An ensemble learning based prediction strategy for dynamic multi-objective optimization
Prediction strategies are widely-used in dynamic multi-objective evolutionary algorithms (DMOEAs). However, the characteristics of the environmental changes are different and only use one single prediction model cannot react to the changes effectively. The mismatching of the changes and prediction m...
Uložené v:
| Vydané v: | Applied soft computing Ročník 96; s. 106592 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.11.2020
|
| Predmet: | |
| ISSN: | 1568-4946, 1872-9681 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Prediction strategies are widely-used in dynamic multi-objective evolutionary algorithms (DMOEAs). However, the characteristics of the environmental changes are different and only use one single prediction model cannot react to the changes effectively. The mismatching of the changes and prediction models may make the predicted results inaccurate and unstable. To overcome this shortage, an ensemble learning based prediction strategy (ELPS) is proposed in this paper to help algorithms re-initialize a new population after a change is detected. There are four base prediction models in ELPS, i.e., linear prediction model (LP), knee point-based autoregression model (KP-AR), population-based autoregression model (P-AR) and random re-initialization model (RND). Once a change happens, these four base prediction models are trained by the historical information with ensemble learning and a strong prediction model can be constructed on these four base prediction models. The final re-initialized population is generated by this strong prediction model to react to the new environment. With the help of ELPS, the re-initialized population can adapt different environmental changes and improve the performance on prediction accuracy and robustness. The experimental results show that, compared with other state-of-the-art prediction strategies on benchmark test suite, ELPS has better performance on dealing with dynamic multi-objective optimization problems.
•An ensemble learning-based prediction strategy (ELPS) is proposed.•A new linear prediction model is proposed to help re-initialize new population.•A new knee point-based autoregression model is proposed to track the change of PS/PF.•The new proposed ELPS–DMOEA can achieve great performance on both accuracy and robustness. |
|---|---|
| AbstractList | Prediction strategies are widely-used in dynamic multi-objective evolutionary algorithms (DMOEAs). However, the characteristics of the environmental changes are different and only use one single prediction model cannot react to the changes effectively. The mismatching of the changes and prediction models may make the predicted results inaccurate and unstable. To overcome this shortage, an ensemble learning based prediction strategy (ELPS) is proposed in this paper to help algorithms re-initialize a new population after a change is detected. There are four base prediction models in ELPS, i.e., linear prediction model (LP), knee point-based autoregression model (KP-AR), population-based autoregression model (P-AR) and random re-initialization model (RND). Once a change happens, these four base prediction models are trained by the historical information with ensemble learning and a strong prediction model can be constructed on these four base prediction models. The final re-initialized population is generated by this strong prediction model to react to the new environment. With the help of ELPS, the re-initialized population can adapt different environmental changes and improve the performance on prediction accuracy and robustness. The experimental results show that, compared with other state-of-the-art prediction strategies on benchmark test suite, ELPS has better performance on dealing with dynamic multi-objective optimization problems.
•An ensemble learning-based prediction strategy (ELPS) is proposed.•A new linear prediction model is proposed to help re-initialize new population.•A new knee point-based autoregression model is proposed to track the change of PS/PF.•The new proposed ELPS–DMOEA can achieve great performance on both accuracy and robustness. |
| ArticleNumber | 106592 |
| Author | Li, Yixuan Yan, Hongyang Wang, Feng Liao, Fanshu |
| Author_xml | – sequence: 1 givenname: Feng surname: Wang fullname: Wang, Feng email: fengwang@whu.edu.cn organization: School of Computer Science, Wuhan University, Wuhan, 430072, China – sequence: 2 givenname: Yixuan surname: Li fullname: Li, Yixuan organization: School of Computer Science, Wuhan University, Wuhan, 430072, China – sequence: 3 givenname: Fanshu surname: Liao fullname: Liao, Fanshu organization: School of Computer Science, Wuhan University, Wuhan, 430072, China – sequence: 4 givenname: Hongyang surname: Yan fullname: Yan, Hongyang organization: Institute of Artificial intelligence and Blockchain, Guangzhou University, Guangzhou, 510006, China |
| BookMark | eNp9kM1qwzAMgM3oYF23F9jJL5DOdhwnhl1K2R8UdtnY0Ti2UlwSu9hZoXv6OetOO_QkIekT0neNZj54QOiOkiUlVNzvljoFs2SETQVRSXaB5rSpWSFFQ2c5r0RTcMnFFbpOaUcyJFkzR58rj8EnGNoecA86eue3uNUJLN5HsM6MLnicxqhH2B5xFyK2R68HZ_Dw1Y-uCO0O8tABcNiPbnDfeiJu0GWn-wS3f3GBPp4e39cvxebt-XW92hSmJGQsas3rphVSd7XsrCUyR806LggvJbAqt2XLtDClsGVV1tS2lBAiiDWcc1uXC9Sc9poYUorQKePG3wvyxa5XlKhJkNqpSZCaBKmToIyyf-g-ukHH43no4QRBfurgIKpkHHiTTcWsQdngzuE_7w-CnQ |
| CitedBy_id | crossref_primary_10_1002_cpe_6773 crossref_primary_10_1016_j_knosys_2021_107366 crossref_primary_10_1016_j_ins_2021_08_065 crossref_primary_10_3390_app13084795 crossref_primary_10_1016_j_coldregions_2021_103421 crossref_primary_10_3390_math9040420 crossref_primary_10_1002_int_22790 crossref_primary_10_1016_j_swevo_2025_101918 crossref_primary_10_1016_j_asoc_2023_110796 crossref_primary_10_1109_ACCESS_2021_3126292 crossref_primary_10_1016_j_swevo_2024_101638 crossref_primary_10_1155_2021_8870356 crossref_primary_10_1007_s10489_022_03934_1 crossref_primary_10_1016_j_ins_2024_120922 crossref_primary_10_1016_j_swevo_2023_101356 crossref_primary_10_1016_j_cie_2021_107131 crossref_primary_10_1016_j_swevo_2025_102067 crossref_primary_10_1016_j_eswa_2025_128915 crossref_primary_10_1016_j_ins_2020_11_012 crossref_primary_10_1109_JIOT_2025_3527999 crossref_primary_10_1016_j_swevo_2021_101007 crossref_primary_10_1038_s41598_021_95042_2 crossref_primary_10_1007_s10515_023_00411_y crossref_primary_10_1016_j_swevo_2025_101883 crossref_primary_10_1016_j_asoc_2021_107404 crossref_primary_10_1109_LRA_2022_3183791 crossref_primary_10_1016_j_swevo_2020_100808 crossref_primary_10_1016_j_asoc_2020_106955 crossref_primary_10_1145_3524495 crossref_primary_10_1016_j_knosys_2020_106612 crossref_primary_10_1002_cpe_6032 crossref_primary_10_26599_TST_2023_9010014 crossref_primary_10_1016_j_asoc_2023_110333 crossref_primary_10_1109_TCSS_2023_3293331 crossref_primary_10_1016_j_swevo_2023_101254 crossref_primary_10_3390_math10122117 crossref_primary_10_1016_j_jksuci_2021_10_012 crossref_primary_10_1155_2021_6614283 crossref_primary_10_1016_j_ins_2020_08_033 crossref_primary_10_1016_j_swevo_2024_101693 crossref_primary_10_1016_j_knosys_2022_108306 crossref_primary_10_1016_j_slast_2024_100161 crossref_primary_10_1109_TEVC_2022_3233642 crossref_primary_10_1002_ldr_4870 crossref_primary_10_1109_ACCESS_2025_3550015 crossref_primary_10_1016_j_asoc_2022_108493 crossref_primary_10_1007_s12652_021_03129_5 crossref_primary_10_1016_j_asoc_2023_110741 crossref_primary_10_1016_j_isatra_2023_03_038 crossref_primary_10_1016_j_isatra_2022_03_015 crossref_primary_10_3233_JIFS_201124 crossref_primary_10_3390_sym13020322 crossref_primary_10_1016_j_swevo_2022_101124 crossref_primary_10_1016_j_swevo_2025_101981 crossref_primary_10_3390_math9030205 crossref_primary_10_1016_j_eswa_2020_114418 crossref_primary_10_1002_cpe_6216 crossref_primary_10_1016_j_asoc_2025_113072 crossref_primary_10_1016_j_swevo_2021_100867 crossref_primary_10_1007_s10586_024_04773_0 crossref_primary_10_1007_s10479_022_05028_0 crossref_primary_10_1007_s12652_021_03120_0 crossref_primary_10_3390_w12113231 crossref_primary_10_1016_j_neucom_2019_12_141 crossref_primary_10_1016_j_knosys_2023_111019 crossref_primary_10_1016_j_measurement_2023_113625 crossref_primary_10_1007_s00366_021_01497_2 crossref_primary_10_3390_app14114878 crossref_primary_10_1007_s40747_021_00635_z crossref_primary_10_1016_j_asoc_2024_111398 crossref_primary_10_32604_cmes_2021_017310 crossref_primary_10_1016_j_asoc_2024_111317 crossref_primary_10_1016_j_eswa_2023_120951 crossref_primary_10_1007_s40747_022_00745_2 crossref_primary_10_1016_j_ijar_2022_04_002 crossref_primary_10_1016_j_comnet_2025_111149 crossref_primary_10_1016_j_neucom_2024_129291 crossref_primary_10_1155_2022_9599417 crossref_primary_10_1155_2021_3594271 crossref_primary_10_1109_TEVC_2022_3144880 crossref_primary_10_1007_s40747_021_00380_3 crossref_primary_10_1109_TDSC_2023_3302284 crossref_primary_10_1061_JSUED2_SUENG_1379 crossref_primary_10_1007_s11356_021_13352_4 crossref_primary_10_1002_cpe_6074 crossref_primary_10_1016_j_ins_2024_121192 crossref_primary_10_1177_1420326X241258678 crossref_primary_10_1007_s12652_021_03094_z crossref_primary_10_1155_2021_6971100 crossref_primary_10_1016_j_asoc_2021_107697 crossref_primary_10_1109_TEVC_2022_3193287 crossref_primary_10_1007_s40747_020_00263_z crossref_primary_10_1016_j_asoc_2024_112071 crossref_primary_10_1109_ACCESS_2024_3440637 crossref_primary_10_3390_electronics11132094 crossref_primary_10_1016_j_knosys_2023_110708 crossref_primary_10_1109_TEVC_2023_3290485 crossref_primary_10_1016_j_ins_2022_04_053 crossref_primary_10_3390_machines9120344 crossref_primary_10_3390_pr12010189 crossref_primary_10_1007_s10489_022_03920_7 crossref_primary_10_1007_s12652_020_02768_4 crossref_primary_10_1016_j_swevo_2021_100858 crossref_primary_10_1016_j_ins_2025_122513 crossref_primary_10_1016_j_eswa_2025_129304 |
| Cites_doi | 10.1016/j.swevo.2019.06.009 10.1109/TEVC.2004.831456 10.1109/TITS.2017.2665042 10.1109/TEVC.2013.2248159 10.1007/s00500-016-2130-1 10.1109/TCYB.2015.2490738 10.1109/TCYB.2015.2510698 10.1016/j.asoc.2017.08.004 10.1006/jcss.1997.1504 10.1007/s00500-018-3499-9 10.3934/jimo.2016068 10.1016/j.ins.2018.01.027 10.1109/TCYB.2018.2842158 10.1109/TEVC.2017.2771451 10.1007/s00500-014-1477-4 10.1016/j.swevo.2019.100574 10.1016/j.ins.2019.09.068 10.1016/j.ins.2019.09.070 10.1016/j.ins.2020.03.080 10.1016/j.asoc.2007.07.005 10.1109/TEVC.2008.920671 10.1109/TCYB.2013.2245892 10.1109/TCBB.2017.2691329 10.1016/j.asoc.2017.07.034 10.1016/j.ins.2017.02.054 10.1007/s12652-018-0707-5 10.1016/j.ins.2017.12.058 10.1007/s00500-015-2003-z 10.1016/j.asoc.2017.05.008 10.1109/TITS.2015.2499254 10.1007/s00500-015-1710-9 10.1016/j.ejor.2017.03.048 10.1016/j.asoc.2019.105485 10.1007/s00500-015-1862-7 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2020.106592 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2020_106592 S1568494620305305 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-7a478b69af79fdd09f79a2f460439e25a479b2a6c36d35371db100060dc444d73 |
| ISICitedReferencesCount | 116 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582762000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Sat Nov 29 07:05:39 EST 2025 Tue Nov 18 22:36:16 EST 2025 Fri Feb 23 02:43:24 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ensemble learning Prediction strategy Dynamic multi-objective evolutionary algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-7a478b69af79fdd09f79a2f460439e25a479b2a6c36d35371db100060dc444d73 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2020_106592 crossref_primary_10_1016_j_asoc_2020_106592 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106592 |
| PublicationCentury | 2000 |
| PublicationDate | November 2020 2020-11-00 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Jiang, Yang (b45) 2017; 47 Wang, Li, Zhou, Tang (b7) 2020; 24 Wu, Kuang, Wang, Rao, Gong, Li (b2) 2017; 61 Yan, Cai, Ning, Wei (b4) 2016; 17 Jiang, Qiu, Huang, Yen (b42) 2018; 435 Liu, Li, Fan, Mu, Jiao (b33) 2017; 261 Muruganantham, Tan, Vadakkepat (b18) 2016; 46 Zhou, Wang, Xu, Yan, Zhu (b22) 2019; 10 Farina, Deb, Amato (b11) 2004; 8 Wang, Zhu, Li, Li (b46) 2020; 512 Jiang, Yang, Yao, Tan, Kaiser, Krasnogor (b30) 2018 Jiang, Kaiser, Guo, Yang, Krasnogor (b29) 2018 Nguyen, Zhang, Johnston, Tan (b1) 2014; 18 Wang, Zhang, Li, Lin, Yang, Shen (b9) 2018; 436–437 Rong, Gong, Zhang, Jin, Pedrycz (b40) 2019; 49 Lin, Xu, Jin, Xu, Peng (b6) 2017; 21 Goh, Tan (b12) 2009; 13 He, Deng, Wang, Liu (b24) 2016; 20 Eaton, Yang, Gongora (b31) 2017; 18 Wei, Zhang (b36) 2011; vol. 7106 Greeff, Engelbrecht (b32) 2008 Zhou, Jin, Zhang (b17) 2014; 44 Zou, Li, Yang, Bai, Zheng (b38) 2017; 61 Zhang, Yang, Jiang, Wang, Li (b39) 2019 Freund, Schapire (b19) 1997; 55 Lin, Xu, He, Li (b3) 2017; 397–398 Hatzakis, Wallace (b15) 2006 Liu, Zhang, Jiao, Liu, Ma (b34) 2010 Wang, Zhang, Rao, Li, Zhang (b21) 2017; 21 Y. Ni, X. Du, P. Ye, R. Xiao, Y. Yuan, W. Li, Frequent pattern mining assisted energy consumption evolutionary optimization approach based on surrogate model at GCC compile time, Swarm Evol. Comput. 50. Jiang, Huang, Qiu, Huang, Yen (b41) 2018; 22 He, Deng, Gao, Wang, Li (b23) 2017; 21 Zhou, Kong, Wu, Liu, Cai, Liu (b28) 2019; 81 Chen, Guestrin (b20) 2016 Wang, Zhang, Li, Zhao, Rao (b43) 2018; 22 Wang, Li, Zhang, Hu, Shen (b10) 2019; 49 Zhou, Jin, Zhang, Sendhoff, Tsang (b13) 2006; vol. 4403 Ruan, Yu, Zheng, Zou, Yang (b37) 2017; 58 Ma, Liu, Shang (b35) 2011; vol. 7063 Sierra, Coello (b44) 2005; vol. 3410 Jiang, Chen, Zhou, Wu, Chen, Zheng, Wan (b26) 2020; 530 Alves, Liu, Wang, Gerstein (b27) 2018; 15 Zhang (b5) 2008; 8 Xiong, Zhou, Tian, Liao, Shi (b8) 2017; 13 Jin, Sendhoff (b14) 2004; vol. 3005 Wu, Jin, Liu (b16) 2015; 19 Jiang, Xu, Zhou, Yan, Wan, Zheng (b47) 2020; 512 Wu (10.1016/j.asoc.2020.106592_b16) 2015; 19 Jiang (10.1016/j.asoc.2020.106592_b30) 2018 Hatzakis (10.1016/j.asoc.2020.106592_b15) 2006 Liu (10.1016/j.asoc.2020.106592_b33) 2017; 261 Wei (10.1016/j.asoc.2020.106592_b36) 2011; vol. 7106 Zhang (10.1016/j.asoc.2020.106592_b5) 2008; 8 Zhou (10.1016/j.asoc.2020.106592_b28) 2019; 81 Zhou (10.1016/j.asoc.2020.106592_b22) 2019; 10 Wang (10.1016/j.asoc.2020.106592_b21) 2017; 21 Zhou (10.1016/j.asoc.2020.106592_b17) 2014; 44 Wang (10.1016/j.asoc.2020.106592_b46) 2020; 512 Yan (10.1016/j.asoc.2020.106592_b4) 2016; 17 10.1016/j.asoc.2020.106592_b25 Jiang (10.1016/j.asoc.2020.106592_b29) 2018 Ruan (10.1016/j.asoc.2020.106592_b37) 2017; 58 Rong (10.1016/j.asoc.2020.106592_b40) 2019; 49 Sierra (10.1016/j.asoc.2020.106592_b44) 2005; vol. 3410 Liu (10.1016/j.asoc.2020.106592_b34) 2010 Freund (10.1016/j.asoc.2020.106592_b19) 1997; 55 Zhou (10.1016/j.asoc.2020.106592_b13) 2006; vol. 4403 Goh (10.1016/j.asoc.2020.106592_b12) 2009; 13 Alves (10.1016/j.asoc.2020.106592_b27) 2018; 15 Zou (10.1016/j.asoc.2020.106592_b38) 2017; 61 Lin (10.1016/j.asoc.2020.106592_b3) 2017; 397–398 Muruganantham (10.1016/j.asoc.2020.106592_b18) 2016; 46 Xiong (10.1016/j.asoc.2020.106592_b8) 2017; 13 Eaton (10.1016/j.asoc.2020.106592_b31) 2017; 18 Jiang (10.1016/j.asoc.2020.106592_b45) 2017; 47 Greeff (10.1016/j.asoc.2020.106592_b32) 2008 Wang (10.1016/j.asoc.2020.106592_b7) 2020; 24 Jiang (10.1016/j.asoc.2020.106592_b26) 2020; 530 Jiang (10.1016/j.asoc.2020.106592_b47) 2020; 512 Wang (10.1016/j.asoc.2020.106592_b9) 2018; 436–437 He (10.1016/j.asoc.2020.106592_b23) 2017; 21 Jiang (10.1016/j.asoc.2020.106592_b41) 2018; 22 Wu (10.1016/j.asoc.2020.106592_b2) 2017; 61 Jin (10.1016/j.asoc.2020.106592_b14) 2004; vol. 3005 Zhang (10.1016/j.asoc.2020.106592_b39) 2019 Farina (10.1016/j.asoc.2020.106592_b11) 2004; 8 Lin (10.1016/j.asoc.2020.106592_b6) 2017; 21 Wang (10.1016/j.asoc.2020.106592_b10) 2019; 49 He (10.1016/j.asoc.2020.106592_b24) 2016; 20 Wang (10.1016/j.asoc.2020.106592_b43) 2018; 22 Jiang (10.1016/j.asoc.2020.106592_b42) 2018; 435 Chen (10.1016/j.asoc.2020.106592_b20) 2016 Ma (10.1016/j.asoc.2020.106592_b35) 2011; vol. 7063 Nguyen (10.1016/j.asoc.2020.106592_b1) 2014; 18 |
| References_xml | – volume: 397–398 start-page: 168 year: 2017 end-page: 186 ident: b3 article-title: Multi-resource scheduling and power simulation for cloud computing publication-title: Inform. Sci. – volume: 13 start-page: 1189 year: 2017 end-page: 1211 ident: b8 article-title: A multi-objective approach for weapon selection and planning problems in dynamic environments publication-title: J. Ind. Manage. Optim. – volume: 512 start-page: 952 year: 2020 end-page: 963 ident: b46 article-title: A hybrid convolution network for serial number recognition on banknotes publication-title: Inform. Sci. – volume: 530 start-page: 167 year: 2020 end-page: 179 ident: b26 article-title: PAN: pipeline assisted neural networks model for data-to-text generation in social internet of things publication-title: Inform. Sci. – volume: 49 start-page: 220 year: 2019 end-page: 233 ident: b10 article-title: An adaptive weight vector guided evolutionary algorithm for preference-based multi-objective optimization publication-title: Swarm Evol. Comput. – volume: vol. 7063 start-page: 435 year: 2011 end-page: 444 ident: b35 article-title: A hybrid dynamic multi-objective immune optimization algorithm using prediction strategy and improved differential evolution crossover operator publication-title: Neural Information Processing - 18th International Conference, ICONIP 2011 – volume: 24 start-page: 479 year: 2020 end-page: 493 ident: b7 article-title: An estimation of distribution algorithm for mixed-varialbe newsvendor problems publication-title: IEEE Trans. Evol. Comput. – volume: 435 start-page: 203 year: 2018 end-page: 223 ident: b42 article-title: Dynamic multi-objective estimation of distribution algorithm based on domain adaptation and nonparametric estimation publication-title: Inform. Sci. – volume: 81 start-page: 1 year: 2019 end-page: 16 ident: b28 article-title: Ensemble of multi-objective metaheuristic algorithms for multi-objective unconstrained binary quadratic programming problem publication-title: Appl. Soft Comput. – start-page: 673 year: 2018 end-page: 680 ident: b29 article-title: Less detectable environmental changes in dynamic multiobjective optimisation publication-title: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018 – start-page: 1201 year: 2006 end-page: 1208 ident: b15 article-title: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach publication-title: Genetic and Evolutionary Computation Conference, GECCO 2006, Proceedings, Seattle, Washington, USA, July 8-12, 2006 – volume: 21 start-page: 1301 year: 2017 end-page: 1314 ident: b6 article-title: Design and theoretical analysis of virtual machine placement algorithm based on peak workload characteristics publication-title: Soft Comput. – volume: 13 start-page: 103 year: 2009 end-page: 127 ident: b12 article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 46 start-page: 2862 year: 2016 end-page: 2873 ident: b18 article-title: Evolutionary dynamic multiobjective optimization via kalman filter prediction publication-title: IEEE Trans. Cybern. – volume: 58 start-page: 631 year: 2017 end-page: 647 ident: b37 article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization publication-title: Appl. Soft Comput. – volume: 49 start-page: 3362 year: 2019 end-page: 3374 ident: b40 article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems publication-title: IEEE Trans. Cybern. – volume: 22 start-page: 7833 year: 2018 end-page: 7846 ident: b43 article-title: External archive matching strategy for MOEA/D publication-title: Soft Comput. – volume: 8 start-page: 959 year: 2008 end-page: 971 ident: b5 article-title: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control publication-title: Appl. Soft Comput. – volume: vol. 3005 start-page: 525 year: 2004 end-page: 536 ident: b14 article-title: Constructing dynamic optimization test problems using the multi-objective optimization concept publication-title: Applications of Evolutionary Computing, EvoWorkshops 2004 – volume: 18 start-page: 2980 year: 2017 end-page: 2992 ident: b31 article-title: Ant colony optimization for simulated dynamic multi-objective railway junction rescheduling publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 1 year: 2019 end-page: 14 ident: b39 article-title: Novel prediction strategies for dynamic multi-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 22 start-page: 501 year: 2018 end-page: 514 ident: b41 article-title: Transfer learning-based dynamic multiobjective optimization algorithms publication-title: IEEE Trans. Evol. Comput. – start-page: 1 year: 2018 end-page: 18 ident: b30 article-title: Benchmark problems for ieee cec 2018 competition on dynamic multiobjective optimization – volume: 21 start-page: 3193 year: 2017 end-page: 3205 ident: b21 article-title: Exploring mutual information-based sentimental analysis with kernel-based extreme learning machine for stock prediction publication-title: Soft Comput. – volume: 15 start-page: 926 year: 2018 end-page: 933 ident: b27 article-title: Multiple-swarm ensembles: Improving the predictive power and robustness of predictive models and its use in computational biology publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. – start-page: 423 year: 2010 end-page: 430 ident: b34 article-title: A sphere-dominance based preference immune-inspired algorithm for dynamic multi-objective optimization publication-title: Genetic and Evolutionary Computation Conference, GECCO 2010 – volume: 10 start-page: 2955 year: 2019 end-page: 2969 ident: b22 article-title: A novel character segmentation method for serial number on banknotes with complex background publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 261 start-page: 1028 year: 2017 end-page: 1051 ident: b33 article-title: A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization publication-title: European J. Oper. Res. – start-page: 2917 year: 2008 end-page: 2924 ident: b32 article-title: Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation publication-title: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2008, June 1-6, 2008 – volume: 18 start-page: 193 year: 2014 end-page: 208 ident: b1 article-title: Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming publication-title: IEEE Trans. Evol. Comput. – volume: 55 start-page: 119 year: 1997 end-page: 139 ident: b19 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. System Sci. – volume: 512 start-page: 1 year: 2020 end-page: 17 ident: b47 article-title: Toward optimal participant decisions with voting-based incentive model for crowd sensing publication-title: Inform. Sci. – volume: 8 start-page: 425 year: 2004 end-page: 442 ident: b11 article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications publication-title: IEEE Trans. Evol. Comput. – start-page: 785 year: 2016 end-page: 794 ident: b20 article-title: Xgboost: A scalable tree boosting system publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 61 start-page: 806 year: 2017 end-page: 818 ident: b38 article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization publication-title: Appl. Soft Comput. – volume: 61 start-page: 294 year: 2017 end-page: 313 ident: b2 article-title: A multiobjective box-covering algorithm for fractal modularity on complex networks publication-title: Appl. Soft Comput. – volume: 436–437 start-page: 162 year: 2018 end-page: 177 ident: b9 article-title: A hybrid particle swarm optimization algorithm using adaptive learning strategy publication-title: Inform. Sci. – volume: 17 start-page: 1258 year: 2016 end-page: 1270 ident: b4 article-title: Moving horizon optimization of dynamic trajectory planning for high-speed train operation publication-title: IEEE Trans. Intell. Transp. Syst. – volume: vol. 4403 start-page: 832 year: 2006 end-page: 846 ident: b13 article-title: Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization publication-title: Evolutionary Multi-Criterion Optimization, 4th International Conference, EMO 2007 – volume: 19 start-page: 3221 year: 2015 end-page: 3235 ident: b16 article-title: A directed search strategy for evolutionary dynamic multiobjective optimization publication-title: Soft Comput. – volume: 44 start-page: 40 year: 2014 end-page: 53 ident: b17 article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. – volume: 47 start-page: 198 year: 2017 end-page: 211 ident: b45 article-title: Evolutionary dynamic multiobjective optimization: Benchmarks and algorithm comparisons publication-title: IEEE Trans. Cybern. – volume: 21 start-page: 5413 year: 2017 end-page: 5423 ident: b23 article-title: Model approach to grammatical evolution: deep-structured analyzing of model and representation publication-title: Soft Comput. – volume: vol. 7106 start-page: 372 year: 2011 end-page: 381 ident: b36 article-title: Simplex model based evolutionary algorithm for dynamic multi-objective optimization publication-title: AI 2011: Advances in Artificial Intelligence - 24th Australasian Joint Conference 2011 – volume: 20 start-page: 3537 year: 2016 end-page: 3548 ident: b24 article-title: Model approach to grammatical evolution: theory and case study publication-title: Soft Comput. – reference: Y. Ni, X. Du, P. Ye, R. Xiao, Y. Yuan, W. Li, Frequent pattern mining assisted energy consumption evolutionary optimization approach based on surrogate model at GCC compile time, Swarm Evol. Comput. 50. – volume: vol. 3410 start-page: 505 year: 2005 end-page: 519 ident: b44 article-title: Improving pso-based multi-objective optimization using crowding, mutation and epsilon-dominance publication-title: Evolutionary Multi-Criterion Optimization, Third International Conference, EMO 2005 – volume: 49 start-page: 220 year: 2019 ident: 10.1016/j.asoc.2020.106592_b10 article-title: An adaptive weight vector guided evolutionary algorithm for preference-based multi-objective optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.06.009 – volume: 8 start-page: 425 issue: 5 year: 2004 ident: 10.1016/j.asoc.2020.106592_b11 article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.831456 – volume: 18 start-page: 2980 issue: 11 year: 2017 ident: 10.1016/j.asoc.2020.106592_b31 article-title: Ant colony optimization for simulated dynamic multi-objective railway junction rescheduling publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2665042 – volume: 18 start-page: 193 issue: 2 year: 2014 ident: 10.1016/j.asoc.2020.106592_b1 article-title: Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2248159 – start-page: 1 year: 2019 ident: 10.1016/j.asoc.2020.106592_b39 article-title: Novel prediction strategies for dynamic multi-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 21 start-page: 5413 issue: 18 year: 2017 ident: 10.1016/j.asoc.2020.106592_b23 article-title: Model approach to grammatical evolution: deep-structured analyzing of model and representation publication-title: Soft Comput. doi: 10.1007/s00500-016-2130-1 – volume: vol. 7106 start-page: 372 year: 2011 ident: 10.1016/j.asoc.2020.106592_b36 article-title: Simplex model based evolutionary algorithm for dynamic multi-objective optimization – start-page: 785 year: 2016 ident: 10.1016/j.asoc.2020.106592_b20 article-title: Xgboost: A scalable tree boosting system – volume: 46 start-page: 2862 issue: 12 year: 2016 ident: 10.1016/j.asoc.2020.106592_b18 article-title: Evolutionary dynamic multiobjective optimization via kalman filter prediction publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2490738 – volume: 47 start-page: 198 issue: 1 year: 2017 ident: 10.1016/j.asoc.2020.106592_b45 article-title: Evolutionary dynamic multiobjective optimization: Benchmarks and algorithm comparisons publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2510698 – volume: 61 start-page: 806 year: 2017 ident: 10.1016/j.asoc.2020.106592_b38 article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.08.004 – volume: 55 start-page: 119 issue: 1 year: 1997 ident: 10.1016/j.asoc.2020.106592_b19 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. System Sci. doi: 10.1006/jcss.1997.1504 – volume: 22 start-page: 7833 issue: 23 year: 2018 ident: 10.1016/j.asoc.2020.106592_b43 article-title: External archive matching strategy for MOEA/D publication-title: Soft Comput. doi: 10.1007/s00500-018-3499-9 – volume: 13 start-page: 1189 issue: 3 year: 2017 ident: 10.1016/j.asoc.2020.106592_b8 article-title: A multi-objective approach for weapon selection and planning problems in dynamic environments publication-title: J. Ind. Manage. Optim. doi: 10.3934/jimo.2016068 – volume: vol. 7063 start-page: 435 year: 2011 ident: 10.1016/j.asoc.2020.106592_b35 article-title: A hybrid dynamic multi-objective immune optimization algorithm using prediction strategy and improved differential evolution crossover operator – volume: 436–437 start-page: 162 year: 2018 ident: 10.1016/j.asoc.2020.106592_b9 article-title: A hybrid particle swarm optimization algorithm using adaptive learning strategy publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.01.027 – volume: 24 start-page: 479 issue: 3 year: 2020 ident: 10.1016/j.asoc.2020.106592_b7 article-title: An estimation of distribution algorithm for mixed-varialbe newsvendor problems publication-title: IEEE Trans. Evol. Comput. – volume: 49 start-page: 3362 issue: 9 year: 2019 ident: 10.1016/j.asoc.2020.106592_b40 article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2842158 – start-page: 1201 year: 2006 ident: 10.1016/j.asoc.2020.106592_b15 article-title: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach – volume: 22 start-page: 501 issue: 4 year: 2018 ident: 10.1016/j.asoc.2020.106592_b41 article-title: Transfer learning-based dynamic multiobjective optimization algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2771451 – volume: 19 start-page: 3221 issue: 11 year: 2015 ident: 10.1016/j.asoc.2020.106592_b16 article-title: A directed search strategy for evolutionary dynamic multiobjective optimization publication-title: Soft Comput. doi: 10.1007/s00500-014-1477-4 – ident: 10.1016/j.asoc.2020.106592_b25 doi: 10.1016/j.swevo.2019.100574 – volume: 512 start-page: 1 year: 2020 ident: 10.1016/j.asoc.2020.106592_b47 article-title: Toward optimal participant decisions with voting-based incentive model for crowd sensing publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.09.068 – volume: vol. 4403 start-page: 832 year: 2006 ident: 10.1016/j.asoc.2020.106592_b13 article-title: Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization – volume: vol. 3005 start-page: 525 year: 2004 ident: 10.1016/j.asoc.2020.106592_b14 article-title: Constructing dynamic optimization test problems using the multi-objective optimization concept – start-page: 2917 year: 2008 ident: 10.1016/j.asoc.2020.106592_b32 article-title: Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation – volume: 512 start-page: 952 year: 2020 ident: 10.1016/j.asoc.2020.106592_b46 article-title: A hybrid convolution network for serial number recognition on banknotes publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.09.070 – volume: 530 start-page: 167 year: 2020 ident: 10.1016/j.asoc.2020.106592_b26 article-title: PAN: pipeline assisted neural networks model for data-to-text generation in social internet of things publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.03.080 – volume: 8 start-page: 959 issue: 2 year: 2008 ident: 10.1016/j.asoc.2020.106592_b5 article-title: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.07.005 – volume: 13 start-page: 103 issue: 1 year: 2009 ident: 10.1016/j.asoc.2020.106592_b12 article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.920671 – volume: 44 start-page: 40 issue: 1 year: 2014 ident: 10.1016/j.asoc.2020.106592_b17 article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2245892 – volume: 15 start-page: 926 issue: 3 year: 2018 ident: 10.1016/j.asoc.2020.106592_b27 article-title: Multiple-swarm ensembles: Improving the predictive power and robustness of predictive models and its use in computational biology publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2017.2691329 – volume: 61 start-page: 294 year: 2017 ident: 10.1016/j.asoc.2020.106592_b2 article-title: A multiobjective box-covering algorithm for fractal modularity on complex networks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.07.034 – volume: 397–398 start-page: 168 year: 2017 ident: 10.1016/j.asoc.2020.106592_b3 article-title: Multi-resource scheduling and power simulation for cloud computing publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.02.054 – start-page: 423 year: 2010 ident: 10.1016/j.asoc.2020.106592_b34 article-title: A sphere-dominance based preference immune-inspired algorithm for dynamic multi-objective optimization – volume: vol. 3410 start-page: 505 year: 2005 ident: 10.1016/j.asoc.2020.106592_b44 article-title: Improving pso-based multi-objective optimization using crowding, mutation and epsilon-dominance – volume: 10 start-page: 2955 issue: 8 year: 2019 ident: 10.1016/j.asoc.2020.106592_b22 article-title: A novel character segmentation method for serial number on banknotes with complex background publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-018-0707-5 – volume: 435 start-page: 203 year: 2018 ident: 10.1016/j.asoc.2020.106592_b42 article-title: Dynamic multi-objective estimation of distribution algorithm based on domain adaptation and nonparametric estimation publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.12.058 – volume: 21 start-page: 3193 issue: 12 year: 2017 ident: 10.1016/j.asoc.2020.106592_b21 article-title: Exploring mutual information-based sentimental analysis with kernel-based extreme learning machine for stock prediction publication-title: Soft Comput. doi: 10.1007/s00500-015-2003-z – volume: 58 start-page: 631 year: 2017 ident: 10.1016/j.asoc.2020.106592_b37 article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.05.008 – volume: 17 start-page: 1258 issue: 5 year: 2016 ident: 10.1016/j.asoc.2020.106592_b4 article-title: Moving horizon optimization of dynamic trajectory planning for high-speed train operation publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2499254 – start-page: 673 year: 2018 ident: 10.1016/j.asoc.2020.106592_b29 article-title: Less detectable environmental changes in dynamic multiobjective optimisation – volume: 20 start-page: 3537 issue: 9 year: 2016 ident: 10.1016/j.asoc.2020.106592_b24 article-title: Model approach to grammatical evolution: theory and case study publication-title: Soft Comput. doi: 10.1007/s00500-015-1710-9 – volume: 261 start-page: 1028 issue: 3 year: 2017 ident: 10.1016/j.asoc.2020.106592_b33 article-title: A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2017.03.048 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2020.106592_b30 – volume: 81 start-page: 1 year: 2019 ident: 10.1016/j.asoc.2020.106592_b28 article-title: Ensemble of multi-objective metaheuristic algorithms for multi-objective unconstrained binary quadratic programming problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105485 – volume: 21 start-page: 1301 issue: 5 year: 2017 ident: 10.1016/j.asoc.2020.106592_b6 article-title: Design and theoretical analysis of virtual machine placement algorithm based on peak workload characteristics publication-title: Soft Comput. doi: 10.1007/s00500-015-1862-7 |
| SSID | ssj0016928 |
| Score | 2.5983295 |
| Snippet | Prediction strategies are widely-used in dynamic multi-objective evolutionary algorithms (DMOEAs). However, the characteristics of the environmental changes... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106592 |
| SubjectTerms | Dynamic multi-objective evolutionary algorithm Ensemble learning Prediction strategy |
| Title | An ensemble learning based prediction strategy for dynamic multi-objective optimization |
| URI | https://dx.doi.org/10.1016/j.asoc.2020.106592 |
| Volume | 96 |
| WOSCitedRecordID | wos000582762000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLcm2GGXfcCmMbbJB25VUBI7dnysJhAghCaNie4UObE7WkGKaIvKf8-zn512MCGYtEvauLVdPf_68_PL-yBkR_EM_s6sTiSoIwnXBfBgrizcZqJWshGp0r7YhDw5KQcD9T242059OQHZtuVioa7-61JDGyy2C519xnJ3g0IDvIdFhyssO1yftPD9tgdHU3vpQqIuouHDbVY-IYAZYW3wKWalRXdNg2Xp0bswmdRjZMHeBPjkMgRqrmqxUXWdAod7p_T5LO6A3jaP_AFS6dqOvdPAr9FivuIDNNLeTrsPu-X5vKMftMgeTNrftzoMEKwScATN_rBKPAyXQXYVZcJVsDlabCtlniiBdVsiJWOR2wfsjoaG8a4G4O66WaHJPRZe7mWdh-EPN5ebKneMxlyW2_VcFgqIb71_uDc46h41CeUL8Ha_LURWoRPg_Zn-rr2saCSnb8nrcJSgfYTAO_LCthvkTSzTQQNrb5KzfksjImhEBPWIoEtE0IgICoigARH0HiLoKiLek5_7e6ffDpJQTyNpWJrOEqm5LGuh9FCqoTGpgledD7lw4dE2L-BjVedaNEwYVjCZmTrzCXtMwzk3kn0ga-2ktR8JZaDpMc3KxqUbtGmqYZxC1sJkzJaCF1ski3KqmpBs3tU8uaiiV-G4crKtnGwrlO0W6XV9rjDVyqPfLqL4q6AsohJYAVoe6ffpH_ttk1dLnH8ma7Pruf1CXjY3s9H0-msA1R097Y61 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble+learning+based+prediction+strategy+for+dynamic+multi-objective+optimization&rft.jtitle=Applied+soft+computing&rft.au=Wang%2C+Feng&rft.au=Li%2C+Yixuan&rft.au=Liao%2C+Fanshu&rft.au=Yan%2C+Hongyang&rft.date=2020-11-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=96&rft_id=info:doi/10.1016%2Fj.asoc.2020.106592&rft.externalDocID=S1568494620305305 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |