Analysis of moisture migration, temperature, and pore structure characteristics of the muddy clay column subject to artificial ground freezing based on LF NMR
•The temperature characteristics along the muddy clay column are analyzed with moisture migration.•Moisture migration along large column during F-T process is discussed by NMR scanning results.•Pore size distribution along muddy clay column during F-T process is determined.•The coupling mechanism be...
Uloženo v:
| Vydáno v: | Tunnelling and underground space technology Ročník 133; s. 104948 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.03.2023
|
| Témata: | |
| ISSN: | 0886-7798, 1878-4364 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •The temperature characteristics along the muddy clay column are analyzed with moisture migration.•Moisture migration along large column during F-T process is discussed by NMR scanning results.•Pore size distribution along muddy clay column during F-T process is determined.•The coupling mechanism between moisture migration, temperature, and pore structure of clay is inferred.
Nowadays, artificial ground freezing (AGF) is widely used in the construction of underground spaces in soft soil areas. Most of the existing studies are focused on micro and macro analyses of small volume samples under AGF, while the research on large soil column is insufficient. Therefore, it’s crucial to explore the characteristics of the large soil column by AGF. In this paper, the low field nuclear magnetic resonance (LF NMR), and the unidirectional freezing test of large muddy clay columns were carried out. The results indicate that the most difference is that along the soil column, each soil layer has a connection with each other, owing to the pore structure connectivity and moisture migration within it. Moreover, slow-growing platforms or even temperature crosses appeared during thawing, due to the downward movement of water under consolidation and gravity which may interfere with heat transfer (upward movement). Along the large muddy clay column, moisture migration in the soil column is coupled with temperature as well as pore structure. Specifically, temperature difference and pore structure provide the power source and transport channel for moisture migration, respectively, while the moisture migration changes the temperature of each layer of the soil column and the composition of the pore structure. The pore structure indirectly influences the temperature of soil column by affecting the amount of moisture migration, while temperature significantly changes the number and size of pores inside the soil column. Furthermore, by LF NMR experiments, it was found that the pore size distribution was relatively dispersed and the characteristics of moisture migration at different heights of the soil column could be divided into three stages. This study can be used as theoretical guidance for understanding the change laws among moisture migration, temperature, and pore structure of the muddy clay as well as for helping the construction of AGF in the underground space. |
|---|---|
| AbstractList | •The temperature characteristics along the muddy clay column are analyzed with moisture migration.•Moisture migration along large column during F-T process is discussed by NMR scanning results.•Pore size distribution along muddy clay column during F-T process is determined.•The coupling mechanism between moisture migration, temperature, and pore structure of clay is inferred.
Nowadays, artificial ground freezing (AGF) is widely used in the construction of underground spaces in soft soil areas. Most of the existing studies are focused on micro and macro analyses of small volume samples under AGF, while the research on large soil column is insufficient. Therefore, it’s crucial to explore the characteristics of the large soil column by AGF. In this paper, the low field nuclear magnetic resonance (LF NMR), and the unidirectional freezing test of large muddy clay columns were carried out. The results indicate that the most difference is that along the soil column, each soil layer has a connection with each other, owing to the pore structure connectivity and moisture migration within it. Moreover, slow-growing platforms or even temperature crosses appeared during thawing, due to the downward movement of water under consolidation and gravity which may interfere with heat transfer (upward movement). Along the large muddy clay column, moisture migration in the soil column is coupled with temperature as well as pore structure. Specifically, temperature difference and pore structure provide the power source and transport channel for moisture migration, respectively, while the moisture migration changes the temperature of each layer of the soil column and the composition of the pore structure. The pore structure indirectly influences the temperature of soil column by affecting the amount of moisture migration, while temperature significantly changes the number and size of pores inside the soil column. Furthermore, by LF NMR experiments, it was found that the pore size distribution was relatively dispersed and the characteristics of moisture migration at different heights of the soil column could be divided into three stages. This study can be used as theoretical guidance for understanding the change laws among moisture migration, temperature, and pore structure of the muddy clay as well as for helping the construction of AGF in the underground space. |
| ArticleNumber | 104948 |
| Author | Guo, Zhongqiu Zhou, Jie Zhou, Huade Wang, Chuanhe Pei, Wansheng |
| Author_xml | – sequence: 1 givenname: Jie surname: Zhou fullname: Zhou, Jie email: zoujer@hotmail.com organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 1239, Siping Road, Shanghai 200092, China – sequence: 2 givenname: Huade surname: Zhou fullname: Zhou, Huade organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 1239, Siping Road, Shanghai 200092, China – sequence: 3 givenname: Chuanhe surname: Wang fullname: Wang, Chuanhe organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 1239, Siping Road, Shanghai 200092, China – sequence: 4 givenname: Zhongqiu surname: Guo fullname: Guo, Zhongqiu organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 1239, Siping Road, Shanghai 200092, China – sequence: 5 givenname: Wansheng surname: Pei fullname: Pei, Wansheng organization: State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou, 730000, China |
| BookMark | eNp9kM9KAzEQh4NUsK2-gKc8QLdm_--Cl1KsClVB9ByyyaTNspuUJCvUh_FZTVtPHnqZMJP5fjDfBI200YDQbUzmMYmLu3buB-fnCUmSMMjqrLpA47gqqyhLi2yExqSqiqgs6-oKTZxrCSF5ktRj9LPQrNs75bCRuDfK-cEC7tXGMq-MnmEP_Q5CE8YzzLTAOxMWnLcDP67yLbOMe7ABVfwY47chYRBij3nHQjHd0GvshqYF7rE3mFmvpOKKdXhjzRBCpQX4VnqDG-ZAYKPxeoVfX96v0aVknYObv3eKPlcPH8unaP32-LxcrCOeEuKjss4byUkKDSt5kdZ13BSyyLO0LAWBJM5F-MwaQRhheQmJKES4PjCZkFUciClKTrncGucsSLqzqmd2T2NCD4ZpSw-G6cEwPRkOUPUP4softXnLVHcevT-hEI76UmCp4wo0B6FskESFUefwXxeXnbg |
| CitedBy_id | crossref_primary_10_1016_j_tust_2024_106358 crossref_primary_10_3390_ma17184614 crossref_primary_10_1016_j_ijthermalsci_2025_110165 crossref_primary_10_3390_app14135794 crossref_primary_10_1016_j_ijthermalsci_2025_110175 crossref_primary_10_1016_j_jhydrol_2024_130826 crossref_primary_10_1016_j_measurement_2025_117229 crossref_primary_10_1016_j_scitotenv_2024_174785 crossref_primary_10_3390_app15179547 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125450 crossref_primary_10_1016_j_coldregions_2023_103985 crossref_primary_10_3390_app15095178 crossref_primary_10_1007_s10765_025_03647_w crossref_primary_10_1016_j_coldregions_2024_104251 crossref_primary_10_1016_j_est_2025_115539 crossref_primary_10_1016_j_coldregions_2025_104421 crossref_primary_10_1016_j_microc_2024_111772 crossref_primary_10_1016_j_coldregions_2024_104276 crossref_primary_10_1016_j_tust_2024_106083 crossref_primary_10_3390_app151810149 crossref_primary_10_1016_j_trgeo_2025_101655 crossref_primary_10_1016_j_conbuildmat_2024_139441 crossref_primary_10_1016_j_rineng_2025_106292 crossref_primary_10_1016_j_conbuildmat_2025_143402 |
| Cites_doi | 10.1016/j.ijheatmasstransfer.2014.07.035 10.1016/j.coldregions.2022.103495 10.1016/j.coldregions.2005.03.001 10.1007/s10064-022-02800-1 10.1016/j.enggeo.2022.106699 10.1086/623720 10.1007/s11440-022-01487-8 10.1029/95WR02769 10.1007/s12665-011-1386-0 10.1016/j.coldregions.2020.103038 10.1016/j.compgeo.2019.103155 10.1016/j.fuel.2009.11.005 10.1016/0021-9797(88)90297-4 10.1016/j.coldregions.2022.103525 10.1016/j.sandf.2020.05.006 10.1007/s10064-022-02608-z 10.1016/S0165-232X(03)00006-5 10.1016/j.coldregions.2018.06.001 10.1016/j.enggeo.2015.03.002 10.1007/s11204-015-9312-1 10.1016/j.tust.2020.103647 10.1016/j.coldregions.2018.11.014 10.1061/(ASCE)CR.1943-5495.0000015 10.1016/j.coldregions.2022.103518 10.1007/s12517-022-09486-5 10.1016/j.coldregions.2021.103437 10.1016/j.petrol.2015.11.007 10.1029/2008WR007459 10.1002/saj2.20087 10.1029/2009WR008686 10.1016/j.enggeo.2009.08.009 10.1016/j.jhydrol.2021.126719 10.1002/nag.497 10.1016/j.applthermaleng.2018.02.090 10.1016/j.enggeo.2020.105921 10.1016/j.coldregions.2022.103627 10.1016/j.tust.2021.104352 10.1016/j.cam.2019.112605 10.1016/j.jnggs.2020.09.003 10.1061/(ASCE)CR.1943-5495.0000137 10.1016/j.coldregions.2009.05.011 10.1016/j.marpetgeo.2015.02.009 10.1007/s11368-018-2054-8 10.1016/j.enggeo.2020.105739 10.1016/j.compgeo.2014.08.004 10.1007/s10064-011-0380-9 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.tust.2022.104948 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1878-4364 |
| ExternalDocumentID | 10_1016_j_tust_2022_104948 S0886779822005892 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSE SST SSZ T5K WUQ ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-795bfc03eba7c63991b6f654377d0e215dc034bd0a0a57e2d6d2295bf4df81c63 |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000989316000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0886-7798 |
| IngestDate | Tue Nov 18 21:54:00 EST 2025 Sat Nov 29 07:15:15 EST 2025 Fri Feb 23 02:39:00 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Artificial ground freezing Low field nuclear magnetic resonance Pore size distribution Pore structure Large muddy clay column Moisture migration |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-795bfc03eba7c63991b6f654377d0e215dc034bd0a0a57e2d6d2295bf4df81c63 |
| ParticipantIDs | crossref_primary_10_1016_j_tust_2022_104948 crossref_citationtrail_10_1016_j_tust_2022_104948 elsevier_sciencedirect_doi_10_1016_j_tust_2022_104948 |
| PublicationCentury | 2000 |
| PublicationDate | March 2023 2023-03-00 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Tunnelling and underground space technology |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Michalowski, Zhu (b0100) 2006; 30 Chen, Cheng, Cao, Rong, Yao, Cai (b0020) 2022 Liu, Yang, Yang (b0095) 2022; 197 Stingaciu, Pohlmeier, Blümler, Weihermüller, van Dusschoten, Stapf, Vereecken (b0135) 2009; 45 Spaans, Baker (b0130) 1995; 31 Wang, Hua, Xu, Zhang, Wang, Ma (b0195) 2022; 202 Taber (b0145) 1930; 38 Chen, Chen, Lou (b0015) 2022; 15 Fan, Yang, Yang (b0040) 2021; 280 Zhou, Zhao, Tang (b0275) 2021; 107 Zhi, Wei, Feng (b0260) 2012; 66 Tan, Mao, Song, Yang, Xu (b0150) 2015; 136 Liu, Yang, Li (b0090) 2020; 84 M, Vasilyeva, S, Stepanov, D, Spiridonov, V, Vasil’ev, Multiscale Finite Element Method for heat transfer problem during artificial ground freezing. J Comput Appl Math, 371 2020 112605. Yoshikawa, Overduin (b0240) 2005; 42 Kong, Yu, Liang, Qi (b0065) 2022; 194 Xu, Shi, Zhai, Peng, Zhang (b0225) 2020; 5 Feng, Xu, Chai, Li (b0045) 2020; 60 K. Z, Yuan, W. K, Ni, X. f, Lü, M, Zhu, Experimental study on the performance of the modified loess by polypropylene fiber mixed with bentonite and cement. B Eng Geol Environ. 81 2022 302. Huang, Guo, Liu, Ke, Liu, Chen (b0060) 2018; 135 Coates, Xiao, Prammer (b0035) 1999 Lai, Pei, Zhang, Zhou (b0075) 2014; 78 Zhou, Tang (b0265) 2015; 190 Y, Zhang, W, Zhao, W, Ma, H, Wang, A, Wen, P, Li, Effect of different freezing modes on the water-heat-vapor behavior in unsaturated coarse-grained filling exposed to freezing and thawing. Cold Reg. Sci. Technol. 174 2020 103038. Weng, Wu, Liu, Chu, Zhang (b0210) 2021; 142 Han, Wang, Liu, Xia, Wang, Shen, Chen (b0055) 2022; 81 Weng, Wu, Chu (b0215) 2022 Shen, Wang, Chen, Han, Zhang, Liu (b0125) 2022; 304 Stingaciu, Weihermueller, Haber-Pohlmeier, Stapf, Vereecken, Pohlmeier (b0140) 2010; 46 Tice, Anderson, Sterrett (b0175) 1981; 18 Qi, Wang, Peng, Qu, Zhao, Liang (b0115) 2022; 196 Li, Wang, Shao (b0085) 2020; 275 Watanabe, Wake (b0205) 2009; 59 Chen, Zhou, Wang, Zhao, Dou (b0030) 2021; 602 Vitel, Rouabhi, Tijani, Guérin (b0185) 2015; 63 Zhou, Zhao, Tang (b0280) 2022; 122 Yao, Liu, Che, Tang, Tang, Huang (b0235) 2010; 89 Tian, Wei, Tan (b0170) 2019; 158 Cai, Li, Liang, Yao, Cheng (b0010) 2019; 115 Rosenbrand, Fabricius, Fisher, Grattoni (b0120) 2015; 64 Bai, Lai, Pei, Zhang (b0005) 2022; 197 Wang, Su (b0200) 2010; 24 Özgan, Serin, Erturk, Vural (b0110) 2015; 52 Tang, Zhou, Hong, Yang, Wang (b0155) 2012; 71 Tang, Zhou, Zhang (b0165) 2015; 74 Gallegos, Smith (b0050) 1988; 122 Xu, Zhang, Wang (b0230) 2022 Zhang, Zhang, Li, Lu, Pei (b0255) 2017; 31 Tang, Xu, Zhou (b0160) 2019; 19 Xu, Shen, Du (b0220) 2009; 109 Chen, Sun, Gao, Li (b0025) 2017; 38 Miller (b0105) 1972; 393 Zhou, Tang (b0270) 2018; 153 Kozlowski (b0070) 2003; 36 Zhou (10.1016/j.tust.2022.104948_b0280) 2022; 122 Tian (10.1016/j.tust.2022.104948_b0170) 2019; 158 Weng (10.1016/j.tust.2022.104948_b0215) 2022 Zhi (10.1016/j.tust.2022.104948_b0260) 2012; 66 10.1016/j.tust.2022.104948_b0180 Zhou (10.1016/j.tust.2022.104948_b0270) 2018; 153 Yao (10.1016/j.tust.2022.104948_b0235) 2010; 89 Fan (10.1016/j.tust.2022.104948_b0040) 2021; 280 Chen (10.1016/j.tust.2022.104948_b0030) 2021; 602 Tang (10.1016/j.tust.2022.104948_b0155) 2012; 71 Tang (10.1016/j.tust.2022.104948_b0165) 2015; 74 Rosenbrand (10.1016/j.tust.2022.104948_b0120) 2015; 64 Xu (10.1016/j.tust.2022.104948_b0220) 2009; 109 Han (10.1016/j.tust.2022.104948_b0055) 2022; 81 Li (10.1016/j.tust.2022.104948_b0085) 2020; 275 Zhou (10.1016/j.tust.2022.104948_b0265) 2015; 190 Tang (10.1016/j.tust.2022.104948_b0160) 2019; 19 Liu (10.1016/j.tust.2022.104948_b0090) 2020; 84 Huang (10.1016/j.tust.2022.104948_b0060) 2018; 135 Cai (10.1016/j.tust.2022.104948_b0010) 2019; 115 Shen (10.1016/j.tust.2022.104948_b0125) 2022; 304 Xu (10.1016/j.tust.2022.104948_b0225) 2020; 5 Chen (10.1016/j.tust.2022.104948_b0025) 2017; 38 Wang (10.1016/j.tust.2022.104948_b0200) 2010; 24 Kozlowski (10.1016/j.tust.2022.104948_b0070) 2003; 36 Chen (10.1016/j.tust.2022.104948_b0020) 2022 Coates (10.1016/j.tust.2022.104948_b0035) 1999 Bai (10.1016/j.tust.2022.104948_b0005) 2022; 197 Taber (10.1016/j.tust.2022.104948_b0145) 1930; 38 Gallegos (10.1016/j.tust.2022.104948_b0050) 1988; 122 Özgan (10.1016/j.tust.2022.104948_b0110) 2015; 52 Watanabe (10.1016/j.tust.2022.104948_b0205) 2009; 59 Miller (10.1016/j.tust.2022.104948_b0105) 1972; 393 Feng (10.1016/j.tust.2022.104948_b0045) 2020; 60 Zhou (10.1016/j.tust.2022.104948_b0275) 2021; 107 Wang (10.1016/j.tust.2022.104948_b0195) 2022; 202 Weng (10.1016/j.tust.2022.104948_b0210) 2021; 142 10.1016/j.tust.2022.104948_b0245 Qi (10.1016/j.tust.2022.104948_b0115) 2022; 196 Kong (10.1016/j.tust.2022.104948_b0065) 2022; 194 Zhang (10.1016/j.tust.2022.104948_b0255) 2017; 31 Liu (10.1016/j.tust.2022.104948_b0095) 2022; 197 Chen (10.1016/j.tust.2022.104948_b0015) 2022; 15 Vitel (10.1016/j.tust.2022.104948_b0185) 2015; 63 Lai (10.1016/j.tust.2022.104948_b0075) 2014; 78 10.1016/j.tust.2022.104948_b0250 Spaans (10.1016/j.tust.2022.104948_b0130) 1995; 31 Stingaciu (10.1016/j.tust.2022.104948_b0135) 2009; 45 Stingaciu (10.1016/j.tust.2022.104948_b0140) 2010; 46 Michalowski (10.1016/j.tust.2022.104948_b0100) 2006; 30 Yoshikawa (10.1016/j.tust.2022.104948_b0240) 2005; 42 Xu (10.1016/j.tust.2022.104948_b0230) 2022 Tan (10.1016/j.tust.2022.104948_b0150) 2015; 136 Tice (10.1016/j.tust.2022.104948_b0175) 1981; 18 |
| References_xml | – volume: 78 start-page: 805 year: 2014 end-page: 819 ident: b0075 article-title: Study on theory model of hydrothermal-mechanical interaction process in saturated freezing silty soil publication-title: Int. J. Heat Mass Transf. – volume: 36 start-page: 81 year: 2003 end-page: 92 ident: b0070 article-title: A comprehensive method of determining the soil unfrozen water curves-2. Stages of the phase change process in frozen soil-water system publication-title: Cold Reg. Sci. Technol. – volume: 38 start-page: 2523 year: 2017 end-page: 2530 ident: b0025 article-title: Experimental study of pore size distribution of Shanghai soft clay publication-title: Rock Soil Mech. – volume: 142 year: 2021 ident: b0210 article-title: Evolutions of the unfrozen water content of saturated sandstones during freezing process and the freeze-induced damage characteristics publication-title: Int. J. Rock Mech. Min. – volume: 74 start-page: 577 year: 2015 end-page: 593 ident: b0165 article-title: Research on the thermal conductivity and moisture migration characteristics of Shanghai mucky clay publication-title: I: Experimental modeling. B Eng. Geol. Environ. – volume: 71 start-page: 309 year: 2012 end-page: 316 ident: b0155 article-title: Quantitative analysis of the microstructure of Shanghai muddy clay before and after freezing publication-title: B Eng. Geol. Environ. – volume: 158 start-page: 106 year: 2019 end-page: 116 ident: b0170 article-title: Effect of freezing-thawing cycles on the microstructure of soils: a two-dimensional NMR relaxation analysis publication-title: Cold Reg. Sci. Technol. – volume: 280 year: 2021 ident: b0040 article-title: Freeze-thaw impact on macropore structure of clay by 3D X-ray computed tomography publication-title: Eng. Geol. – volume: 197 year: 2022 ident: b0005 article-title: Study on the frost heave behavior of the freezing unsaturated silty clay publication-title: Cold Reg. Sci. Technol. – volume: 31 start-page: 04017011 year: 2017 ident: b0255 article-title: Effect of temperature gradients on the frost heave of a saturated silty clay with a water supply publication-title: J. Cold Reg. Eng. – volume: 109 start-page: 241 year: 2009 end-page: 254 ident: b0220 article-title: Geological and hydrogeological environment in Shanghai with geohazards to construction and maintenance of infrastructures publication-title: Eng. Geol. – volume: 81 start-page: 1 year: 2022 end-page: 17 ident: b0055 article-title: Pore-scale study on the characteristic hydraulic conductivity of a dispersive lean clay affected by salinity and freeze–thaw publication-title: B Eng. Geol. Environ. – volume: 64 start-page: 189 year: 2015 end-page: 202 ident: b0120 article-title: Perme-ability in Rotliegend gas sandstone to gas and brine as predicted from NMR, mercury injection and image analysis publication-title: Mar. Petroleum Geol. – reference: M, Vasilyeva, S, Stepanov, D, Spiridonov, V, Vasil’ev, Multiscale Finite Element Method for heat transfer problem during artificial ground freezing. J Comput Appl Math, 371 2020 112605. – volume: 84 start-page: 1577 year: 2020 end-page: 1591 ident: b0090 article-title: Characterizing pore-size distribution of a chloride silt soil during freeze-thaw process using Nuclear magnetic Resonance Relaxometry publication-title: Soil Sci. Soc. Am. J. – volume: 60 start-page: 1011 year: 2020 end-page: 1019 ident: b0045 article-title: Using pore size distribution and porosity to estimate particle size distribution by nuclear magnetic resonance publication-title: Soils Found. – volume: 89 start-page: 1371 year: 2010 end-page: 1380 ident: b0235 article-title: Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR) publication-title: Fuel – volume: 190 start-page: 98 year: 2015 end-page: 108 ident: b0265 article-title: Centrifuge experimental study of thaw settlement characteristics of mucky clay after artificial ground freezing publication-title: Eng. Geol. – start-page: 1 year: 2022 end-page: 11 ident: b0020 article-title: Study on the comprehensive mechanism of freeze-thaw hysteresis and water migration of soil/rock mass publication-title: Chinese J. Rock Mech. Eng. On line – volume: 31 start-page: 2917 year: 1995 end-page: 2926 ident: b0130 article-title: Examining the use of time domain reflectometry for measuring liquid water content in frozen soil publication-title: Water Resour. Res. – volume: 63 start-page: 99 year: 2015 end-page: 111 ident: b0185 article-title: Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities publication-title: Comput. Geotech. – volume: 196 year: 2022 ident: b0115 article-title: Model test on the development of thermal regime and frost heave of a gravelly soil under seepage during artificial freezing publication-title: Cold Reg. Sci. Technol. – year: 2022 ident: b0215 article-title: Evolution of the unfrozen water content for partially-saturated sandstones and the critical degree of saturation publication-title: Rock Mech. Rock Eng. – volume: 46 start-page: W11510 year: 2010 ident: b0140 article-title: Determination of pore size distribution and hydraulic properties using nuclear magnetic resonance relaxometry: a comparative study of laboratory methods publication-title: Water Resour. Res. – volume: 275 year: 2020 ident: b0085 article-title: Experimental study on changes of pore structure and mechanical properties of sandstone after high-temperature treatment using nuclear magnetic resonance publication-title: Eng. Geol. – volume: 59 start-page: 34 year: 2009 end-page: 41 ident: b0205 article-title: Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR publication-title: Cold Reg. Sci. Technol. – volume: 153 start-page: 181 year: 2018 end-page: 196 ident: b0270 article-title: Experimental inference on dual-porosity aggravation of soft clay after freeze-thaw by fractal and probability analysis publication-title: Cold Reg. Sci. Technol. – volume: 18 start-page: 135 year: 1981 end-page: 146 ident: b0175 article-title: Unfrozen water contents of submarine permafrost determined by nuclear magnetic resonance publication-title: Dev. Geotech. Eng. – volume: 202 year: 2022 ident: b0195 article-title: Moisture migration in the Qinghai-Tibet silty clay within an added quartz sand layer under one-dimensional freezing publication-title: Cold Reg. Sci. Technol. – volume: 15 start-page: 207 year: 2022 ident: b0015 article-title: Effect of freezing temperature and initial water content on hydrothermal migration of silty soil under freezing publication-title: Arab. J. Geosci. – volume: 122 year: 2022 ident: b0280 article-title: Practical prediction method on thaw deformation of soft clay subject to artificial ground freezing based on elaborate centrifuge modeling experiments publication-title: Tunn. Undergr. Sp. Tech. – volume: 194 year: 2022 ident: b0065 article-title: Influence of bimodal structure on the soil freezing characteristic curve in expansive soils publication-title: Cold Reg. Sci. Technol. – volume: 602 year: 2021 ident: b0030 article-title: Quantification and division of unfrozen water content during the freezing process and the influence of soil properties by low-field nuclear magnetic resonance publication-title: J. Hydrol. – volume: 30 start-page: 703 year: 2006 end-page: 722 ident: b0100 article-title: Frost heave modelling using porosity rate function publication-title: Int. J. Numer. Anal. Met. – volume: 393 start-page: 1 year: 1972 end-page: 11 ident: b0105 article-title: Freezing and heaving of saturated and unsaturated soil publication-title: Highw. Res. Rec. – year: 1999 ident: b0035 article-title: NMR Logging principles and applications – volume: 38 start-page: 303 year: 1930 end-page: 317 ident: b0145 article-title: The mechanics of frost heaving publication-title: J. Geol. – reference: K. Z, Yuan, W. K, Ni, X. f, Lü, M, Zhu, Experimental study on the performance of the modified loess by polypropylene fiber mixed with bentonite and cement. B Eng Geol Environ. 81 2022 302. – volume: 24 start-page: 77 year: 2010 end-page: 86 ident: b0200 article-title: Experimental study on moisture migration in unsaturated loess under effect of temperature publication-title: J. Cold Reg. Eng. – volume: 304 year: 2022 ident: b0125 article-title: Evolution process of the microstructure of saline soil with different compaction degrees during freeze-thaw cycles publication-title: Eng. Geol. – volume: 136 start-page: 100e111 year: 2015 ident: b0150 article-title: NMR petrophysical interpretation method of gas shale based on core NMR experiment publication-title: J. Pet. Sci. Eng. – volume: 107 year: 2021 ident: b0275 article-title: Practical prediction method on frost heave of soft clay in artificial ground freezing with field experiment publication-title: Tunn. Undergr. Sp. Tech. – volume: 19 start-page: 652 year: 2019 end-page: 667 ident: b0160 article-title: Applicability of cavity-throat connecting model for estimating the hydraulic conductivity of fine-grained soils: a geometrical and mathematical approach publication-title: J. Soil. Sediment. – volume: 45 start-page: W08412 year: 2009 ident: b0135 article-title: Characterization of unsaturated porous media by high-field and low-field NMR relaxometry publication-title: Water Resour. Res. – volume: 197 year: 2022 ident: b0095 article-title: Experimental study on deformation characteristics of chloride silty clay during freeze-thaw in an open system publication-title: Cold Reg. Sci. Technol. – volume: 42 start-page: 250 year: 2005 end-page: 256 ident: b0240 article-title: Comparing unfrozen water content measurements of frozen soil using recently developed commercial sensors publication-title: Cold Reg. Sci. Technol. – reference: Y, Zhang, W, Zhao, W, Ma, H, Wang, A, Wen, P, Li, Effect of different freezing modes on the water-heat-vapor behavior in unsaturated coarse-grained filling exposed to freezing and thawing. Cold Reg. Sci. Technol. 174 2020 103038. – volume: 5 start-page: 255 year: 2020 end-page: 271 ident: b0225 article-title: Study on the characterization of pore structure and main controlling factors of pore development in gas shale publication-title: J. Nat. Gas Geosci. – volume: 66 start-page: 1467 year: 2012 end-page: 1476 ident: b0260 article-title: Experimental study on unfrozen water content and soil matric potential of Qinghai-Tibetan silty clay publication-title: Environ. Earth Sci. – volume: 122 start-page: 143 year: 1988 end-page: 153 ident: b0050 article-title: A NMR technique for the analysis of pore structure: determination of continuous pore size distributions publication-title: J. Colloid Interf. Sci. – volume: 135 start-page: 435 year: 2018 end-page: 445 ident: b0060 article-title: Study on the influence of water flow on temperature around freeze pipes and its distribution optimization during artificial ground freezing publication-title: Appl. Therm. Eng. – year: 2022 ident: b0230 article-title: Measuring and modeling the dielectric constant of soil during freezing and thawing processes: an application on silty clay publication-title: Acta Geotech. – volume: 115 year: 2019 ident: b0010 article-title: Model test and numerical simulation of frost heave during twin-tunnel construction using artificial ground-freezing technique publication-title: Comput. Geotech. – volume: 52 start-page: 95 year: 2015 end-page: 99 ident: b0110 article-title: Effects of freezing and thawing cycles on the engineering properties of soils publication-title: Soil Mech. Found. Eng. – volume: 78 start-page: 805 year: 2014 ident: 10.1016/j.tust.2022.104948_b0075 article-title: Study on theory model of hydrothermal-mechanical interaction process in saturated freezing silty soil publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.07.035 – volume: 196 year: 2022 ident: 10.1016/j.tust.2022.104948_b0115 article-title: Model test on the development of thermal regime and frost heave of a gravelly soil under seepage during artificial freezing publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2022.103495 – volume: 42 start-page: 250 issue: 3 year: 2005 ident: 10.1016/j.tust.2022.104948_b0240 article-title: Comparing unfrozen water content measurements of frozen soil using recently developed commercial sensors publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2005.03.001 – ident: 10.1016/j.tust.2022.104948_b0245 doi: 10.1007/s10064-022-02800-1 – volume: 304 year: 2022 ident: 10.1016/j.tust.2022.104948_b0125 article-title: Evolution process of the microstructure of saline soil with different compaction degrees during freeze-thaw cycles publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2022.106699 – volume: 38 start-page: 303 year: 1930 ident: 10.1016/j.tust.2022.104948_b0145 article-title: The mechanics of frost heaving publication-title: J. Geol. doi: 10.1086/623720 – year: 2022 ident: 10.1016/j.tust.2022.104948_b0230 article-title: Measuring and modeling the dielectric constant of soil during freezing and thawing processes: an application on silty clay publication-title: Acta Geotech. doi: 10.1007/s11440-022-01487-8 – volume: 31 start-page: 2917 issue: 12 year: 1995 ident: 10.1016/j.tust.2022.104948_b0130 article-title: Examining the use of time domain reflectometry for measuring liquid water content in frozen soil publication-title: Water Resour. Res. doi: 10.1029/95WR02769 – volume: 66 start-page: 1467 issue: 5 year: 2012 ident: 10.1016/j.tust.2022.104948_b0260 article-title: Experimental study on unfrozen water content and soil matric potential of Qinghai-Tibetan silty clay publication-title: Environ. Earth Sci. doi: 10.1007/s12665-011-1386-0 – ident: 10.1016/j.tust.2022.104948_b0250 doi: 10.1016/j.coldregions.2020.103038 – volume: 115 year: 2019 ident: 10.1016/j.tust.2022.104948_b0010 article-title: Model test and numerical simulation of frost heave during twin-tunnel construction using artificial ground-freezing technique publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2019.103155 – volume: 89 start-page: 1371 issue: 7 year: 2010 ident: 10.1016/j.tust.2022.104948_b0235 article-title: Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR) publication-title: Fuel doi: 10.1016/j.fuel.2009.11.005 – volume: 122 start-page: 143 issue: 1 year: 1988 ident: 10.1016/j.tust.2022.104948_b0050 article-title: A NMR technique for the analysis of pore structure: determination of continuous pore size distributions publication-title: J. Colloid Interf. Sci. doi: 10.1016/0021-9797(88)90297-4 – volume: 197 year: 2022 ident: 10.1016/j.tust.2022.104948_b0005 article-title: Study on the frost heave behavior of the freezing unsaturated silty clay publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2022.103525 – volume: 60 start-page: 1011 year: 2020 ident: 10.1016/j.tust.2022.104948_b0045 article-title: Using pore size distribution and porosity to estimate particle size distribution by nuclear magnetic resonance publication-title: Soils Found. doi: 10.1016/j.sandf.2020.05.006 – volume: 81 start-page: 1 issue: 3 year: 2022 ident: 10.1016/j.tust.2022.104948_b0055 article-title: Pore-scale study on the characteristic hydraulic conductivity of a dispersive lean clay affected by salinity and freeze–thaw publication-title: B Eng. Geol. Environ. doi: 10.1007/s10064-022-02608-z – volume: 36 start-page: 81 year: 2003 ident: 10.1016/j.tust.2022.104948_b0070 article-title: A comprehensive method of determining the soil unfrozen water curves-2. Stages of the phase change process in frozen soil-water system publication-title: Cold Reg. Sci. Technol. doi: 10.1016/S0165-232X(03)00006-5 – volume: 393 start-page: 1 year: 1972 ident: 10.1016/j.tust.2022.104948_b0105 article-title: Freezing and heaving of saturated and unsaturated soil publication-title: Highw. Res. Rec. – volume: 153 start-page: 181 year: 2018 ident: 10.1016/j.tust.2022.104948_b0270 article-title: Experimental inference on dual-porosity aggravation of soft clay after freeze-thaw by fractal and probability analysis publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2018.06.001 – volume: 190 start-page: 98 year: 2015 ident: 10.1016/j.tust.2022.104948_b0265 article-title: Centrifuge experimental study of thaw settlement characteristics of mucky clay after artificial ground freezing publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2015.03.002 – volume: 142 year: 2021 ident: 10.1016/j.tust.2022.104948_b0210 article-title: Evolutions of the unfrozen water content of saturated sandstones during freezing process and the freeze-induced damage characteristics publication-title: Int. J. Rock Mech. Min. – volume: 52 start-page: 95 issue: 2 year: 2015 ident: 10.1016/j.tust.2022.104948_b0110 article-title: Effects of freezing and thawing cycles on the engineering properties of soils publication-title: Soil Mech. Found. Eng. doi: 10.1007/s11204-015-9312-1 – volume: 107 year: 2021 ident: 10.1016/j.tust.2022.104948_b0275 article-title: Practical prediction method on frost heave of soft clay in artificial ground freezing with field experiment publication-title: Tunn. Undergr. Sp. Tech. doi: 10.1016/j.tust.2020.103647 – volume: 158 start-page: 106 year: 2019 ident: 10.1016/j.tust.2022.104948_b0170 article-title: Effect of freezing-thawing cycles on the microstructure of soils: a two-dimensional NMR relaxation analysis publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2018.11.014 – volume: 24 start-page: 77 issue: 3 year: 2010 ident: 10.1016/j.tust.2022.104948_b0200 article-title: Experimental study on moisture migration in unsaturated loess under effect of temperature publication-title: J. Cold Reg. Eng. doi: 10.1061/(ASCE)CR.1943-5495.0000015 – volume: 197 year: 2022 ident: 10.1016/j.tust.2022.104948_b0095 article-title: Experimental study on deformation characteristics of chloride silty clay during freeze-thaw in an open system publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2022.103518 – volume: 15 start-page: 207 year: 2022 ident: 10.1016/j.tust.2022.104948_b0015 article-title: Effect of freezing temperature and initial water content on hydrothermal migration of silty soil under freezing publication-title: Arab. J. Geosci. doi: 10.1007/s12517-022-09486-5 – volume: 194 year: 2022 ident: 10.1016/j.tust.2022.104948_b0065 article-title: Influence of bimodal structure on the soil freezing characteristic curve in expansive soils publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2021.103437 – start-page: 1 year: 2022 ident: 10.1016/j.tust.2022.104948_b0020 article-title: Study on the comprehensive mechanism of freeze-thaw hysteresis and water migration of soil/rock mass publication-title: Chinese J. Rock Mech. Eng. On line – volume: 38 start-page: 2523 issue: 09 year: 2017 ident: 10.1016/j.tust.2022.104948_b0025 article-title: Experimental study of pore size distribution of Shanghai soft clay publication-title: Rock Soil Mech. – volume: 136 start-page: 100e111 year: 2015 ident: 10.1016/j.tust.2022.104948_b0150 article-title: NMR petrophysical interpretation method of gas shale based on core NMR experiment publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2015.11.007 – volume: 45 start-page: W08412 year: 2009 ident: 10.1016/j.tust.2022.104948_b0135 article-title: Characterization of unsaturated porous media by high-field and low-field NMR relaxometry publication-title: Water Resour. Res. doi: 10.1029/2008WR007459 – volume: 18 start-page: 135 year: 1981 ident: 10.1016/j.tust.2022.104948_b0175 article-title: Unfrozen water contents of submarine permafrost determined by nuclear magnetic resonance publication-title: Dev. Geotech. Eng. – volume: 84 start-page: 1577 issue: 5 year: 2020 ident: 10.1016/j.tust.2022.104948_b0090 article-title: Characterizing pore-size distribution of a chloride silt soil during freeze-thaw process using Nuclear magnetic Resonance Relaxometry publication-title: Soil Sci. Soc. Am. J. doi: 10.1002/saj2.20087 – volume: 46 start-page: W11510 year: 2010 ident: 10.1016/j.tust.2022.104948_b0140 article-title: Determination of pore size distribution and hydraulic properties using nuclear magnetic resonance relaxometry: a comparative study of laboratory methods publication-title: Water Resour. Res. doi: 10.1029/2009WR008686 – volume: 109 start-page: 241 year: 2009 ident: 10.1016/j.tust.2022.104948_b0220 article-title: Geological and hydrogeological environment in Shanghai with geohazards to construction and maintenance of infrastructures publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2009.08.009 – volume: 602 year: 2021 ident: 10.1016/j.tust.2022.104948_b0030 article-title: Quantification and division of unfrozen water content during the freezing process and the influence of soil properties by low-field nuclear magnetic resonance publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126719 – volume: 30 start-page: 703 issue: 8 year: 2006 ident: 10.1016/j.tust.2022.104948_b0100 article-title: Frost heave modelling using porosity rate function publication-title: Int. J. Numer. Anal. Met. doi: 10.1002/nag.497 – volume: 135 start-page: 435 year: 2018 ident: 10.1016/j.tust.2022.104948_b0060 article-title: Study on the influence of water flow on temperature around freeze pipes and its distribution optimization during artificial ground freezing publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.02.090 – year: 1999 ident: 10.1016/j.tust.2022.104948_b0035 – volume: 280 year: 2021 ident: 10.1016/j.tust.2022.104948_b0040 article-title: Freeze-thaw impact on macropore structure of clay by 3D X-ray computed tomography publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2020.105921 – volume: 202 year: 2022 ident: 10.1016/j.tust.2022.104948_b0195 article-title: Moisture migration in the Qinghai-Tibet silty clay within an added quartz sand layer under one-dimensional freezing publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2022.103627 – volume: 122 year: 2022 ident: 10.1016/j.tust.2022.104948_b0280 article-title: Practical prediction method on thaw deformation of soft clay subject to artificial ground freezing based on elaborate centrifuge modeling experiments publication-title: Tunn. Undergr. Sp. Tech. doi: 10.1016/j.tust.2021.104352 – volume: 74 start-page: 577 issue: 2 year: 2015 ident: 10.1016/j.tust.2022.104948_b0165 article-title: Research on the thermal conductivity and moisture migration characteristics of Shanghai mucky clay publication-title: I: Experimental modeling. B Eng. Geol. Environ. – ident: 10.1016/j.tust.2022.104948_b0180 doi: 10.1016/j.cam.2019.112605 – year: 2022 ident: 10.1016/j.tust.2022.104948_b0215 article-title: Evolution of the unfrozen water content for partially-saturated sandstones and the critical degree of saturation publication-title: Rock Mech. Rock Eng. – volume: 5 start-page: 255 issue: 5 year: 2020 ident: 10.1016/j.tust.2022.104948_b0225 article-title: Study on the characterization of pore structure and main controlling factors of pore development in gas shale publication-title: J. Nat. Gas Geosci. doi: 10.1016/j.jnggs.2020.09.003 – volume: 31 start-page: 04017011 issue: 4 year: 2017 ident: 10.1016/j.tust.2022.104948_b0255 article-title: Effect of temperature gradients on the frost heave of a saturated silty clay with a water supply publication-title: J. Cold Reg. Eng. doi: 10.1061/(ASCE)CR.1943-5495.0000137 – volume: 59 start-page: 34 issue: 1 year: 2009 ident: 10.1016/j.tust.2022.104948_b0205 article-title: Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2009.05.011 – volume: 64 start-page: 189 year: 2015 ident: 10.1016/j.tust.2022.104948_b0120 article-title: Perme-ability in Rotliegend gas sandstone to gas and brine as predicted from NMR, mercury injection and image analysis publication-title: Mar. Petroleum Geol. doi: 10.1016/j.marpetgeo.2015.02.009 – volume: 19 start-page: 652 issue: 2 year: 2019 ident: 10.1016/j.tust.2022.104948_b0160 article-title: Applicability of cavity-throat connecting model for estimating the hydraulic conductivity of fine-grained soils: a geometrical and mathematical approach publication-title: J. Soil. Sediment. doi: 10.1007/s11368-018-2054-8 – volume: 275 year: 2020 ident: 10.1016/j.tust.2022.104948_b0085 article-title: Experimental study on changes of pore structure and mechanical properties of sandstone after high-temperature treatment using nuclear magnetic resonance publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2020.105739 – volume: 63 start-page: 99 year: 2015 ident: 10.1016/j.tust.2022.104948_b0185 article-title: Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2014.08.004 – volume: 71 start-page: 309 issue: 2 year: 2012 ident: 10.1016/j.tust.2022.104948_b0155 article-title: Quantitative analysis of the microstructure of Shanghai muddy clay before and after freezing publication-title: B Eng. Geol. Environ. doi: 10.1007/s10064-011-0380-9 |
| SSID | ssj0005229 |
| Score | 2.4810984 |
| Snippet | •The temperature characteristics along the muddy clay column are analyzed with moisture migration.•Moisture migration along large column during F-T process is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104948 |
| SubjectTerms | Artificial ground freezing Large muddy clay column Low field nuclear magnetic resonance Moisture migration Pore size distribution Pore structure |
| Title | Analysis of moisture migration, temperature, and pore structure characteristics of the muddy clay column subject to artificial ground freezing based on LF NMR |
| URI | https://dx.doi.org/10.1016/j.tust.2022.104948 |
| Volume | 133 |
| WOSCitedRecordID | wos000989316000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-4364 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005229 issn: 0886-7798 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5FLQc4IFbRsugduKWuvC_HqmooKEQIghRxsexZmlSJXdK4KvwY_gx_jPc840UpqgCJixWN_WYsf19m3rx5C2Ovs1DmwhGeFXHBLT_3QisJlbIyR8RxGLq5G9SBwuNoMolns-TDYPCziYW5WkZFEV9fJxf_FWpsQ7ApdPYv4G47xQb8jaDjFWHH6x8B308zsioRRToiWC3ONNT0SSkdlcml3DhvohZOqWYplyw9zrfSOBtHglUlxLchX2Z4oVmtGF5WORlySIOlVzHpKChUBDtVaym_kymClkpBxxLj0XDy_mNfIZ5WtaNNEypJIW1rI45zHU46mxu2_y_zsqrJt5DbTadVJrrDJmMKP55XWTFvm99UtXUYRYqzr4uqb_Zwvc7vS9vimniczvlJT5kh7hd0XetDqaf0GPfJvqdzpbdzvs6-cWP90KaM88MNxbvgsC6dgSd-3K2WrQ_jJxqMxnLdujYj6gG7bhQkuDrsHr09mb3reRrVxfLalzOxW9rNcHuk3-tHPZ1n-oDdN5sVONIke8gGsnjE7vVSWD5mPxq6QamgoRu0dDuAHtkOACEGohq0VIMtqlE3SDWoqQZENdBUA0M12JTQUQ00V6ChGtRUg7KA8QiQak_Y59HJ9PjUMjU_LO7Z9saKkiBX3PZknkWctGcnDxXFP0eRsCXqpwJv-rmwMzsLIumKUFBBenI3VbGDEk_ZTlEW8hkD7uZ-zuNA2UGGy5TMHEVFrWOK4_cTFewxp_nSKTcJ8akuyzJtPB_PU0InJXRSjc4eG7YyFzodzK1PBw2AqVFotaKaIt9ukdv_R7nn7G73V3nBdhBK-ZLd4VebxeX6laHlL06qznM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+moisture+migration%2C+temperature%2C+and+pore+structure+characteristics+of+the+muddy+clay+column+subject+to+artificial+ground+freezing+based+on+LF+NMR&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Zhou%2C+Jie&rft.au=Zhou%2C+Huade&rft.au=Wang%2C+Chuanhe&rft.au=Guo%2C+Zhongqiu&rft.date=2023-03-01&rft.pub=Elsevier+Ltd&rft.issn=0886-7798&rft.eissn=1878-4364&rft.volume=133&rft_id=info:doi/10.1016%2Fj.tust.2022.104948&rft.externalDocID=S0886779822005892 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon |