Analysis of moisture migration, temperature, and pore structure characteristics of the muddy clay column subject to artificial ground freezing based on LF NMR

•The temperature characteristics along the muddy clay column are analyzed with moisture migration.•Moisture migration along large column during F-T process is discussed by NMR scanning results.•Pore size distribution along muddy clay column during F-T process is determined.•The coupling mechanism be...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Tunnelling and underground space technology Ročník 133; s. 104948
Hlavní autoři: Zhou, Jie, Zhou, Huade, Wang, Chuanhe, Guo, Zhongqiu, Pei, Wansheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.03.2023
Témata:
ISSN:0886-7798, 1878-4364
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The temperature characteristics along the muddy clay column are analyzed with moisture migration.•Moisture migration along large column during F-T process is discussed by NMR scanning results.•Pore size distribution along muddy clay column during F-T process is determined.•The coupling mechanism between moisture migration, temperature, and pore structure of clay is inferred. Nowadays, artificial ground freezing (AGF) is widely used in the construction of underground spaces in soft soil areas. Most of the existing studies are focused on micro and macro analyses of small volume samples under AGF, while the research on large soil column is insufficient. Therefore, it’s crucial to explore the characteristics of the large soil column by AGF. In this paper, the low field nuclear magnetic resonance (LF NMR), and the unidirectional freezing test of large muddy clay columns were carried out. The results indicate that the most difference is that along the soil column, each soil layer has a connection with each other, owing to the pore structure connectivity and moisture migration within it. Moreover, slow-growing platforms or even temperature crosses appeared during thawing, due to the downward movement of water under consolidation and gravity which may interfere with heat transfer (upward movement). Along the large muddy clay column, moisture migration in the soil column is coupled with temperature as well as pore structure. Specifically, temperature difference and pore structure provide the power source and transport channel for moisture migration, respectively, while the moisture migration changes the temperature of each layer of the soil column and the composition of the pore structure. The pore structure indirectly influences the temperature of soil column by affecting the amount of moisture migration, while temperature significantly changes the number and size of pores inside the soil column. Furthermore, by LF NMR experiments, it was found that the pore size distribution was relatively dispersed and the characteristics of moisture migration at different heights of the soil column could be divided into three stages. This study can be used as theoretical guidance for understanding the change laws among moisture migration, temperature, and pore structure of the muddy clay as well as for helping the construction of AGF in the underground space.
AbstractList •The temperature characteristics along the muddy clay column are analyzed with moisture migration.•Moisture migration along large column during F-T process is discussed by NMR scanning results.•Pore size distribution along muddy clay column during F-T process is determined.•The coupling mechanism between moisture migration, temperature, and pore structure of clay is inferred. Nowadays, artificial ground freezing (AGF) is widely used in the construction of underground spaces in soft soil areas. Most of the existing studies are focused on micro and macro analyses of small volume samples under AGF, while the research on large soil column is insufficient. Therefore, it’s crucial to explore the characteristics of the large soil column by AGF. In this paper, the low field nuclear magnetic resonance (LF NMR), and the unidirectional freezing test of large muddy clay columns were carried out. The results indicate that the most difference is that along the soil column, each soil layer has a connection with each other, owing to the pore structure connectivity and moisture migration within it. Moreover, slow-growing platforms or even temperature crosses appeared during thawing, due to the downward movement of water under consolidation and gravity which may interfere with heat transfer (upward movement). Along the large muddy clay column, moisture migration in the soil column is coupled with temperature as well as pore structure. Specifically, temperature difference and pore structure provide the power source and transport channel for moisture migration, respectively, while the moisture migration changes the temperature of each layer of the soil column and the composition of the pore structure. The pore structure indirectly influences the temperature of soil column by affecting the amount of moisture migration, while temperature significantly changes the number and size of pores inside the soil column. Furthermore, by LF NMR experiments, it was found that the pore size distribution was relatively dispersed and the characteristics of moisture migration at different heights of the soil column could be divided into three stages. This study can be used as theoretical guidance for understanding the change laws among moisture migration, temperature, and pore structure of the muddy clay as well as for helping the construction of AGF in the underground space.
ArticleNumber 104948
Author Guo, Zhongqiu
Zhou, Jie
Zhou, Huade
Wang, Chuanhe
Pei, Wansheng
Author_xml – sequence: 1
  givenname: Jie
  surname: Zhou
  fullname: Zhou, Jie
  email: zoujer@hotmail.com
  organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 1239, Siping Road, Shanghai 200092, China
– sequence: 2
  givenname: Huade
  surname: Zhou
  fullname: Zhou, Huade
  organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 1239, Siping Road, Shanghai 200092, China
– sequence: 3
  givenname: Chuanhe
  surname: Wang
  fullname: Wang, Chuanhe
  organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 1239, Siping Road, Shanghai 200092, China
– sequence: 4
  givenname: Zhongqiu
  surname: Guo
  fullname: Guo, Zhongqiu
  organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 1239, Siping Road, Shanghai 200092, China
– sequence: 5
  givenname: Wansheng
  surname: Pei
  fullname: Pei, Wansheng
  organization: State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou, 730000, China
BookMark eNp9kM9KAzEQh4NUsK2-gKc8QLdm_--Cl1KsClVB9ByyyaTNspuUJCvUh_FZTVtPHnqZMJP5fjDfBI200YDQbUzmMYmLu3buB-fnCUmSMMjqrLpA47gqqyhLi2yExqSqiqgs6-oKTZxrCSF5ktRj9LPQrNs75bCRuDfK-cEC7tXGMq-MnmEP_Q5CE8YzzLTAOxMWnLcDP67yLbOMe7ABVfwY47chYRBij3nHQjHd0GvshqYF7rE3mFmvpOKKdXhjzRBCpQX4VnqDG-ZAYKPxeoVfX96v0aVknYObv3eKPlcPH8unaP32-LxcrCOeEuKjss4byUkKDSt5kdZ13BSyyLO0LAWBJM5F-MwaQRhheQmJKES4PjCZkFUciClKTrncGucsSLqzqmd2T2NCD4ZpSw-G6cEwPRkOUPUP4softXnLVHcevT-hEI76UmCp4wo0B6FskESFUefwXxeXnbg
CitedBy_id crossref_primary_10_1016_j_tust_2024_106358
crossref_primary_10_3390_ma17184614
crossref_primary_10_1016_j_ijthermalsci_2025_110165
crossref_primary_10_3390_app14135794
crossref_primary_10_1016_j_ijthermalsci_2025_110175
crossref_primary_10_1016_j_jhydrol_2024_130826
crossref_primary_10_1016_j_measurement_2025_117229
crossref_primary_10_1016_j_scitotenv_2024_174785
crossref_primary_10_3390_app15179547
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125450
crossref_primary_10_1016_j_coldregions_2023_103985
crossref_primary_10_3390_app15095178
crossref_primary_10_1007_s10765_025_03647_w
crossref_primary_10_1016_j_coldregions_2024_104251
crossref_primary_10_1016_j_est_2025_115539
crossref_primary_10_1016_j_coldregions_2025_104421
crossref_primary_10_1016_j_microc_2024_111772
crossref_primary_10_1016_j_coldregions_2024_104276
crossref_primary_10_1016_j_tust_2024_106083
crossref_primary_10_3390_app151810149
crossref_primary_10_1016_j_trgeo_2025_101655
crossref_primary_10_1016_j_conbuildmat_2024_139441
crossref_primary_10_1016_j_rineng_2025_106292
crossref_primary_10_1016_j_conbuildmat_2025_143402
Cites_doi 10.1016/j.ijheatmasstransfer.2014.07.035
10.1016/j.coldregions.2022.103495
10.1016/j.coldregions.2005.03.001
10.1007/s10064-022-02800-1
10.1016/j.enggeo.2022.106699
10.1086/623720
10.1007/s11440-022-01487-8
10.1029/95WR02769
10.1007/s12665-011-1386-0
10.1016/j.coldregions.2020.103038
10.1016/j.compgeo.2019.103155
10.1016/j.fuel.2009.11.005
10.1016/0021-9797(88)90297-4
10.1016/j.coldregions.2022.103525
10.1016/j.sandf.2020.05.006
10.1007/s10064-022-02608-z
10.1016/S0165-232X(03)00006-5
10.1016/j.coldregions.2018.06.001
10.1016/j.enggeo.2015.03.002
10.1007/s11204-015-9312-1
10.1016/j.tust.2020.103647
10.1016/j.coldregions.2018.11.014
10.1061/(ASCE)CR.1943-5495.0000015
10.1016/j.coldregions.2022.103518
10.1007/s12517-022-09486-5
10.1016/j.coldregions.2021.103437
10.1016/j.petrol.2015.11.007
10.1029/2008WR007459
10.1002/saj2.20087
10.1029/2009WR008686
10.1016/j.enggeo.2009.08.009
10.1016/j.jhydrol.2021.126719
10.1002/nag.497
10.1016/j.applthermaleng.2018.02.090
10.1016/j.enggeo.2020.105921
10.1016/j.coldregions.2022.103627
10.1016/j.tust.2021.104352
10.1016/j.cam.2019.112605
10.1016/j.jnggs.2020.09.003
10.1061/(ASCE)CR.1943-5495.0000137
10.1016/j.coldregions.2009.05.011
10.1016/j.marpetgeo.2015.02.009
10.1007/s11368-018-2054-8
10.1016/j.enggeo.2020.105739
10.1016/j.compgeo.2014.08.004
10.1007/s10064-011-0380-9
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.tust.2022.104948
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-4364
ExternalDocumentID 10_1016_j_tust_2022_104948
S0886779822005892
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-795bfc03eba7c63991b6f654377d0e215dc034bd0a0a57e2d6d2295bf4df81c63
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000989316000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0886-7798
IngestDate Tue Nov 18 21:54:00 EST 2025
Sat Nov 29 07:15:15 EST 2025
Fri Feb 23 02:39:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Artificial ground freezing
Low field nuclear magnetic resonance
Pore size distribution
Pore structure
Large muddy clay column
Moisture migration
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-795bfc03eba7c63991b6f654377d0e215dc034bd0a0a57e2d6d2295bf4df81c63
ParticipantIDs crossref_primary_10_1016_j_tust_2022_104948
crossref_citationtrail_10_1016_j_tust_2022_104948
elsevier_sciencedirect_doi_10_1016_j_tust_2022_104948
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Tunnelling and underground space technology
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Michalowski, Zhu (b0100) 2006; 30
Chen, Cheng, Cao, Rong, Yao, Cai (b0020) 2022
Liu, Yang, Yang (b0095) 2022; 197
Stingaciu, Pohlmeier, Blümler, Weihermüller, van Dusschoten, Stapf, Vereecken (b0135) 2009; 45
Spaans, Baker (b0130) 1995; 31
Wang, Hua, Xu, Zhang, Wang, Ma (b0195) 2022; 202
Taber (b0145) 1930; 38
Chen, Chen, Lou (b0015) 2022; 15
Fan, Yang, Yang (b0040) 2021; 280
Zhou, Zhao, Tang (b0275) 2021; 107
Zhi, Wei, Feng (b0260) 2012; 66
Tan, Mao, Song, Yang, Xu (b0150) 2015; 136
Liu, Yang, Li (b0090) 2020; 84
M, Vasilyeva, S, Stepanov, D, Spiridonov, V, Vasil’ev, Multiscale Finite Element Method for heat transfer problem during artificial ground freezing. J Comput Appl Math, 371 2020 112605.
Yoshikawa, Overduin (b0240) 2005; 42
Kong, Yu, Liang, Qi (b0065) 2022; 194
Xu, Shi, Zhai, Peng, Zhang (b0225) 2020; 5
Feng, Xu, Chai, Li (b0045) 2020; 60
K. Z, Yuan, W. K, Ni, X. f, Lü, M, Zhu, Experimental study on the performance of the modified loess by polypropylene fiber mixed with bentonite and cement. B Eng Geol Environ. 81 2022 302.
Huang, Guo, Liu, Ke, Liu, Chen (b0060) 2018; 135
Coates, Xiao, Prammer (b0035) 1999
Lai, Pei, Zhang, Zhou (b0075) 2014; 78
Zhou, Tang (b0265) 2015; 190
Y, Zhang, W, Zhao, W, Ma, H, Wang, A, Wen, P, Li, Effect of different freezing modes on the water-heat-vapor behavior in unsaturated coarse-grained filling exposed to freezing and thawing. Cold Reg. Sci. Technol. 174 2020 103038.
Weng, Wu, Liu, Chu, Zhang (b0210) 2021; 142
Han, Wang, Liu, Xia, Wang, Shen, Chen (b0055) 2022; 81
Weng, Wu, Chu (b0215) 2022
Shen, Wang, Chen, Han, Zhang, Liu (b0125) 2022; 304
Stingaciu, Weihermueller, Haber-Pohlmeier, Stapf, Vereecken, Pohlmeier (b0140) 2010; 46
Tice, Anderson, Sterrett (b0175) 1981; 18
Qi, Wang, Peng, Qu, Zhao, Liang (b0115) 2022; 196
Li, Wang, Shao (b0085) 2020; 275
Watanabe, Wake (b0205) 2009; 59
Chen, Zhou, Wang, Zhao, Dou (b0030) 2021; 602
Vitel, Rouabhi, Tijani, Guérin (b0185) 2015; 63
Zhou, Zhao, Tang (b0280) 2022; 122
Yao, Liu, Che, Tang, Tang, Huang (b0235) 2010; 89
Tian, Wei, Tan (b0170) 2019; 158
Cai, Li, Liang, Yao, Cheng (b0010) 2019; 115
Rosenbrand, Fabricius, Fisher, Grattoni (b0120) 2015; 64
Bai, Lai, Pei, Zhang (b0005) 2022; 197
Wang, Su (b0200) 2010; 24
Özgan, Serin, Erturk, Vural (b0110) 2015; 52
Tang, Zhou, Hong, Yang, Wang (b0155) 2012; 71
Tang, Zhou, Zhang (b0165) 2015; 74
Gallegos, Smith (b0050) 1988; 122
Xu, Zhang, Wang (b0230) 2022
Zhang, Zhang, Li, Lu, Pei (b0255) 2017; 31
Tang, Xu, Zhou (b0160) 2019; 19
Xu, Shen, Du (b0220) 2009; 109
Chen, Sun, Gao, Li (b0025) 2017; 38
Miller (b0105) 1972; 393
Zhou, Tang (b0270) 2018; 153
Kozlowski (b0070) 2003; 36
Zhou (10.1016/j.tust.2022.104948_b0280) 2022; 122
Tian (10.1016/j.tust.2022.104948_b0170) 2019; 158
Weng (10.1016/j.tust.2022.104948_b0215) 2022
Zhi (10.1016/j.tust.2022.104948_b0260) 2012; 66
10.1016/j.tust.2022.104948_b0180
Zhou (10.1016/j.tust.2022.104948_b0270) 2018; 153
Yao (10.1016/j.tust.2022.104948_b0235) 2010; 89
Fan (10.1016/j.tust.2022.104948_b0040) 2021; 280
Chen (10.1016/j.tust.2022.104948_b0030) 2021; 602
Tang (10.1016/j.tust.2022.104948_b0155) 2012; 71
Tang (10.1016/j.tust.2022.104948_b0165) 2015; 74
Rosenbrand (10.1016/j.tust.2022.104948_b0120) 2015; 64
Xu (10.1016/j.tust.2022.104948_b0220) 2009; 109
Han (10.1016/j.tust.2022.104948_b0055) 2022; 81
Li (10.1016/j.tust.2022.104948_b0085) 2020; 275
Zhou (10.1016/j.tust.2022.104948_b0265) 2015; 190
Tang (10.1016/j.tust.2022.104948_b0160) 2019; 19
Liu (10.1016/j.tust.2022.104948_b0090) 2020; 84
Huang (10.1016/j.tust.2022.104948_b0060) 2018; 135
Cai (10.1016/j.tust.2022.104948_b0010) 2019; 115
Shen (10.1016/j.tust.2022.104948_b0125) 2022; 304
Xu (10.1016/j.tust.2022.104948_b0225) 2020; 5
Chen (10.1016/j.tust.2022.104948_b0025) 2017; 38
Wang (10.1016/j.tust.2022.104948_b0200) 2010; 24
Kozlowski (10.1016/j.tust.2022.104948_b0070) 2003; 36
Chen (10.1016/j.tust.2022.104948_b0020) 2022
Coates (10.1016/j.tust.2022.104948_b0035) 1999
Bai (10.1016/j.tust.2022.104948_b0005) 2022; 197
Taber (10.1016/j.tust.2022.104948_b0145) 1930; 38
Gallegos (10.1016/j.tust.2022.104948_b0050) 1988; 122
Özgan (10.1016/j.tust.2022.104948_b0110) 2015; 52
Watanabe (10.1016/j.tust.2022.104948_b0205) 2009; 59
Miller (10.1016/j.tust.2022.104948_b0105) 1972; 393
Feng (10.1016/j.tust.2022.104948_b0045) 2020; 60
Zhou (10.1016/j.tust.2022.104948_b0275) 2021; 107
Wang (10.1016/j.tust.2022.104948_b0195) 2022; 202
Weng (10.1016/j.tust.2022.104948_b0210) 2021; 142
10.1016/j.tust.2022.104948_b0245
Qi (10.1016/j.tust.2022.104948_b0115) 2022; 196
Kong (10.1016/j.tust.2022.104948_b0065) 2022; 194
Zhang (10.1016/j.tust.2022.104948_b0255) 2017; 31
Liu (10.1016/j.tust.2022.104948_b0095) 2022; 197
Chen (10.1016/j.tust.2022.104948_b0015) 2022; 15
Vitel (10.1016/j.tust.2022.104948_b0185) 2015; 63
Lai (10.1016/j.tust.2022.104948_b0075) 2014; 78
10.1016/j.tust.2022.104948_b0250
Spaans (10.1016/j.tust.2022.104948_b0130) 1995; 31
Stingaciu (10.1016/j.tust.2022.104948_b0135) 2009; 45
Stingaciu (10.1016/j.tust.2022.104948_b0140) 2010; 46
Michalowski (10.1016/j.tust.2022.104948_b0100) 2006; 30
Yoshikawa (10.1016/j.tust.2022.104948_b0240) 2005; 42
Xu (10.1016/j.tust.2022.104948_b0230) 2022
Tan (10.1016/j.tust.2022.104948_b0150) 2015; 136
Tice (10.1016/j.tust.2022.104948_b0175) 1981; 18
References_xml – volume: 78
  start-page: 805
  year: 2014
  end-page: 819
  ident: b0075
  article-title: Study on theory model of hydrothermal-mechanical interaction process in saturated freezing silty soil
  publication-title: Int. J. Heat Mass Transf.
– volume: 36
  start-page: 81
  year: 2003
  end-page: 92
  ident: b0070
  article-title: A comprehensive method of determining the soil unfrozen water curves-2. Stages of the phase change process in frozen soil-water system
  publication-title: Cold Reg. Sci. Technol.
– volume: 38
  start-page: 2523
  year: 2017
  end-page: 2530
  ident: b0025
  article-title: Experimental study of pore size distribution of Shanghai soft clay
  publication-title: Rock Soil Mech.
– volume: 142
  year: 2021
  ident: b0210
  article-title: Evolutions of the unfrozen water content of saturated sandstones during freezing process and the freeze-induced damage characteristics
  publication-title: Int. J. Rock Mech. Min.
– volume: 74
  start-page: 577
  year: 2015
  end-page: 593
  ident: b0165
  article-title: Research on the thermal conductivity and moisture migration characteristics of Shanghai mucky clay
  publication-title: I: Experimental modeling. B Eng. Geol. Environ.
– volume: 71
  start-page: 309
  year: 2012
  end-page: 316
  ident: b0155
  article-title: Quantitative analysis of the microstructure of Shanghai muddy clay before and after freezing
  publication-title: B Eng. Geol. Environ.
– volume: 158
  start-page: 106
  year: 2019
  end-page: 116
  ident: b0170
  article-title: Effect of freezing-thawing cycles on the microstructure of soils: a two-dimensional NMR relaxation analysis
  publication-title: Cold Reg. Sci. Technol.
– volume: 280
  year: 2021
  ident: b0040
  article-title: Freeze-thaw impact on macropore structure of clay by 3D X-ray computed tomography
  publication-title: Eng. Geol.
– volume: 197
  year: 2022
  ident: b0005
  article-title: Study on the frost heave behavior of the freezing unsaturated silty clay
  publication-title: Cold Reg. Sci. Technol.
– volume: 31
  start-page: 04017011
  year: 2017
  ident: b0255
  article-title: Effect of temperature gradients on the frost heave of a saturated silty clay with a water supply
  publication-title: J. Cold Reg. Eng.
– volume: 109
  start-page: 241
  year: 2009
  end-page: 254
  ident: b0220
  article-title: Geological and hydrogeological environment in Shanghai with geohazards to construction and maintenance of infrastructures
  publication-title: Eng. Geol.
– volume: 81
  start-page: 1
  year: 2022
  end-page: 17
  ident: b0055
  article-title: Pore-scale study on the characteristic hydraulic conductivity of a dispersive lean clay affected by salinity and freeze–thaw
  publication-title: B Eng. Geol. Environ.
– volume: 64
  start-page: 189
  year: 2015
  end-page: 202
  ident: b0120
  article-title: Perme-ability in Rotliegend gas sandstone to gas and brine as predicted from NMR, mercury injection and image analysis
  publication-title: Mar. Petroleum Geol.
– reference: M, Vasilyeva, S, Stepanov, D, Spiridonov, V, Vasil’ev, Multiscale Finite Element Method for heat transfer problem during artificial ground freezing. J Comput Appl Math, 371 2020 112605.
– volume: 84
  start-page: 1577
  year: 2020
  end-page: 1591
  ident: b0090
  article-title: Characterizing pore-size distribution of a chloride silt soil during freeze-thaw process using Nuclear magnetic Resonance Relaxometry
  publication-title: Soil Sci. Soc. Am. J.
– volume: 60
  start-page: 1011
  year: 2020
  end-page: 1019
  ident: b0045
  article-title: Using pore size distribution and porosity to estimate particle size distribution by nuclear magnetic resonance
  publication-title: Soils Found.
– volume: 89
  start-page: 1371
  year: 2010
  end-page: 1380
  ident: b0235
  article-title: Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)
  publication-title: Fuel
– volume: 190
  start-page: 98
  year: 2015
  end-page: 108
  ident: b0265
  article-title: Centrifuge experimental study of thaw settlement characteristics of mucky clay after artificial ground freezing
  publication-title: Eng. Geol.
– start-page: 1
  year: 2022
  end-page: 11
  ident: b0020
  article-title: Study on the comprehensive mechanism of freeze-thaw hysteresis and water migration of soil/rock mass
  publication-title: Chinese J. Rock Mech. Eng. On line
– volume: 31
  start-page: 2917
  year: 1995
  end-page: 2926
  ident: b0130
  article-title: Examining the use of time domain reflectometry for measuring liquid water content in frozen soil
  publication-title: Water Resour. Res.
– volume: 63
  start-page: 99
  year: 2015
  end-page: 111
  ident: b0185
  article-title: Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities
  publication-title: Comput. Geotech.
– volume: 196
  year: 2022
  ident: b0115
  article-title: Model test on the development of thermal regime and frost heave of a gravelly soil under seepage during artificial freezing
  publication-title: Cold Reg. Sci. Technol.
– year: 2022
  ident: b0215
  article-title: Evolution of the unfrozen water content for partially-saturated sandstones and the critical degree of saturation
  publication-title: Rock Mech. Rock Eng.
– volume: 46
  start-page: W11510
  year: 2010
  ident: b0140
  article-title: Determination of pore size distribution and hydraulic properties using nuclear magnetic resonance relaxometry: a comparative study of laboratory methods
  publication-title: Water Resour. Res.
– volume: 275
  year: 2020
  ident: b0085
  article-title: Experimental study on changes of pore structure and mechanical properties of sandstone after high-temperature treatment using nuclear magnetic resonance
  publication-title: Eng. Geol.
– volume: 59
  start-page: 34
  year: 2009
  end-page: 41
  ident: b0205
  article-title: Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR
  publication-title: Cold Reg. Sci. Technol.
– volume: 153
  start-page: 181
  year: 2018
  end-page: 196
  ident: b0270
  article-title: Experimental inference on dual-porosity aggravation of soft clay after freeze-thaw by fractal and probability analysis
  publication-title: Cold Reg. Sci. Technol.
– volume: 18
  start-page: 135
  year: 1981
  end-page: 146
  ident: b0175
  article-title: Unfrozen water contents of submarine permafrost determined by nuclear magnetic resonance
  publication-title: Dev. Geotech. Eng.
– volume: 202
  year: 2022
  ident: b0195
  article-title: Moisture migration in the Qinghai-Tibet silty clay within an added quartz sand layer under one-dimensional freezing
  publication-title: Cold Reg. Sci. Technol.
– volume: 15
  start-page: 207
  year: 2022
  ident: b0015
  article-title: Effect of freezing temperature and initial water content on hydrothermal migration of silty soil under freezing
  publication-title: Arab. J. Geosci.
– volume: 122
  year: 2022
  ident: b0280
  article-title: Practical prediction method on thaw deformation of soft clay subject to artificial ground freezing based on elaborate centrifuge modeling experiments
  publication-title: Tunn. Undergr. Sp. Tech.
– volume: 194
  year: 2022
  ident: b0065
  article-title: Influence of bimodal structure on the soil freezing characteristic curve in expansive soils
  publication-title: Cold Reg. Sci. Technol.
– volume: 602
  year: 2021
  ident: b0030
  article-title: Quantification and division of unfrozen water content during the freezing process and the influence of soil properties by low-field nuclear magnetic resonance
  publication-title: J. Hydrol.
– volume: 30
  start-page: 703
  year: 2006
  end-page: 722
  ident: b0100
  article-title: Frost heave modelling using porosity rate function
  publication-title: Int. J. Numer. Anal. Met.
– volume: 393
  start-page: 1
  year: 1972
  end-page: 11
  ident: b0105
  article-title: Freezing and heaving of saturated and unsaturated soil
  publication-title: Highw. Res. Rec.
– year: 1999
  ident: b0035
  article-title: NMR Logging principles and applications
– volume: 38
  start-page: 303
  year: 1930
  end-page: 317
  ident: b0145
  article-title: The mechanics of frost heaving
  publication-title: J. Geol.
– reference: K. Z, Yuan, W. K, Ni, X. f, Lü, M, Zhu, Experimental study on the performance of the modified loess by polypropylene fiber mixed with bentonite and cement. B Eng Geol Environ. 81 2022 302.
– volume: 24
  start-page: 77
  year: 2010
  end-page: 86
  ident: b0200
  article-title: Experimental study on moisture migration in unsaturated loess under effect of temperature
  publication-title: J. Cold Reg. Eng.
– volume: 304
  year: 2022
  ident: b0125
  article-title: Evolution process of the microstructure of saline soil with different compaction degrees during freeze-thaw cycles
  publication-title: Eng. Geol.
– volume: 136
  start-page: 100e111
  year: 2015
  ident: b0150
  article-title: NMR petrophysical interpretation method of gas shale based on core NMR experiment
  publication-title: J. Pet. Sci. Eng.
– volume: 107
  year: 2021
  ident: b0275
  article-title: Practical prediction method on frost heave of soft clay in artificial ground freezing with field experiment
  publication-title: Tunn. Undergr. Sp. Tech.
– volume: 19
  start-page: 652
  year: 2019
  end-page: 667
  ident: b0160
  article-title: Applicability of cavity-throat connecting model for estimating the hydraulic conductivity of fine-grained soils: a geometrical and mathematical approach
  publication-title: J. Soil. Sediment.
– volume: 45
  start-page: W08412
  year: 2009
  ident: b0135
  article-title: Characterization of unsaturated porous media by high-field and low-field NMR relaxometry
  publication-title: Water Resour. Res.
– volume: 197
  year: 2022
  ident: b0095
  article-title: Experimental study on deformation characteristics of chloride silty clay during freeze-thaw in an open system
  publication-title: Cold Reg. Sci. Technol.
– volume: 42
  start-page: 250
  year: 2005
  end-page: 256
  ident: b0240
  article-title: Comparing unfrozen water content measurements of frozen soil using recently developed commercial sensors
  publication-title: Cold Reg. Sci. Technol.
– reference: Y, Zhang, W, Zhao, W, Ma, H, Wang, A, Wen, P, Li, Effect of different freezing modes on the water-heat-vapor behavior in unsaturated coarse-grained filling exposed to freezing and thawing. Cold Reg. Sci. Technol. 174 2020 103038.
– volume: 5
  start-page: 255
  year: 2020
  end-page: 271
  ident: b0225
  article-title: Study on the characterization of pore structure and main controlling factors of pore development in gas shale
  publication-title: J. Nat. Gas Geosci.
– volume: 66
  start-page: 1467
  year: 2012
  end-page: 1476
  ident: b0260
  article-title: Experimental study on unfrozen water content and soil matric potential of Qinghai-Tibetan silty clay
  publication-title: Environ. Earth Sci.
– volume: 122
  start-page: 143
  year: 1988
  end-page: 153
  ident: b0050
  article-title: A NMR technique for the analysis of pore structure: determination of continuous pore size distributions
  publication-title: J. Colloid Interf. Sci.
– volume: 135
  start-page: 435
  year: 2018
  end-page: 445
  ident: b0060
  article-title: Study on the influence of water flow on temperature around freeze pipes and its distribution optimization during artificial ground freezing
  publication-title: Appl. Therm. Eng.
– year: 2022
  ident: b0230
  article-title: Measuring and modeling the dielectric constant of soil during freezing and thawing processes: an application on silty clay
  publication-title: Acta Geotech.
– volume: 115
  year: 2019
  ident: b0010
  article-title: Model test and numerical simulation of frost heave during twin-tunnel construction using artificial ground-freezing technique
  publication-title: Comput. Geotech.
– volume: 52
  start-page: 95
  year: 2015
  end-page: 99
  ident: b0110
  article-title: Effects of freezing and thawing cycles on the engineering properties of soils
  publication-title: Soil Mech. Found. Eng.
– volume: 78
  start-page: 805
  year: 2014
  ident: 10.1016/j.tust.2022.104948_b0075
  article-title: Study on theory model of hydrothermal-mechanical interaction process in saturated freezing silty soil
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.07.035
– volume: 196
  year: 2022
  ident: 10.1016/j.tust.2022.104948_b0115
  article-title: Model test on the development of thermal regime and frost heave of a gravelly soil under seepage during artificial freezing
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2022.103495
– volume: 42
  start-page: 250
  issue: 3
  year: 2005
  ident: 10.1016/j.tust.2022.104948_b0240
  article-title: Comparing unfrozen water content measurements of frozen soil using recently developed commercial sensors
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2005.03.001
– ident: 10.1016/j.tust.2022.104948_b0245
  doi: 10.1007/s10064-022-02800-1
– volume: 304
  year: 2022
  ident: 10.1016/j.tust.2022.104948_b0125
  article-title: Evolution process of the microstructure of saline soil with different compaction degrees during freeze-thaw cycles
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2022.106699
– volume: 38
  start-page: 303
  year: 1930
  ident: 10.1016/j.tust.2022.104948_b0145
  article-title: The mechanics of frost heaving
  publication-title: J. Geol.
  doi: 10.1086/623720
– year: 2022
  ident: 10.1016/j.tust.2022.104948_b0230
  article-title: Measuring and modeling the dielectric constant of soil during freezing and thawing processes: an application on silty clay
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-022-01487-8
– volume: 31
  start-page: 2917
  issue: 12
  year: 1995
  ident: 10.1016/j.tust.2022.104948_b0130
  article-title: Examining the use of time domain reflectometry for measuring liquid water content in frozen soil
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR02769
– volume: 66
  start-page: 1467
  issue: 5
  year: 2012
  ident: 10.1016/j.tust.2022.104948_b0260
  article-title: Experimental study on unfrozen water content and soil matric potential of Qinghai-Tibetan silty clay
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-011-1386-0
– ident: 10.1016/j.tust.2022.104948_b0250
  doi: 10.1016/j.coldregions.2020.103038
– volume: 115
  year: 2019
  ident: 10.1016/j.tust.2022.104948_b0010
  article-title: Model test and numerical simulation of frost heave during twin-tunnel construction using artificial ground-freezing technique
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2019.103155
– volume: 89
  start-page: 1371
  issue: 7
  year: 2010
  ident: 10.1016/j.tust.2022.104948_b0235
  article-title: Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)
  publication-title: Fuel
  doi: 10.1016/j.fuel.2009.11.005
– volume: 122
  start-page: 143
  issue: 1
  year: 1988
  ident: 10.1016/j.tust.2022.104948_b0050
  article-title: A NMR technique for the analysis of pore structure: determination of continuous pore size distributions
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/0021-9797(88)90297-4
– volume: 197
  year: 2022
  ident: 10.1016/j.tust.2022.104948_b0005
  article-title: Study on the frost heave behavior of the freezing unsaturated silty clay
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2022.103525
– volume: 60
  start-page: 1011
  year: 2020
  ident: 10.1016/j.tust.2022.104948_b0045
  article-title: Using pore size distribution and porosity to estimate particle size distribution by nuclear magnetic resonance
  publication-title: Soils Found.
  doi: 10.1016/j.sandf.2020.05.006
– volume: 81
  start-page: 1
  issue: 3
  year: 2022
  ident: 10.1016/j.tust.2022.104948_b0055
  article-title: Pore-scale study on the characteristic hydraulic conductivity of a dispersive lean clay affected by salinity and freeze–thaw
  publication-title: B Eng. Geol. Environ.
  doi: 10.1007/s10064-022-02608-z
– volume: 36
  start-page: 81
  year: 2003
  ident: 10.1016/j.tust.2022.104948_b0070
  article-title: A comprehensive method of determining the soil unfrozen water curves-2. Stages of the phase change process in frozen soil-water system
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/S0165-232X(03)00006-5
– volume: 393
  start-page: 1
  year: 1972
  ident: 10.1016/j.tust.2022.104948_b0105
  article-title: Freezing and heaving of saturated and unsaturated soil
  publication-title: Highw. Res. Rec.
– volume: 153
  start-page: 181
  year: 2018
  ident: 10.1016/j.tust.2022.104948_b0270
  article-title: Experimental inference on dual-porosity aggravation of soft clay after freeze-thaw by fractal and probability analysis
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2018.06.001
– volume: 190
  start-page: 98
  year: 2015
  ident: 10.1016/j.tust.2022.104948_b0265
  article-title: Centrifuge experimental study of thaw settlement characteristics of mucky clay after artificial ground freezing
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.03.002
– volume: 142
  year: 2021
  ident: 10.1016/j.tust.2022.104948_b0210
  article-title: Evolutions of the unfrozen water content of saturated sandstones during freezing process and the freeze-induced damage characteristics
  publication-title: Int. J. Rock Mech. Min.
– volume: 52
  start-page: 95
  issue: 2
  year: 2015
  ident: 10.1016/j.tust.2022.104948_b0110
  article-title: Effects of freezing and thawing cycles on the engineering properties of soils
  publication-title: Soil Mech. Found. Eng.
  doi: 10.1007/s11204-015-9312-1
– volume: 107
  year: 2021
  ident: 10.1016/j.tust.2022.104948_b0275
  article-title: Practical prediction method on frost heave of soft clay in artificial ground freezing with field experiment
  publication-title: Tunn. Undergr. Sp. Tech.
  doi: 10.1016/j.tust.2020.103647
– volume: 158
  start-page: 106
  year: 2019
  ident: 10.1016/j.tust.2022.104948_b0170
  article-title: Effect of freezing-thawing cycles on the microstructure of soils: a two-dimensional NMR relaxation analysis
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2018.11.014
– volume: 24
  start-page: 77
  issue: 3
  year: 2010
  ident: 10.1016/j.tust.2022.104948_b0200
  article-title: Experimental study on moisture migration in unsaturated loess under effect of temperature
  publication-title: J. Cold Reg. Eng.
  doi: 10.1061/(ASCE)CR.1943-5495.0000015
– volume: 197
  year: 2022
  ident: 10.1016/j.tust.2022.104948_b0095
  article-title: Experimental study on deformation characteristics of chloride silty clay during freeze-thaw in an open system
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2022.103518
– volume: 15
  start-page: 207
  year: 2022
  ident: 10.1016/j.tust.2022.104948_b0015
  article-title: Effect of freezing temperature and initial water content on hydrothermal migration of silty soil under freezing
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-022-09486-5
– volume: 194
  year: 2022
  ident: 10.1016/j.tust.2022.104948_b0065
  article-title: Influence of bimodal structure on the soil freezing characteristic curve in expansive soils
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2021.103437
– start-page: 1
  year: 2022
  ident: 10.1016/j.tust.2022.104948_b0020
  article-title: Study on the comprehensive mechanism of freeze-thaw hysteresis and water migration of soil/rock mass
  publication-title: Chinese J. Rock Mech. Eng. On line
– volume: 38
  start-page: 2523
  issue: 09
  year: 2017
  ident: 10.1016/j.tust.2022.104948_b0025
  article-title: Experimental study of pore size distribution of Shanghai soft clay
  publication-title: Rock Soil Mech.
– volume: 136
  start-page: 100e111
  year: 2015
  ident: 10.1016/j.tust.2022.104948_b0150
  article-title: NMR petrophysical interpretation method of gas shale based on core NMR experiment
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2015.11.007
– volume: 45
  start-page: W08412
  year: 2009
  ident: 10.1016/j.tust.2022.104948_b0135
  article-title: Characterization of unsaturated porous media by high-field and low-field NMR relaxometry
  publication-title: Water Resour. Res.
  doi: 10.1029/2008WR007459
– volume: 18
  start-page: 135
  year: 1981
  ident: 10.1016/j.tust.2022.104948_b0175
  article-title: Unfrozen water contents of submarine permafrost determined by nuclear magnetic resonance
  publication-title: Dev. Geotech. Eng.
– volume: 84
  start-page: 1577
  issue: 5
  year: 2020
  ident: 10.1016/j.tust.2022.104948_b0090
  article-title: Characterizing pore-size distribution of a chloride silt soil during freeze-thaw process using Nuclear magnetic Resonance Relaxometry
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.1002/saj2.20087
– volume: 46
  start-page: W11510
  year: 2010
  ident: 10.1016/j.tust.2022.104948_b0140
  article-title: Determination of pore size distribution and hydraulic properties using nuclear magnetic resonance relaxometry: a comparative study of laboratory methods
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR008686
– volume: 109
  start-page: 241
  year: 2009
  ident: 10.1016/j.tust.2022.104948_b0220
  article-title: Geological and hydrogeological environment in Shanghai with geohazards to construction and maintenance of infrastructures
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2009.08.009
– volume: 602
  year: 2021
  ident: 10.1016/j.tust.2022.104948_b0030
  article-title: Quantification and division of unfrozen water content during the freezing process and the influence of soil properties by low-field nuclear magnetic resonance
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126719
– volume: 30
  start-page: 703
  issue: 8
  year: 2006
  ident: 10.1016/j.tust.2022.104948_b0100
  article-title: Frost heave modelling using porosity rate function
  publication-title: Int. J. Numer. Anal. Met.
  doi: 10.1002/nag.497
– volume: 135
  start-page: 435
  year: 2018
  ident: 10.1016/j.tust.2022.104948_b0060
  article-title: Study on the influence of water flow on temperature around freeze pipes and its distribution optimization during artificial ground freezing
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.02.090
– year: 1999
  ident: 10.1016/j.tust.2022.104948_b0035
– volume: 280
  year: 2021
  ident: 10.1016/j.tust.2022.104948_b0040
  article-title: Freeze-thaw impact on macropore structure of clay by 3D X-ray computed tomography
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2020.105921
– volume: 202
  year: 2022
  ident: 10.1016/j.tust.2022.104948_b0195
  article-title: Moisture migration in the Qinghai-Tibet silty clay within an added quartz sand layer under one-dimensional freezing
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2022.103627
– volume: 122
  year: 2022
  ident: 10.1016/j.tust.2022.104948_b0280
  article-title: Practical prediction method on thaw deformation of soft clay subject to artificial ground freezing based on elaborate centrifuge modeling experiments
  publication-title: Tunn. Undergr. Sp. Tech.
  doi: 10.1016/j.tust.2021.104352
– volume: 74
  start-page: 577
  issue: 2
  year: 2015
  ident: 10.1016/j.tust.2022.104948_b0165
  article-title: Research on the thermal conductivity and moisture migration characteristics of Shanghai mucky clay
  publication-title: I: Experimental modeling. B Eng. Geol. Environ.
– ident: 10.1016/j.tust.2022.104948_b0180
  doi: 10.1016/j.cam.2019.112605
– year: 2022
  ident: 10.1016/j.tust.2022.104948_b0215
  article-title: Evolution of the unfrozen water content for partially-saturated sandstones and the critical degree of saturation
  publication-title: Rock Mech. Rock Eng.
– volume: 5
  start-page: 255
  issue: 5
  year: 2020
  ident: 10.1016/j.tust.2022.104948_b0225
  article-title: Study on the characterization of pore structure and main controlling factors of pore development in gas shale
  publication-title: J. Nat. Gas Geosci.
  doi: 10.1016/j.jnggs.2020.09.003
– volume: 31
  start-page: 04017011
  issue: 4
  year: 2017
  ident: 10.1016/j.tust.2022.104948_b0255
  article-title: Effect of temperature gradients on the frost heave of a saturated silty clay with a water supply
  publication-title: J. Cold Reg. Eng.
  doi: 10.1061/(ASCE)CR.1943-5495.0000137
– volume: 59
  start-page: 34
  issue: 1
  year: 2009
  ident: 10.1016/j.tust.2022.104948_b0205
  article-title: Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2009.05.011
– volume: 64
  start-page: 189
  year: 2015
  ident: 10.1016/j.tust.2022.104948_b0120
  article-title: Perme-ability in Rotliegend gas sandstone to gas and brine as predicted from NMR, mercury injection and image analysis
  publication-title: Mar. Petroleum Geol.
  doi: 10.1016/j.marpetgeo.2015.02.009
– volume: 19
  start-page: 652
  issue: 2
  year: 2019
  ident: 10.1016/j.tust.2022.104948_b0160
  article-title: Applicability of cavity-throat connecting model for estimating the hydraulic conductivity of fine-grained soils: a geometrical and mathematical approach
  publication-title: J. Soil. Sediment.
  doi: 10.1007/s11368-018-2054-8
– volume: 275
  year: 2020
  ident: 10.1016/j.tust.2022.104948_b0085
  article-title: Experimental study on changes of pore structure and mechanical properties of sandstone after high-temperature treatment using nuclear magnetic resonance
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2020.105739
– volume: 63
  start-page: 99
  year: 2015
  ident: 10.1016/j.tust.2022.104948_b0185
  article-title: Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2014.08.004
– volume: 71
  start-page: 309
  issue: 2
  year: 2012
  ident: 10.1016/j.tust.2022.104948_b0155
  article-title: Quantitative analysis of the microstructure of Shanghai muddy clay before and after freezing
  publication-title: B Eng. Geol. Environ.
  doi: 10.1007/s10064-011-0380-9
SSID ssj0005229
Score 2.4810984
Snippet •The temperature characteristics along the muddy clay column are analyzed with moisture migration.•Moisture migration along large column during F-T process is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104948
SubjectTerms Artificial ground freezing
Large muddy clay column
Low field nuclear magnetic resonance
Moisture migration
Pore size distribution
Pore structure
Title Analysis of moisture migration, temperature, and pore structure characteristics of the muddy clay column subject to artificial ground freezing based on LF NMR
URI https://dx.doi.org/10.1016/j.tust.2022.104948
Volume 133
WOSCitedRecordID wos000989316000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-4364
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005229
  issn: 0886-7798
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5FLQc4IFbRsugduKWuvC_HqmooKEQIghRxsexZmlSJXdK4KvwY_gx_jPc840UpqgCJixWN_WYsf19m3rx5C2Ovs1DmwhGeFXHBLT_3QisJlbIyR8RxGLq5G9SBwuNoMolns-TDYPCziYW5WkZFEV9fJxf_FWpsQ7ApdPYv4G47xQb8jaDjFWHH6x8B308zsioRRToiWC3ONNT0SSkdlcml3DhvohZOqWYplyw9zrfSOBtHglUlxLchX2Z4oVmtGF5WORlySIOlVzHpKChUBDtVaym_kymClkpBxxLj0XDy_mNfIZ5WtaNNEypJIW1rI45zHU46mxu2_y_zsqrJt5DbTadVJrrDJmMKP55XWTFvm99UtXUYRYqzr4uqb_Zwvc7vS9vimniczvlJT5kh7hd0XetDqaf0GPfJvqdzpbdzvs6-cWP90KaM88MNxbvgsC6dgSd-3K2WrQ_jJxqMxnLdujYj6gG7bhQkuDrsHr09mb3reRrVxfLalzOxW9rNcHuk3-tHPZ1n-oDdN5sVONIke8gGsnjE7vVSWD5mPxq6QamgoRu0dDuAHtkOACEGohq0VIMtqlE3SDWoqQZENdBUA0M12JTQUQ00V6ChGtRUg7KA8QiQak_Y59HJ9PjUMjU_LO7Z9saKkiBX3PZknkWctGcnDxXFP0eRsCXqpwJv-rmwMzsLIumKUFBBenI3VbGDEk_ZTlEW8hkD7uZ-zuNA2UGGy5TMHEVFrWOK4_cTFewxp_nSKTcJ8akuyzJtPB_PU0InJXRSjc4eG7YyFzodzK1PBw2AqVFotaKaIt9ukdv_R7nn7G73V3nBdhBK-ZLd4VebxeX6laHlL06qznM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+moisture+migration%2C+temperature%2C+and+pore+structure+characteristics+of+the+muddy+clay+column+subject+to+artificial+ground+freezing+based+on+LF+NMR&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Zhou%2C+Jie&rft.au=Zhou%2C+Huade&rft.au=Wang%2C+Chuanhe&rft.au=Guo%2C+Zhongqiu&rft.date=2023-03-01&rft.pub=Elsevier+Ltd&rft.issn=0886-7798&rft.eissn=1878-4364&rft.volume=133&rft_id=info:doi/10.1016%2Fj.tust.2022.104948&rft.externalDocID=S0886779822005892
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon