary_10_1016_j_ins_2024_121192
crossref_primary_10_1177_1420326X241258678
crossref_primary_10_1007_s12652_021_03094_z
crossref_primary_10_1155_2021_6971100
crossref_primary_10_1016_j_asoc_2021_107697
crossref_primary_10_1109_TEVC_2022_3193287
crossref_primary_10_1007_s40747_020_00263_z
crossref_primary_10_1016_j_asoc_2024_112071
crossref_primary_10_1109_ACCESS_2024_3440637
crossref_primary_10_3390_electronics11132094
crossref_primary_10_1016_j_knosys_2023_110708
crossref_primary_10_1109_TEVC_2023_3290485
crossref_primary_10_1016_j_ins_2022_04_053
crossref_primary_10_3390_machines9120344
crossref_primary_10_3390_pr12010189
crossref_primary_10_1007_s10489_022_03920_7
crossref_primary_10_1007_s12652_020_02768_4
crossref_primary_10_1016_j_swevo_2021_100858
crossref_primary_10_1016_j_ins_2025_122513
crossref_primary_10_1016_j_eswa_2025_129304
Cites_doi 10.1016/j.swevo.2019.06.009
10.1109/TEVC.2004.831456
10.1109/TITS.2017.2665042
10.1109/TEVC.2013.2248159
10.1007/s00500-016-2130-1
10.1109/TCYB.2015.2490738
10.1109/TCYB.2015.2510698
10.1016/j.asoc.2017.08.004
10.1006/jcss.1997.1504
10.1007/s00500-018-3499-9
10.3934/jimo.2016068
10.1016/j.ins.2018.01.027
10.1109/TCYB.2018.2842158
10.1109/TEVC.2017.2771451
10.1007/s00500-014-1477-4
10.1016/j.swevo.2019.100574
10.1016/j.ins.2019.09.068
10.1016/j.ins.2019.09.070
10.1016/j.ins.2020.03.080
10.1016/j.asoc.2007.07.005
10.1109/TEVC.2008.920671
10.1109/TCYB.2013.2245892
10.1109/TCBB.2017.2691329
10.1016/j.asoc.2017.07.034
10.1016/j.ins.2017.02.054
10.1007/s12652-018-0707-5
10.1016/j.ins.2017.12.058
10.1007/s00500-015-2003-z
10.1016/j.asoc.2017.05.008
10.1109/TITS.2015.2499254
10.1007/s00500-015-1710-9
10.1016/j.ejor.2017.03.048
10.1016/j.asoc.2019.105485
10.1007/s00500-015-1862-7
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106592
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106592
S1568494620305305
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-7a478b69af79fdd09f79a2f460439e25a479b2a6c36d35371db100060dc444d73
ISICitedReferencesCount 116
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582762000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:05:39 EST 2025
Tue Nov 18 22:36:16 EST 2025
Fri Feb 23 02:43:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ensemble learning
Prediction strategy
Dynamic multi-objective evolutionary algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-7a478b69af79fdd09f79a2f460439e25a479b2a6c36d35371db100060dc444d73
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2020_106592
crossref_primary_10_1016_j_asoc_2020_106592
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106592
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jiang, Yang (b45) 2017; 47
Wang, Li, Zhou, Tang (b7) 2020; 24
Wu, Kuang, Wang, Rao, Gong, Li (b2) 2017; 61
Yan, Cai, Ning, Wei (b4) 2016; 17
Jiang, Qiu, Huang, Yen (b42) 2018; 435
Liu, Li, Fan, Mu, Jiao (b33) 2017; 261
Muruganantham, Tan, Vadakkepat (b18) 2016; 46
Zhou, Wang, Xu, Yan, Zhu (b22) 2019; 10
Farina, Deb, Amato (b11) 2004; 8
Wang, Zhu, Li, Li (b46) 2020; 512
Jiang, Yang, Yao, Tan, Kaiser, Krasnogor (b30) 2018
Jiang, Kaiser, Guo, Yang, Krasnogor (b29) 2018
Nguyen, Zhang, Johnston, Tan (b1) 2014; 18
Wang, Zhang, Li, Lin, Yang, Shen (b9) 2018; 436–437
Rong, Gong, Zhang, Jin, Pedrycz (b40) 2019; 49
Lin, Xu, Jin, Xu, Peng (b6) 2017; 21
Goh, Tan (b12) 2009; 13
He, Deng, Wang, Liu (b24) 2016; 20
Eaton, Yang, Gongora (b31) 2017; 18
Wei, Zhang (b36) 2011; vol. 7106
Greeff, Engelbrecht (b32) 2008
Zhou, Jin, Zhang (b17) 2014; 44
Zou, Li, Yang, Bai, Zheng (b38) 2017; 61
Zhang, Yang, Jiang, Wang, Li (b39) 2019
Freund, Schapire (b19) 1997; 55
Lin, Xu, He, Li (b3) 2017; 397–398
Hatzakis, Wallace (b15) 2006
Liu, Zhang, Jiao, Liu, Ma (b34) 2010
Wang, Zhang, Rao, Li, Zhang (b21) 2017; 21
Y. Ni, X. Du, P. Ye, R. Xiao, Y. Yuan, W. Li, Frequent pattern mining assisted energy consumption evolutionary optimization approach based on surrogate model at GCC compile time, Swarm Evol. Comput. 50.
Jiang, Huang, Qiu, Huang, Yen (b41) 2018; 22
He, Deng, Gao, Wang, Li (b23) 2017; 21
Zhou, Kong, Wu, Liu, Cai, Liu (b28) 2019; 81
Chen, Guestrin (b20) 2016
Wang, Zhang, Li, Zhao, Rao (b43) 2018; 22
Wang, Li, Zhang, Hu, Shen (b10) 2019; 49
Zhou, Jin, Zhang, Sendhoff, Tsang (b13) 2006; vol. 4403
Ruan, Yu, Zheng, Zou, Yang (b37) 2017; 58
Ma, Liu, Shang (b35) 2011; vol. 7063
Sierra, Coello (b44) 2005; vol. 3410
Jiang, Chen, Zhou, Wu, Chen, Zheng, Wan (b26) 2020; 530
Alves, Liu, Wang, Gerstein (b27) 2018; 15
Zhang (b5) 2008; 8
Xiong, Zhou, Tian, Liao, Shi (b8) 2017; 13
Jin, Sendhoff (b14) 2004; vol. 3005
Wu, Jin, Liu (b16) 2015; 19
Jiang, Xu, Zhou, Yan, Wan, Zheng (b47) 2020; 512
Wu (10.1016/j.asoc.2020.106592_b16) 2015; 19
Jiang (10.1016/j.asoc.2020.106592_b30) 2018
Hatzakis (10.1016/j.asoc.2020.106592_b15) 2006
Liu (10.1016/j.asoc.2020.106592_b33) 2017; 261
Wei (10.1016/j.asoc.2020.106592_b36) 2011; vol. 7106
Zhang (10.1016/j.asoc.2020.106592_b5) 2008; 8
Zhou (10.1016/j.asoc.2020.106592_b28) 2019; 81
Zhou (10.1016/j.asoc.2020.106592_b22) 2019; 10
Wang (10.1016/j.asoc.2020.106592_b21) 2017; 21
Zhou (10.1016/j.asoc.2020.106592_b17) 2014; 44
Wang (10.1016/j.asoc.2020.106592_b46) 2020; 512
Yan (10.1016/j.asoc.2020.106592_b4) 2016; 17
10.1016/j.asoc.2020.106592_b25
Jiang (10.1016/j.asoc.2020.106592_b29) 2018
Ruan (10.1016/j.asoc.2020.106592_b37) 2017; 58
Rong (10.1016/j.asoc.2020.106592_b40) 2019; 49
Sierra (10.1016/j.asoc.2020.106592_b44) 2005; vol. 3410
Liu (10.1016/j.asoc.2020.106592_b34) 2010
Freund (10.1016/j.asoc.2020.106592_b19) 1997; 55
Zhou (10.1016/j.asoc.2020.106592_b13) 2006; vol. 4403
Goh (10.1016/j.asoc.2020.106592_b12) 2009; 13
Alves (10.1016/j.asoc.2020.106592_b27) 2018; 15
Zou (10.1016/j.asoc.2020.106592_b38) 2017; 61
Lin (10.1016/j.asoc.2020.106592_b3) 2017; 397–398
Muruganantham (10.1016/j.asoc.2020.106592_b18) 2016; 46
Xiong (10.1016/j.asoc.2020.106592_b8) 2017; 13
Eaton (10.1016/j.asoc.2020.106592_b31) 2017; 18
Jiang (10.1016/j.asoc.2020.106592_b45) 2017; 47
Greeff (10.1016/j.asoc.2020.106592_b32) 2008
Wang (10.1016/j.asoc.2020.106592_b7) 2020; 24
Jiang (10.1016/j.asoc.2020.106592_b26) 2020; 530
Jiang (10.1016/j.asoc.2020.106592_b47) 2020; 512
Wang (10.1016/j.asoc.2020.106592_b9) 2018; 436–437
He (10.1016/j.asoc.2020.106592_b23) 2017; 21
Jiang (10.1016/j.asoc.2020.106592_b41) 2018; 22
Wu (10.1016/j.asoc.2020.106592_b2) 2017; 61
Jin (10.1016/j.asoc.2020.106592_b14) 2004; vol. 3005
Zhang (10.1016/j.asoc.2020.106592_b39) 2019
Farina (10.1016/j.asoc.2020.106592_b11) 2004; 8
Lin (10.1016/j.asoc.2020.106592_b6) 2017; 21
Wang (10.1016/j.asoc.2020.106592_b10) 2019; 49
He (10.1016/j.asoc.2020.106592_b24) 2016; 20
Wang (10.1016/j.asoc.2020.106592_b43) 2018; 22
Jiang (10.1016/j.asoc.2020.106592_b42) 2018; 435
Chen (10.1016/j.asoc.2020.106592_b20) 2016
Ma (10.1016/j.asoc.2020.106592_b35) 2011; vol. 7063
Nguyen (10.1016/j.asoc.2020.106592_b1) 2014; 18
References_xml – volume: 397–398
  start-page: 168
  year: 2017
  end-page: 186
  ident: b3
  article-title: Multi-resource scheduling and power simulation for cloud computing
  publication-title: Inform. Sci.
– volume: 13
  start-page: 1189
  year: 2017
  end-page: 1211
  ident: b8
  article-title: A multi-objective approach for weapon selection and planning problems in dynamic environments
  publication-title: J. Ind. Manage. Optim.
– volume: 512
  start-page: 952
  year: 2020
  end-page: 963
  ident: b46
  article-title: A hybrid convolution network for serial number recognition on banknotes
  publication-title: Inform. Sci.
– volume: 530
  start-page: 167
  year: 2020
  end-page: 179
  ident: b26
  article-title: PAN: pipeline assisted neural networks model for data-to-text generation in social internet of things
  publication-title: Inform. Sci.
– volume: 49
  start-page: 220
  year: 2019
  end-page: 233
  ident: b10
  article-title: An adaptive weight vector guided evolutionary algorithm for preference-based multi-objective optimization
  publication-title: Swarm Evol. Comput.
– volume: vol. 7063
  start-page: 435
  year: 2011
  end-page: 444
  ident: b35
  article-title: A hybrid dynamic multi-objective immune optimization algorithm using prediction strategy and improved differential evolution crossover operator
  publication-title: Neural Information Processing - 18th International Conference, ICONIP 2011
– volume: 24
  start-page: 479
  year: 2020
  end-page: 493
  ident: b7
  article-title: An estimation of distribution algorithm for mixed-varialbe newsvendor problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 435
  start-page: 203
  year: 2018
  end-page: 223
  ident: b42
  article-title: Dynamic multi-objective estimation of distribution algorithm based on domain adaptation and nonparametric estimation
  publication-title: Inform. Sci.
– volume: 81
  start-page: 1
  year: 2019
  end-page: 16
  ident: b28
  article-title: Ensemble of multi-objective metaheuristic algorithms for multi-objective unconstrained binary quadratic programming problem
  publication-title: Appl. Soft Comput.
– start-page: 673
  year: 2018
  end-page: 680
  ident: b29
  article-title: Less detectable environmental changes in dynamic multiobjective optimisation
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018
– start-page: 1201
  year: 2006
  end-page: 1208
  ident: b15
  article-title: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach
  publication-title: Genetic and Evolutionary Computation Conference, GECCO 2006, Proceedings, Seattle, Washington, USA, July 8-12, 2006
– volume: 21
  start-page: 1301
  year: 2017
  end-page: 1314
  ident: b6
  article-title: Design and theoretical analysis of virtual machine placement algorithm based on peak workload characteristics
  publication-title: Soft Comput.
– volume: 13
  start-page: 103
  year: 2009
  end-page: 127
  ident: b12
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 46
  start-page: 2862
  year: 2016
  end-page: 2873
  ident: b18
  article-title: Evolutionary dynamic multiobjective optimization via kalman filter prediction
  publication-title: IEEE Trans. Cybern.
– volume: 58
  start-page: 631
  year: 2017
  end-page: 647
  ident: b37
  article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
– volume: 49
  start-page: 3362
  year: 2019
  end-page: 3374
  ident: b40
  article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
– volume: 22
  start-page: 7833
  year: 2018
  end-page: 7846
  ident: b43
  article-title: External archive matching strategy for MOEA/D
  publication-title: Soft Comput.
– volume: 8
  start-page: 959
  year: 2008
  end-page: 971
  ident: b5
  article-title: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control
  publication-title: Appl. Soft Comput.
– volume: vol. 3005
  start-page: 525
  year: 2004
  end-page: 536
  ident: b14
  article-title: Constructing dynamic optimization test problems using the multi-objective optimization concept
  publication-title: Applications of Evolutionary Computing, EvoWorkshops 2004
– volume: 18
  start-page: 2980
  year: 2017
  end-page: 2992
  ident: b31
  article-title: Ant colony optimization for simulated dynamic multi-objective railway junction rescheduling
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 1
  year: 2019
  end-page: 14
  ident: b39
  article-title: Novel prediction strategies for dynamic multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 22
  start-page: 501
  year: 2018
  end-page: 514
  ident: b41
  article-title: Transfer learning-based dynamic multiobjective optimization algorithms
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2018
  end-page: 18
  ident: b30
  article-title: Benchmark problems for ieee cec 2018 competition on dynamic multiobjective optimization
– volume: 21
  start-page: 3193
  year: 2017
  end-page: 3205
  ident: b21
  article-title: Exploring mutual information-based sentimental analysis with kernel-based extreme learning machine for stock prediction
  publication-title: Soft Comput.
– volume: 15
  start-page: 926
  year: 2018
  end-page: 933
  ident: b27
  article-title: Multiple-swarm ensembles: Improving the predictive power and robustness of predictive models and its use in computational biology
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– start-page: 423
  year: 2010
  end-page: 430
  ident: b34
  article-title: A sphere-dominance based preference immune-inspired algorithm for dynamic multi-objective optimization
  publication-title: Genetic and Evolutionary Computation Conference, GECCO 2010
– volume: 10
  start-page: 2955
  year: 2019
  end-page: 2969
  ident: b22
  article-title: A novel character segmentation method for serial number on banknotes with complex background
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 261
  start-page: 1028
  year: 2017
  end-page: 1051
  ident: b33
  article-title: A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization
  publication-title: European J. Oper. Res.
– start-page: 2917
  year: 2008
  end-page: 2924
  ident: b32
  article-title: Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2008, June 1-6, 2008
– volume: 18
  start-page: 193
  year: 2014
  end-page: 208
  ident: b1
  article-title: Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming
  publication-title: IEEE Trans. Evol. Comput.
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: b19
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. System Sci.
– volume: 512
  start-page: 1
  year: 2020
  end-page: 17
  ident: b47
  article-title: Toward optimal participant decisions with voting-based incentive model for crowd sensing
  publication-title: Inform. Sci.
– volume: 8
  start-page: 425
  year: 2004
  end-page: 442
  ident: b11
  article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 785
  year: 2016
  end-page: 794
  ident: b20
  article-title: Xgboost: A scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 61
  start-page: 806
  year: 2017
  end-page: 818
  ident: b38
  article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
– volume: 61
  start-page: 294
  year: 2017
  end-page: 313
  ident: b2
  article-title: A multiobjective box-covering algorithm for fractal modularity on complex networks
  publication-title: Appl. Soft Comput.
– volume: 436–437
  start-page: 162
  year: 2018
  end-page: 177
  ident: b9
  article-title: A hybrid particle swarm optimization algorithm using adaptive learning strategy
  publication-title: Inform. Sci.
– volume: 17
  start-page: 1258
  year: 2016
  end-page: 1270
  ident: b4
  article-title: Moving horizon optimization of dynamic trajectory planning for high-speed train operation
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: vol. 4403
  start-page: 832
  year: 2006
  end-page: 846
  ident: b13
  article-title: Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization
  publication-title: Evolutionary Multi-Criterion Optimization, 4th International Conference, EMO 2007
– volume: 19
  start-page: 3221
  year: 2015
  end-page: 3235
  ident: b16
  article-title: A directed search strategy for evolutionary dynamic multiobjective optimization
  publication-title: Soft Comput.
– volume: 44
  start-page: 40
  year: 2014
  end-page: 53
  ident: b17
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 47
  start-page: 198
  year: 2017
  end-page: 211
  ident: b45
  article-title: Evolutionary dynamic multiobjective optimization: Benchmarks and algorithm comparisons
  publication-title: IEEE Trans. Cybern.
– volume: 21
  start-page: 5413
  year: 2017
  end-page: 5423
  ident: b23
  article-title: Model approach to grammatical evolution: deep-structured analyzing of model and representation
  publication-title: Soft Comput.
– volume: vol. 7106
  start-page: 372
  year: 2011
  end-page: 381
  ident: b36
  article-title: Simplex model based evolutionary algorithm for dynamic multi-objective optimization
  publication-title: AI 2011: Advances in Artificial Intelligence - 24th Australasian Joint Conference 2011
– volume: 20
  start-page: 3537
  year: 2016
  end-page: 3548
  ident: b24
  article-title: Model approach to grammatical evolution: theory and case study
  publication-title: Soft Comput.
– reference: Y. Ni, X. Du, P. Ye, R. Xiao, Y. Yuan, W. Li, Frequent pattern mining assisted energy consumption evolutionary optimization approach based on surrogate model at GCC compile time, Swarm Evol. Comput. 50.
– volume: vol. 3410
  start-page: 505
  year: 2005
  end-page: 519
  ident: b44
  article-title: Improving pso-based multi-objective optimization using crowding, mutation and epsilon-dominance
  publication-title: Evolutionary Multi-Criterion Optimization, Third International Conference, EMO 2005
– volume: 49
  start-page: 220
  year: 2019
  ident: 10.1016/j.asoc.2020.106592_b10
  article-title: An adaptive weight vector guided evolutionary algorithm for preference-based multi-objective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.06.009
– volume: 8
  start-page: 425
  issue: 5
  year: 2004
  ident: 10.1016/j.asoc.2020.106592_b11
  article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.831456
– volume: 18
  start-page: 2980
  issue: 11
  year: 2017
  ident: 10.1016/j.asoc.2020.106592_b31
  article-title: Ant colony optimization for simulated dynamic multi-objective railway junction rescheduling
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2665042
– volume: 18
  start-page: 193
  issue: 2
  year: 2014
  ident: 10.1016/j.asoc.2020.106592_b1
  article-title: Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2248159
– start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2020.106592_b39
  article-title: Novel prediction strategies for dynamic multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 21
  start-page: 5413
  issue: 18
  year: 2017
  ident: 10.1016/j.asoc.2020.106592_b23
  article-title: Model approach to grammatical evolution: deep-structured analyzing of model and representation
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2130-1
– volume: vol. 7106
  start-page: 372
  year: 2011
  ident: 10.1016/j.asoc.2020.106592_b36
  article-title: Simplex model based evolutionary algorithm for dynamic multi-objective optimization
– start-page: 785
  year: 2016
  ident: 10.1016/j.asoc.2020.106592_b20
  article-title: Xgboost: A scalable tree boosting system
– volume: 46
  start-page: 2862
  issue: 12
  year: 2016
  ident: 10.1016/j.asoc.2020.106592_b18
  article-title: Evolutionary dynamic multiobjective optimization via kalman filter prediction
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2490738
– volume: 47
  start-page: 198
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2020.106592_b45
  article-title: Evolutionary dynamic multiobjective optimization: Benchmarks and algorithm comparisons
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2510698
– volume: 61
  start-page: 806
  year: 2017
  ident: 10.1016/j.asoc.2020.106592_b38
  article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.08.004
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  ident: 10.1016/j.asoc.2020.106592_b19
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. System Sci.
  doi: 10.1006/jcss.1997.1504
– volume: 22
  start-page: 7833
  issue: 23
  year: 2018
  ident: 10.1016/j.asoc.2020.106592_b43
  article-title: External archive matching strategy for MOEA/D
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3499-9
– volume: 13
  start-page: 1189
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2020.106592_b8
  article-title: A multi-objective approach for weapon selection and planning problems in dynamic environments
  publication-title: J. Ind. Manage. Optim.
  doi: 10.3934/jimo.2016068
– volume: vol. 7063
  start-page: 435
  year: 2011
  ident: 10.1016/j.asoc.2020.106592_b35
  article-title: A hybrid dynamic multi-objective immune optimization algorithm using prediction strategy and improved differential evolution crossover operator
– volume: 436–437
  start-page: 162
  year: 2018
  ident: 10.1016/j.asoc.2020.106592_b9
  article-title: A hybrid particle swarm optimization algorithm using adaptive learning strategy
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.01.027
– volume: 24
  start-page: 479
  issue: 3
  year: 2020
  ident: 10.1016/j.asoc.2020.106592_b7
  article-title: An estimation of distribution algorithm for mixed-varialbe newsvendor problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 49
  start-page: 3362
  issue: 9
  year: 2019
  ident: 10.1016/j.asoc.2020.106592_b40
  article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2842158
– start-page: 1201
  year: 2006
  ident: 10.1016/j.asoc.2020.106592_b15
  article-title: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach
– volume: 22
  start-page: 501
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2020.106592_b41
  article-title: Transfer learning-based dynamic multiobjective optimization algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2771451
– volume: 19
  start-page: 3221
  issue: 11
  year: 2015
  ident: 10.1016/j.asoc.2020.106592_b16
  article-title: A directed search strategy for evolutionary dynamic multiobjective optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1477-4
– ident: 10.1016/j.asoc.2020.106592_b25
  doi: 10.1016/j.swevo.2019.100574
– volume: 512
  start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2020.106592_b47
  article-title: Toward optimal participant decisions with voting-based incentive model for crowd sensing
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.09.068
– volume: vol. 4403
  start-page: 832
  year: 2006
  ident: 10.1016/j.asoc.2020.106592_b13
  article-title: Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization
– volume: vol. 3005
  start-page: 525
  year: 2004
  ident: 10.1016/j.asoc.2020.106592_b14
  article-title: Constructing dynamic optimization test problems using the multi-objective optimization concept
– start-page: 2917
  year: 2008
  ident: 10.1016/j.asoc.2020.106592_b32
  article-title: Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation
– volume: 512
  start-page: 952
  year: 2020
  ident: 10.1016/j.asoc.2020.106592_b46
  article-title: A hybrid convolution network for serial number recognition on banknotes
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.09.070
– volume: 530
  start-page: 167
  year: 2020
  ident: 10.1016/j.asoc.2020.106592_b26
  article-title: PAN: pipeline assisted neural networks model for data-to-text generation in social internet of things
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.03.080
– volume: 8
  start-page: 959
  issue: 2
  year: 2008
  ident: 10.1016/j.asoc.2020.106592_b5
  article-title: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.07.005
– volume: 13
  start-page: 103
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2020.106592_b12
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.920671
– volume: 44
  start-page: 40
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2020.106592_b17
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2245892
– volume: 15
  start-page: 926
  issue: 3
  year: 2018
  ident: 10.1016/j.asoc.2020.106592_b27
  article-title: Multiple-swarm ensembles: Improving the predictive power and robustness of predictive models and its use in computational biology
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2017.2691329
– volume: 61
  start-page: 294
  year: 2017
  ident: 10.1016/j.asoc.2020.106592_b2
  article-title: A multiobjective box-covering algorithm for fractal modularity on complex networks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.07.034
– volume: 397–398
  start-page: 168
  year: 2017
  ident: 10.1016/j.asoc.2020.106592_b3
  article-title: Multi-resource scheduling and power simulation for cloud computing
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.02.054
– start-page: 423
  year: 2010
  ident: 10.1016/j.asoc.2020.106592_b34
  article-title: A sphere-dominance based preference immune-inspired algorithm for dynamic multi-objective optimization
– volume: vol. 3410
  start-page: 505
  year: 2005
  ident: 10.1016/j.asoc.2020.106592_b44
  article-title: Improving pso-based multi-objective optimization using crowding, mutation and epsilon-dominance
– volume: 10
  start-page: 2955
  issue: 8
  year: 2019
  ident: 10.1016/j.asoc.2020.106592_b22
  article-title: A novel character segmentation method for serial number on banknotes with complex background
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-018-0707-5
– volume: 435
  start-page: 203
  year: 2018
  ident: 10.1016/j.asoc.2020.106592_b42
  article-title: Dynamic multi-objective estimation of distribution algorithm based on domain adaptation and nonparametric estimation
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.12.058
– volume: 21
  start-page: 3193
  issue: 12
  year: 2017
  ident: 10.1016/j.asoc.2020.106592_b21
  article-title: Exploring mutual information-based sentimental analysis with kernel-based extreme learning machine for stock prediction
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-2003-z
– volume: 58
  start-page: 631
  year: 2017
  ident: 10.1016/j.asoc.2020.106592_b37
  article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.008
– volume: 17
  start-page: 1258
  issue: 5
  year: 2016
  ident: 10.1016/j.asoc.2020.106592_b4
  article-title: Moving horizon optimization of dynamic trajectory planning for high-speed train operation
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2499254
– start-page: 673
  year: 2018
  ident: 10.1016/j.asoc.2020.106592_b29
  article-title: Less detectable environmental changes in dynamic multiobjective optimisation
– volume: 20
  start-page: 3537
  issue: 9
  year: 2016
  ident: 10.1016/j.asoc.2020.106592_b24
  article-title: Model approach to grammatical evolution: theory and case study
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-1710-9
– volume: 261
  start-page: 1028
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2020.106592_b33
  article-title: A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2017.03.048
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106592_b30
– volume: 81
  start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2020.106592_b28
  article-title: Ensemble of multi-objective metaheuristic algorithms for multi-objective unconstrained binary quadratic programming problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105485
– volume: 21
  start-page: 1301
  issue: 5
  year: 2017
  ident: 10.1016/j.asoc.2020.106592_b6
  article-title: Design and theoretical analysis of virtual machine placement algorithm based on peak workload characteristics
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-1862-7
SSID ssj0016928
Score 2.5983295
Snippet Prediction strategies are widely-used in dynamic multi-objective evolutionary algorithms (DMOEAs). However, the characteristics of the environmental changes...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106592
SubjectTerms Dynamic multi-objective evolutionary algorithm
Ensemble learning
Prediction strategy
Title An ensemble learning based prediction strategy for dynamic multi-objective optimization
URI https://dx.doi.org/10.1016/j.asoc.2020.106592
Volume 96
WOSCitedRecordID wos000582762000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLcm2GGXfcCmMbbJB25VUBI7dnysJhAghCaNie4UObE7WkGKaIvKf8-zn512MCGYtEvauLVdPf_68_PL-yBkR_EM_s6sTiSoIwnXBfBgrizcZqJWshGp0r7YhDw5KQcD9T242059OQHZtuVioa7-61JDGyy2C519xnJ3g0IDvIdFhyssO1yftPD9tgdHU3vpQqIuouHDbVY-IYAZYW3wKWalRXdNg2Xp0bswmdRjZMHeBPjkMgRqrmqxUXWdAod7p_T5LO6A3jaP_AFS6dqOvdPAr9FivuIDNNLeTrsPu-X5vKMftMgeTNrftzoMEKwScATN_rBKPAyXQXYVZcJVsDlabCtlniiBdVsiJWOR2wfsjoaG8a4G4O66WaHJPRZe7mWdh-EPN5ebKneMxlyW2_VcFgqIb71_uDc46h41CeUL8Ha_LURWoRPg_Zn-rr2saCSnb8nrcJSgfYTAO_LCthvkTSzTQQNrb5KzfksjImhEBPWIoEtE0IgICoigARH0HiLoKiLek5_7e6ffDpJQTyNpWJrOEqm5LGuh9FCqoTGpgledD7lw4dE2L-BjVedaNEwYVjCZmTrzCXtMwzk3kn0ga-2ktR8JZaDpMc3KxqUbtGmqYZxC1sJkzJaCF1ski3KqmpBs3tU8uaiiV-G4crKtnGwrlO0W6XV9rjDVyqPfLqL4q6AsohJYAVoe6ffpH_ttk1dLnH8ma7Pruf1CXjY3s9H0-msA1R097Y61
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble+learning+based+prediction+strategy+for+dynamic+multi-objective+optimization&rft.jtitle=Applied+soft+computing&rft.au=Wang%2C+Feng&rft.au=Li%2C+Yixuan&rft.au=Liao%2C+Fanshu&rft.au=Yan%2C+Hongyang&rft.date=2020-11-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=96&rft_id=info:doi/10.1016%2Fj.asoc.2020.106592&rft.externalDocID=S1568494620305305
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon