Driver identification based on hidden feature extraction by using adaptive nonnegativity-constrained autoencoder

In this paper, we propose a new driver identification method using deep learning. Existing driver identification methods have the disadvantages that the size of the sliding time window is too large and the feature extraction is relatively subjective, which leads to low identification accuracy and lo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 74; s. 1 - 9
Hlavní autoři: Chen, Jie, Wu, ZhongCheng, Zhang, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2019
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we propose a new driver identification method using deep learning. Existing driver identification methods have the disadvantages that the size of the sliding time window is too large and the feature extraction is relatively subjective, which leads to low identification accuracy and long prediction time. We first propose using an unsupervised three-layer nonnegativity-constrained autoencoder to adaptive search the optimal size of the sliding window, then construct a deep nonnegativity-constrained autoencoder network to automatically extract hidden features of driving behavior to further complete driver identification. The results from the public driving behavior dataset indicate that relative to conventional sparse autoencoder, dropout-autoencoder, random tree, and random forest algorithms, our method can effectively search the optimal size of the sliding time window, and the window size is shortened from the traditional 60s to 30s, which can better preserve the intrinsic information of the data while greatly reducing the data volume. Furthermore, our method can extract more distinctive hidden features that aid the classifier to map out the separating boundaries among the classes more easily. Finally, our method can significantly shorten the prediction time and improve the timeliness under the premise of improving the driver identification performance and reducing the model overfitting. [Display omitted] •We proposed a three-layer autoencoder to adaptively search time window size.•We constructed a deep autoencoder to automatically extract the hidden features.•The proposed method is superior to the existing state-of-the-art methods.
AbstractList In this paper, we propose a new driver identification method using deep learning. Existing driver identification methods have the disadvantages that the size of the sliding time window is too large and the feature extraction is relatively subjective, which leads to low identification accuracy and long prediction time. We first propose using an unsupervised three-layer nonnegativity-constrained autoencoder to adaptive search the optimal size of the sliding window, then construct a deep nonnegativity-constrained autoencoder network to automatically extract hidden features of driving behavior to further complete driver identification. The results from the public driving behavior dataset indicate that relative to conventional sparse autoencoder, dropout-autoencoder, random tree, and random forest algorithms, our method can effectively search the optimal size of the sliding time window, and the window size is shortened from the traditional 60s to 30s, which can better preserve the intrinsic information of the data while greatly reducing the data volume. Furthermore, our method can extract more distinctive hidden features that aid the classifier to map out the separating boundaries among the classes more easily. Finally, our method can significantly shorten the prediction time and improve the timeliness under the premise of improving the driver identification performance and reducing the model overfitting. [Display omitted] •We proposed a three-layer autoencoder to adaptively search time window size.•We constructed a deep autoencoder to automatically extract the hidden features.•The proposed method is superior to the existing state-of-the-art methods.
Author Chen, Jie
Wu, ZhongCheng
Zhang, Jun
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0002-9605-4331
  surname: Chen
  fullname: Chen, Jie
  email: cj2016@mail.ustc.edu.cn
  organization: Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, China
– sequence: 2
  givenname: ZhongCheng
  surname: Wu
  fullname: Wu, ZhongCheng
  email: zcwu@iim.ac.cn
  organization: Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, China
– sequence: 3
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
  email: zhang_jun@hmfl.ac.cn
  organization: Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, China
BookMark eNp9kM1OAyEUhYnRxLb6Aq54gRlhGGaYxI2pv0kTN7omDFwqTYUGaGPfXmpduejq3uSe7-SeM0XnPnhA6IaSmhLa3a5qlYKuG0JFTYaaMHKGJlT0TTV0gp6XnXeiaoe2u0TTlFakQEMjJmjzEN0OInYGfHbWaZVd8HhUCQwuy6cz5YItqLyNgOE7R6WPkj3eJueXWBm1ycUEl588LIvBzuV9pYNPRex8MVLbHMDrYCBeoQur1gmu_-YMfTw9vs9fqsXb8-v8flFpRkiu-r6nwBtKzCg6RjnrW82poWawDBjXHbOks9raljScjVwNRnFjueFE9JqMbIbE0VfHkFIEK7XLv-EOT60lJfLQnFzJQ3Py0JwkgyzNFbT5h26i-1Jxfxq6O0JQQu0cRJm0K5nBuAg6SxPcKfwHRhmNWw
CitedBy_id crossref_primary_10_1109_TITS_2022_3225782
crossref_primary_10_1109_TITS_2022_3166275
crossref_primary_10_1016_j_asoc_2022_109835
crossref_primary_10_1109_TITS_2023_3240185
crossref_primary_10_3390_su11236755
crossref_primary_10_1109_TIV_2024_3440634
crossref_primary_10_1016_j_neunet_2023_06_011
crossref_primary_10_1109_TITS_2019_2940481
crossref_primary_10_1049_itr2_12311
crossref_primary_10_1007_s13042_023_01905_7
crossref_primary_10_1016_j_aap_2023_107022
crossref_primary_10_1109_TITS_2021_3076140
crossref_primary_10_1109_TII_2020_2999911
crossref_primary_10_1109_TITS_2023_3303835
crossref_primary_10_1177_09544062241296596
crossref_primary_10_1109_ACCESS_2022_3228573
crossref_primary_10_1109_TIV_2023_3318113
crossref_primary_10_1109_ACCESS_2022_3171347
crossref_primary_10_3390_wevj13110207
crossref_primary_10_1109_JSEN_2020_3030810
crossref_primary_10_1016_j_engappai_2025_110459
crossref_primary_10_1016_j_asoc_2022_109245
Cites_doi 10.1016/j.neunet.2012.05.003
10.1016/j.imavis.2017.01.005
10.1109/IWCMC.2014.6906362
10.1016/j.neucom.2018.07.050
10.1016/j.asoc.2017.04.048
10.1109/PST.2016.7906929
10.1109/TITS.2017.2649541
10.1016/j.asoc.2017.02.019
10.1016/j.neunet.2017.04.012
10.1016/j.aap.2012.06.014
10.1109/JPROC.2016.2634938
10.1007/978-3-319-39378-0_1
10.1016/j.trf.2015.10.011
10.1016/j.aap.2016.10.006
10.1109/TNNLS.2015.2479223
10.1109/TNNLS.2014.2310059
10.17226/14494
10.1016/j.knosys.2018.05.009
10.1109/IVS.2014.6856506
10.1137/0916069
10.1145/1390156.1390294
10.1109/TVT.2014.2369522
10.1016/j.knosys.2017.12.037
10.1016/j.procs.2012.01.077
10.1109/LCOMM.2013.102213.132056
10.1162/neco.2006.18.7.1527
10.1007/s00521-015-2037-2
10.1109/DSAA.2016.20
10.1016/j.trf.2017.12.006
10.1109/FUZZ-IEEE.2017.8015464
10.1016/j.cosrev.2017.01.001
10.1109/TNN.2008.2007906
10.1109/ISBI.2014.6868041
10.1016/j.asoc.2017.06.044
10.1109/CCNC.2015.7158098
10.1109/TITS.2010.2072502
10.1515/popets-2015-0029
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2018.09.030
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 9
ExternalDocumentID 10_1016_j_asoc_2018_09_030
S1568494618305477
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-7771e5210db86315374c51d1d9f3e35c63f06fcff40253b5a9da5df5d5087c0b3
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454251200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 20:19:53 EST 2025
Sat Nov 29 03:05:36 EST 2025
Fri Feb 23 02:24:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Driver identification
Deep learning
Adaptive search
Feature extraction
Nonnegativity-constrained autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-7771e5210db86315374c51d1d9f3e35c63f06fcff40253b5a9da5df5d5087c0b3
ORCID 0000-0002-9605-4331
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2018_09_030
crossref_primary_10_1016_j_asoc_2018_09_030
elsevier_sciencedirect_doi_10_1016_j_asoc_2018_09_030
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ly, Martin, Trivedi (b17) 2013; 36
Wahab, Quek, Tan, Takeda (b19) 2009; 20
Angkititrakul, Terashima, Wakita (b55) 2011; 12
U. Fugiglando, E. Massaro, P. Santi, S. Milardo, K. Abida, R. Stahlmann, F. Netter, C. Ratti, Driving Behavior Analysis through CAN Bus Data in an Uncontrolled Environment, (2017)
Butakov, Ioannou (b54) 2015; 64
Dot (b42) 2010; 148
Maaten, Hinton (b37) 2008; 9
Mafarja, Aljarah, Heidari, Hammouri, Faris, Al-Zoubi, Mirjalili (b49) 2017; 145
T.D. Nguyen, T. Tran, D. Phung, S. Venkatesh, Learning parts-based representations with nonnegative restricted boltzmann machine, in: Asian Conference on Machine Learning, 2013, pp. 133-148.
Heidari, Pahlavani (b48) 2017; 60
Hinton, Osindero, Teh (b31) 2006; 18
Heidari, Abbaspour, Jordehi (b50) 2017; 57
Ayinde, Zurada (b35) 2017; 93
Chen, Wu, Zhang, Li, Li, Wu (b53) 2018; 316
Kedar-Dongarkar, Das (b16) 2012; 8
Tselentis, Yannis, Vlahogianni (b10) 2016; 98
B.I. Kwak, J.Y. Woo, H.K. Kim, Know your master: Driver profiling-based anti-theft method, in: Privacy, Security and Trust, 2017, pp. 211-218.
Marotta, Martinelli, Nanni, Orlando, Yautsiukhin (b9) 2017; 24
K.M.A. Alheeti, A. Gruebler, K.D. Mcdonald-Maier, An intrusion detection system against malicious attacks on the communication network of driverless cars, in: 12th Annual IEEE Consumer Communications and Networking Conference, 2015, pp. 916-921.
.
H. Liu, T. Taniguchi, T. Takano, Y. Tanaka, Visualization of driving behavior using deep sparse autoencoder, in: Intelligent Vehicles Symposium Proceedings, 2014, pp. 1427-1434.
G.E. Hinton, R.S. Zemel, Autoencoders, minimum description length and Helmholtz free energy, in: International Conference on Neural Information Processing Systems, 1993, pp.3-10.
Guo, Fang (b41) 2013; 61
Enev, Takakuwa, Koscher, Kohno (b15) 2016; 2016
Campbell (b44) 2012; 282
S.G. Klauer, T.A. Dingus, T.V. Neale, J. Sudweeks, D.J. Ramsey, The Impact of Driver Inattention on Near-Crash/Crash Risk: An Analysis Using the 100-Car Naturalistic Driving Study Data, U.s.department of Transportation Washington D.c, 226 (2006)
Hinton, Srivastava, Krizhevsky, Sutskever, Salakhutdinov (b39) 2012; 4
Hosseini-Asl, Zurada, Nasraoui (b21) 2016; 27
Liu, Taniguchi, Tanaka, Takenaka, Bando (b33) 2017; 18
J. Xu, L. Xiang, R. Hang, J. Wu, Stacked Sparse Autoencoder (SSAE) based framework for nuclei patch classification on breast cancer histopathology, in: IEEE International Symposium on Biomedical Imaging, 2014, pp. 999-1002.
Lyamin, Vinel, Jonsson, Loo (b5) 2014; 18
Lemme, Reinhart, Steil (b24) 2012; 33
B.O. Ayinde, J.M. Zurada, Building efficient convnets using redundant feature pruning, in: ICLR, (2018).
Ayinde, Zurada (b36) 2016
F. Martinelli, F. Mercaldo, V. Nardone, A. Santone, Car hacking identification through fuzzy logic algorithms, in: IEEE International Conference on Fuzzy Systems, 2017, pp. 1-7.
Martinelli, Mercaldo, Orlando, Nardone, Santone, Sangaiah (b7) 2018; 000
Sankaran, Vatsa, Singh, Majumdar (b51) 2017; 60
J. Antin, S. Lee, J. Hankey, T. Dingus, Design of the In-Vehicle Driving Behavior and Crash Risk Study: In Support of the SHRP 2 Naturalistic Driving Study, Shrp Report, (2011)
Zhang, Zhao, Rong (b18) 2014; 167
A. Taylor, S. Leblanc, N. Japkowicz, Anomaly detection in automobile control network data with long short-term memory networks, in: IEEE International Conference on Data Science and Advanced Analytics, 2016, pp. 130-139.
A. Santini, OBD-II: Functions, Monitors and Diagnostic Techniques, Delmar, (2010).
Byrd, Lu, Nocedal, Zhu (b34) 1995; 16
Faris, Mafarja, Heidari, Aljarah, Al-Zoubi, Mirjalili, Fujita (b46) 2018; 154
Massaro, Ahn, Ratti, Santi, Stahlmann, Lamprecht, Roehder, Huber (b13) 2016; 105
Bärgman, Lisovskaja, Victor, Flannagan, Dozza (b45) 2015; 35
B.O. Ayinde, E. Hosseini-Asl, J.M. Zurada, Visualizing and understanding nonnegativity constrained sparse autoencoder in deep learning, in: International Conference on Artificial Intelligence and Soft Computing, 2016, pp. 3-14.
P. Vincent, H. Larochelle, Y. Bengio, P.A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: International Conference on Machine Learning, 2008, pp. 1096-1103.
Wijnands, Thompson, Aschwanden, Stevenson (b12) 2018; 53
Bian, Yang, Zhao, Liang (b11) 2018; 107
H. Lee, C. Ekanadham, A.Y. Ng, Sparse deep belief net model for visual area V2, in: Advances in neural information processing systems, 2008, pp. 873-880.
Hosseini-Asl, Zurada, Nasraoui (b32) 2016; 27
Ohno (b26) 2017; 55
S. Choi, J. Kim, D. Kwak, P. Angkititrakul, J.H.L. Hansen, Analysis and classification of driver behavior using in-vehicle CAN-BUS Information, in: Biennial Workshop on DSP for In-Vehicle and Mobile Systems, 2007, pp. 17–19.
Heidari, Abbaspour, Jordehi (b47) 2017; 28
A. Bouhoute, I. Berrada, M.E. Kamili, A formal model of human driving behavior in vehicular networks, in: Wireless Communications and Mobile Computing Conference, 2014, pp. 231-236.
Chorowski, Zurada (b22) 2015; 26
Wahab (10.1016/j.asoc.2018.09.030_b19) 2009; 20
Hinton (10.1016/j.asoc.2018.09.030_b31) 2006; 18
Butakov (10.1016/j.asoc.2018.09.030_b54) 2015; 64
Enev (10.1016/j.asoc.2018.09.030_b15) 2016; 2016
Chen (10.1016/j.asoc.2018.09.030_b53) 2018; 316
Bärgman (10.1016/j.asoc.2018.09.030_b45) 2015; 35
Kedar-Dongarkar (10.1016/j.asoc.2018.09.030_b16) 2012; 8
Bian (10.1016/j.asoc.2018.09.030_b11) 2018; 107
Lyamin (10.1016/j.asoc.2018.09.030_b5) 2014; 18
10.1016/j.asoc.2018.09.030_b14
Angkititrakul (10.1016/j.asoc.2018.09.030_b55) 2011; 12
Zhang (10.1016/j.asoc.2018.09.030_b18) 2014; 167
Mafarja (10.1016/j.asoc.2018.09.030_b49) 2017; 145
10.1016/j.asoc.2018.09.030_b52
Martinelli (10.1016/j.asoc.2018.09.030_b7) 2018; 000
Lemme (10.1016/j.asoc.2018.09.030_b24) 2012; 33
Chorowski (10.1016/j.asoc.2018.09.030_b22) 2015; 26
Marotta (10.1016/j.asoc.2018.09.030_b9) 2017; 24
Liu (10.1016/j.asoc.2018.09.030_b33) 2017; 18
Guo (10.1016/j.asoc.2018.09.030_b41) 2013; 61
Heidari (10.1016/j.asoc.2018.09.030_b47) 2017; 28
10.1016/j.asoc.2018.09.030_b27
10.1016/j.asoc.2018.09.030_b28
10.1016/j.asoc.2018.09.030_b29
Ayinde (10.1016/j.asoc.2018.09.030_b36) 2016
10.1016/j.asoc.2018.09.030_b23
Faris (10.1016/j.asoc.2018.09.030_b46) 2018; 154
10.1016/j.asoc.2018.09.030_b25
Ohno (10.1016/j.asoc.2018.09.030_b26) 2017; 55
10.1016/j.asoc.2018.09.030_b20
Ly (10.1016/j.asoc.2018.09.030_b17) 2013; 36
Hosseini-Asl (10.1016/j.asoc.2018.09.030_b32) 2016; 27
Maaten (10.1016/j.asoc.2018.09.030_b37) 2008; 9
Wijnands (10.1016/j.asoc.2018.09.030_b12) 2018; 53
Heidari (10.1016/j.asoc.2018.09.030_b50) 2017; 57
Hinton (10.1016/j.asoc.2018.09.030_b39) 2012; 4
10.1016/j.asoc.2018.09.030_b1
10.1016/j.asoc.2018.09.030_b3
10.1016/j.asoc.2018.09.030_b2
Tselentis (10.1016/j.asoc.2018.09.030_b10) 2016; 98
Dot (10.1016/j.asoc.2018.09.030_b42) 2010; 148
10.1016/j.asoc.2018.09.030_b8
Byrd (10.1016/j.asoc.2018.09.030_b34) 1995; 16
10.1016/j.asoc.2018.09.030_b4
10.1016/j.asoc.2018.09.030_b38
Heidari (10.1016/j.asoc.2018.09.030_b48) 2017; 60
10.1016/j.asoc.2018.09.030_b6
Massaro (10.1016/j.asoc.2018.09.030_b13) 2016; 105
Ayinde (10.1016/j.asoc.2018.09.030_b35) 2017; 93
10.1016/j.asoc.2018.09.030_b30
Hosseini-Asl (10.1016/j.asoc.2018.09.030_b21) 2016; 27
10.1016/j.asoc.2018.09.030_b40
10.1016/j.asoc.2018.09.030_b43
Campbell (10.1016/j.asoc.2018.09.030_b44) 2012; 282
Sankaran (10.1016/j.asoc.2018.09.030_b51) 2017; 60
References_xml – reference: U. Fugiglando, E. Massaro, P. Santi, S. Milardo, K. Abida, R. Stahlmann, F. Netter, C. Ratti, Driving Behavior Analysis through CAN Bus Data in an Uncontrolled Environment, (2017),
– volume: 18
  start-page: 110
  year: 2014
  end-page: 113
  ident: b5
  article-title: Real-Time detection of denial-of-service attacks in IEEE 802.11p Vehicular Networks
  publication-title: IEEE Commun. Lett.
– volume: 55
  start-page: 566
  year: 2017
  end-page: 575
  ident: b26
  article-title: Linear guided autoencoder: representation learning with linearity
  publication-title: Appl. Soft Comput.
– volume: 98
  start-page: 139
  year: 2016
  ident: b10
  article-title: Innovative motor insurance schemes: A review of current practices and emerging challenges
  publication-title: Accid. Anal. Prev.
– reference: H. Lee, C. Ekanadham, A.Y. Ng, Sparse deep belief net model for visual area V2, in: Advances in neural information processing systems, 2008, pp. 873-880.
– volume: 18
  start-page: 2477
  year: 2017
  end-page: 2489
  ident: b33
  article-title: Visualization of driving behavior based on hidden feature extraction by using deep learning
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 145
  start-page: 25
  year: 2017
  end-page: 45
  ident: b49
  article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems
  publication-title: Knowl.-Based Syst.
– volume: 2016
  start-page: 34
  year: 2016
  end-page: 50
  ident: b15
  article-title: Automobile driver fingerprinting
  publication-title: Proc. Privacy Enhanc. Technol.
– reference: G.E. Hinton, R.S. Zemel, Autoencoders, minimum description length and Helmholtz free energy, in: International Conference on Neural Information Processing Systems, 1993, pp.3-10.
– volume: 57
  start-page: 657
  year: 2017
  end-page: 671
  ident: b50
  article-title: Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems
  publication-title: Appl. Soft Comput.
– volume: 27
  start-page: 2486
  year: 2016
  end-page: 2498
  ident: b32
  article-title: Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints
  publication-title: IEEE Trans. Neural. Netw. Learn. Syst.
– volume: 64
  start-page: 4422
  year: 2015
  end-page: 4431
  ident: b54
  article-title: Personalized driver/vehicle lane change models for ADAS
  publication-title: IEEE Trans. Veh. Technol.
– volume: 154
  start-page: 43
  year: 2018
  end-page: 67
  ident: b46
  article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems
  publication-title: Knowl.-Based Syst.
– reference: B.O. Ayinde, J.M. Zurada, Building efficient convnets using redundant feature pruning, in: ICLR, (2018).
– volume: 4
  start-page: 212
  year: 2012
  end-page: 223
  ident: b39
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
  publication-title: Comput. Sci.
– volume: 60
  start-page: 64
  year: 2017
  end-page: 74
  ident: b51
  article-title: Group sparse autoencoder
  publication-title: Image Vis. Comput.
– volume: 24
  start-page: 35
  year: 2017
  end-page: 61
  ident: b9
  article-title: Cyber-insurance survey ✩
  publication-title: Comput. Sci. Rev.
– volume: 35
  start-page: 152
  year: 2015
  end-page: 169
  ident: b45
  article-title: How does glance behavior influence crash and injury risk? A ‘what-if’ counterfactual simulation using crashes and near-crashes from SHRP2
  publication-title: Transp. Res. F
– volume: 107
  start-page: 20
  year: 2018
  end-page: 34
  ident: b11
  article-title: Good drivers pay less: A study of usage-based vehicle insurance models
  publication-title: Transp. Res. A
– volume: 12
  start-page: 174
  year: 2011
  end-page: 183
  ident: b55
  article-title: On the use of stochastic driver behavior model in lane departure warning
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: B.I. Kwak, J.Y. Woo, H.K. Kim, Know your master: Driver profiling-based anti-theft method, in: Privacy, Security and Trust, 2017, pp. 211-218.
– volume: 20
  start-page: 563
  year: 2009
  end-page: 582
  ident: b19
  article-title: Driving profile modeling and recognition based on soft computing approach
  publication-title: IEEE Trans. Neural. Netw.
– volume: 26
  start-page: 62
  year: 2015
  end-page: 69
  ident: b22
  article-title: Learning understandable neural networks with nonnegative weight constraints
  publication-title: IEEE Trans. Neural. Netw. Learn. Syst.
– volume: 53
  start-page: 34
  year: 2018
  end-page: 49
  ident: b12
  article-title: Identifying behavioural change among drivers using long short-term memory recurrent neural networks
  publication-title: Transp. Res. F
– volume: 105
  start-page: 3
  year: 2016
  end-page: 7
  ident: b13
  article-title: The car as an ambient sensing platform
  publication-title: Proc. IEEE
– volume: 60
  start-page: 115
  year: 2017
  end-page: 134
  ident: b48
  article-title: An efficient modified grey wolf optimizer with lévy flight for optimization tasks
  publication-title: Applied Soft Computing
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b31
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 93
  start-page: 99
  year: 2017
  end-page: 109
  ident: b35
  article-title: Nonredundant sparse feature extraction using autoencoders with receptive fields clustering
  publication-title: Neural Netw.
– volume: 282
  start-page: 30
  year: 2012
  end-page: 35
  ident: b44
  article-title: The SHRP 2 naturalistic driving study: Addressing driver performance and behavior in traffic safety
  publication-title: Trans. News
– reference: A. Bouhoute, I. Berrada, M.E. Kamili, A formal model of human driving behavior in vehicular networks, in: Wireless Communications and Mobile Computing Conference, 2014, pp. 231-236.
– volume: 167
  start-page: 194
  year: 2014
  end-page: 202
  ident: b18
  article-title: A study of individual characteristics of driving behavior based on hidden markov model
  publication-title: Sens. Transducers
– reference: B.O. Ayinde, E. Hosseini-Asl, J.M. Zurada, Visualizing and understanding nonnegativity constrained sparse autoencoder in deep learning, in: International Conference on Artificial Intelligence and Soft Computing, 2016, pp. 3-14.
– reference: H. Liu, T. Taniguchi, T. Takano, Y. Tanaka, Visualization of driving behavior using deep sparse autoencoder, in: Intelligent Vehicles Symposium Proceedings, 2014, pp. 1427-1434.
– start-page: 1310
  year: 2016
  end-page: 1317
  ident: b36
  article-title: Clustering of receptive fields in autoencoders
  publication-title: Neural Networks (IJCNN), 2016 International Joint Conference on
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b37
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– reference: S.G. Klauer, T.A. Dingus, T.V. Neale, J. Sudweeks, D.J. Ramsey, The Impact of Driver Inattention on Near-Crash/Crash Risk: An Analysis Using the 100-Car Naturalistic Driving Study Data, U.s.department of Transportation Washington D.c, 226 (2006),
– reference: J. Antin, S. Lee, J. Hankey, T. Dingus, Design of the In-Vehicle Driving Behavior and Crash Risk Study: In Support of the SHRP 2 Naturalistic Driving Study, Shrp Report, (2011),
– reference: T.D. Nguyen, T. Tran, D. Phung, S. Venkatesh, Learning parts-based representations with nonnegative restricted boltzmann machine, in: Asian Conference on Machine Learning, 2013, pp. 133-148.
– reference: K.M.A. Alheeti, A. Gruebler, K.D. Mcdonald-Maier, An intrusion detection system against malicious attacks on the communication network of driverless cars, in: 12th Annual IEEE Consumer Communications and Networking Conference, 2015, pp. 916-921.
– reference: J. Xu, L. Xiang, R. Hang, J. Wu, Stacked Sparse Autoencoder (SSAE) based framework for nuclei patch classification on breast cancer histopathology, in: IEEE International Symposium on Biomedical Imaging, 2014, pp. 999-1002.
– volume: 316
  start-page: 49
  year: 2018
  end-page: 58
  ident: b53
  article-title: Cross-covariance regularized autoencoders for nonredundant sparse feature representation
  publication-title: Neurocomputing
– reference: A. Taylor, S. Leblanc, N. Japkowicz, Anomaly detection in automobile control network data with long short-term memory networks, in: IEEE International Conference on Data Science and Advanced Analytics, 2016, pp. 130-139.
– volume: 28
  start-page: 57
  year: 2017
  end-page: 85
  ident: b47
  article-title: An efficient chaotic water cycle algorithm for optimization tasks
  publication-title: Neural Comput. Appl.
– reference: F. Martinelli, F. Mercaldo, V. Nardone, A. Santone, Car hacking identification through fuzzy logic algorithms, in: IEEE International Conference on Fuzzy Systems, 2017, pp. 1-7.
– reference: S. Choi, J. Kim, D. Kwak, P. Angkititrakul, J.H.L. Hansen, Analysis and classification of driver behavior using in-vehicle CAN-BUS Information, in: Biennial Workshop on DSP for In-Vehicle and Mobile Systems, 2007, pp. 17–19.
– volume: 33
  start-page: 194
  year: 2012
  end-page: 203
  ident: b24
  article-title: Online learning and generalization of parts-based image representations by non-negative sparse autoencoders
  publication-title: Neural Netw.
– reference: .
– reference: A. Santini, OBD-II: Functions, Monitors and Diagnostic Techniques, Delmar, (2010).
– reference: P. Vincent, H. Larochelle, Y. Bengio, P.A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: International Conference on Machine Learning, 2008, pp. 1096-1103.
– volume: 61
  start-page: 3
  year: 2013
  end-page: 9
  ident: b41
  article-title: Individual driver risk assessment using naturalistic driving data
  publication-title: Accid Anal. Prev.
– volume: 36
  start-page: 1040
  year: 2013
  end-page: 1045
  ident: b17
  article-title: Driver classification and driving style recognition using inertial sensors
  publication-title: Intell. Veh. Symp.
– volume: 16
  start-page: 1190
  year: 1995
  end-page: 1208
  ident: b34
  article-title: A limited memory algorithm for bound constrained optimization
  publication-title: SIAM J. Sci. Comput.
– volume: 8
  start-page: 388
  year: 2012
  end-page: 393
  ident: b16
  article-title: Driver classification for optimization of energy usage in a vehicle
  publication-title: Procedia Comput. Sci.
– volume: 148
  start-page: 1
  year: 2010
  end-page: 148
  ident: b42
  article-title: An analysis of driver inattention using a case-crossover approach on 100car data: final report
  publication-title: Drowsiness
– volume: 27
  start-page: 2486
  year: 2016
  end-page: 2498
  ident: b21
  article-title: Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints
  publication-title: IEEE Trans. Neural. Netw. Learn. Syst.
– volume: 000
  start-page: 1
  year: 2018
  end-page: 16
  ident: b7
  article-title: Human behavior characterization for driving style recognition in vehicle system
  publication-title: Comput. Electr. Eng.
– volume: 33
  start-page: 194
  year: 2012
  ident: 10.1016/j.asoc.2018.09.030_b24
  article-title: Online learning and generalization of parts-based image representations by non-negative sparse autoencoders
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2012.05.003
– volume: 60
  start-page: 64
  year: 2017
  ident: 10.1016/j.asoc.2018.09.030_b51
  article-title: Group sparse autoencoder
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2017.01.005
– ident: 10.1016/j.asoc.2018.09.030_b2
  doi: 10.1109/IWCMC.2014.6906362
– volume: 316
  start-page: 49
  year: 2018
  ident: 10.1016/j.asoc.2018.09.030_b53
  article-title: Cross-covariance regularized autoencoders for nonredundant sparse feature representation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.050
– volume: 282
  start-page: 30
  year: 2012
  ident: 10.1016/j.asoc.2018.09.030_b44
  article-title: The SHRP 2 naturalistic driving study: Addressing driver performance and behavior in traffic safety
  publication-title: Trans. News
– volume: 57
  start-page: 657
  year: 2017
  ident: 10.1016/j.asoc.2018.09.030_b50
  article-title: Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.04.048
– ident: 10.1016/j.asoc.2018.09.030_b8
  doi: 10.1109/PST.2016.7906929
– volume: 18
  start-page: 2477
  year: 2017
  ident: 10.1016/j.asoc.2018.09.030_b33
  article-title: Visualization of driving behavior based on hidden feature extraction by using deep learning
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2649541
– volume: 55
  start-page: 566
  year: 2017
  ident: 10.1016/j.asoc.2018.09.030_b26
  article-title: Linear guided autoencoder: representation learning with linearity
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.02.019
– volume: 93
  start-page: 99
  year: 2017
  ident: 10.1016/j.asoc.2018.09.030_b35
  article-title: Nonredundant sparse feature extraction using autoencoders with receptive fields clustering
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.04.012
– volume: 61
  start-page: 3
  year: 2013
  ident: 10.1016/j.asoc.2018.09.030_b41
  article-title: Individual driver risk assessment using naturalistic driving data
  publication-title: Accid Anal. Prev.
  doi: 10.1016/j.aap.2012.06.014
– volume: 105
  start-page: 3
  year: 2016
  ident: 10.1016/j.asoc.2018.09.030_b13
  article-title: The car as an ambient sensing platform
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2016.2634938
– ident: 10.1016/j.asoc.2018.09.030_b20
– ident: 10.1016/j.asoc.2018.09.030_b23
  doi: 10.1007/978-3-319-39378-0_1
– volume: 107
  start-page: 20
  year: 2018
  ident: 10.1016/j.asoc.2018.09.030_b11
  article-title: Good drivers pay less: A study of usage-based vehicle insurance models
  publication-title: Transp. Res. A
– volume: 35
  start-page: 152
  year: 2015
  ident: 10.1016/j.asoc.2018.09.030_b45
  article-title: How does glance behavior influence crash and injury risk? A ‘what-if’ counterfactual simulation using crashes and near-crashes from SHRP2
  publication-title: Transp. Res. F
  doi: 10.1016/j.trf.2015.10.011
– volume: 98
  start-page: 139
  year: 2016
  ident: 10.1016/j.asoc.2018.09.030_b10
  article-title: Innovative motor insurance schemes: A review of current practices and emerging challenges
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2016.10.006
– volume: 27
  start-page: 2486
  year: 2016
  ident: 10.1016/j.asoc.2018.09.030_b21
  article-title: Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints
  publication-title: IEEE Trans. Neural. Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2479223
– volume: 26
  start-page: 62
  year: 2015
  ident: 10.1016/j.asoc.2018.09.030_b22
  article-title: Learning understandable neural networks with nonnegative weight constraints
  publication-title: IEEE Trans. Neural. Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2310059
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.asoc.2018.09.030_b37
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– volume: 148
  start-page: 1
  year: 2010
  ident: 10.1016/j.asoc.2018.09.030_b42
  article-title: An analysis of driver inattention using a case-crossover approach on 100car data: final report
  publication-title: Drowsiness
– ident: 10.1016/j.asoc.2018.09.030_b30
– ident: 10.1016/j.asoc.2018.09.030_b43
  doi: 10.17226/14494
– volume: 154
  start-page: 43
  year: 2018
  ident: 10.1016/j.asoc.2018.09.030_b46
  article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.05.009
– volume: 4
  start-page: 212
  year: 2012
  ident: 10.1016/j.asoc.2018.09.030_b39
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
  publication-title: Comput. Sci.
– ident: 10.1016/j.asoc.2018.09.030_b38
  doi: 10.1109/IVS.2014.6856506
– volume: 16
  start-page: 1190
  year: 1995
  ident: 10.1016/j.asoc.2018.09.030_b34
  article-title: A limited memory algorithm for bound constrained optimization
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0916069
– volume: 36
  start-page: 1040
  year: 2013
  ident: 10.1016/j.asoc.2018.09.030_b17
  article-title: Driver classification and driving style recognition using inertial sensors
  publication-title: Intell. Veh. Symp.
– volume: 27
  start-page: 2486
  year: 2016
  ident: 10.1016/j.asoc.2018.09.030_b32
  article-title: Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints
  publication-title: IEEE Trans. Neural. Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2479223
– volume: 167
  start-page: 194
  year: 2014
  ident: 10.1016/j.asoc.2018.09.030_b18
  article-title: A study of individual characteristics of driving behavior based on hidden markov model
  publication-title: Sens. Transducers
– ident: 10.1016/j.asoc.2018.09.030_b40
– ident: 10.1016/j.asoc.2018.09.030_b27
  doi: 10.1145/1390156.1390294
– volume: 64
  start-page: 4422
  year: 2015
  ident: 10.1016/j.asoc.2018.09.030_b54
  article-title: Personalized driver/vehicle lane change models for ADAS
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2014.2369522
– volume: 145
  start-page: 25
  year: 2017
  ident: 10.1016/j.asoc.2018.09.030_b49
  article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.12.037
– volume: 8
  start-page: 388
  year: 2012
  ident: 10.1016/j.asoc.2018.09.030_b16
  article-title: Driver classification for optimization of energy usage in a vehicle
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2012.01.077
– start-page: 1310
  year: 2016
  ident: 10.1016/j.asoc.2018.09.030_b36
  article-title: Clustering of receptive fields in autoencoders
– ident: 10.1016/j.asoc.2018.09.030_b29
– volume: 18
  start-page: 110
  year: 2014
  ident: 10.1016/j.asoc.2018.09.030_b5
  article-title: Real-Time detection of denial-of-service attacks in IEEE 802.11p Vehicular Networks
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2013.102213.132056
– volume: 18
  start-page: 1527
  year: 2006
  ident: 10.1016/j.asoc.2018.09.030_b31
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 28
  start-page: 57
  year: 2017
  ident: 10.1016/j.asoc.2018.09.030_b47
  article-title: An efficient chaotic water cycle algorithm for optimization tasks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2037-2
– ident: 10.1016/j.asoc.2018.09.030_b6
  doi: 10.1109/DSAA.2016.20
– volume: 53
  start-page: 34
  year: 2018
  ident: 10.1016/j.asoc.2018.09.030_b12
  article-title: Identifying behavioural change among drivers using long short-term memory recurrent neural networks
  publication-title: Transp. Res. F
  doi: 10.1016/j.trf.2017.12.006
– ident: 10.1016/j.asoc.2018.09.030_b3
  doi: 10.1109/FUZZ-IEEE.2017.8015464
– volume: 24
  start-page: 35
  year: 2017
  ident: 10.1016/j.asoc.2018.09.030_b9
  article-title: Cyber-insurance survey ✩
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2017.01.001
– volume: 20
  start-page: 563
  year: 2009
  ident: 10.1016/j.asoc.2018.09.030_b19
  article-title: Driving profile modeling and recognition based on soft computing approach
  publication-title: IEEE Trans. Neural. Netw.
  doi: 10.1109/TNN.2008.2007906
– ident: 10.1016/j.asoc.2018.09.030_b25
  doi: 10.1109/ISBI.2014.6868041
– ident: 10.1016/j.asoc.2018.09.030_b28
– volume: 60
  start-page: 115
  year: 2017
  ident: 10.1016/j.asoc.2018.09.030_b48
  article-title: An efficient modified grey wolf optimizer with lévy flight for optimization tasks
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.06.044
– volume: 000
  start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2018.09.030_b7
  article-title: Human behavior characterization for driving style recognition in vehicle system
  publication-title: Comput. Electr. Eng.
– ident: 10.1016/j.asoc.2018.09.030_b1
– ident: 10.1016/j.asoc.2018.09.030_b4
  doi: 10.1109/CCNC.2015.7158098
– ident: 10.1016/j.asoc.2018.09.030_b14
– volume: 12
  start-page: 174
  year: 2011
  ident: 10.1016/j.asoc.2018.09.030_b55
  article-title: On the use of stochastic driver behavior model in lane departure warning
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2010.2072502
– ident: 10.1016/j.asoc.2018.09.030_b52
– volume: 2016
  start-page: 34
  year: 2016
  ident: 10.1016/j.asoc.2018.09.030_b15
  article-title: Automobile driver fingerprinting
  publication-title: Proc. Privacy Enhanc. Technol.
  doi: 10.1515/popets-2015-0029
SSID ssj0016928
Score 2.4281778
Snippet In this paper, we propose a new driver identification method using deep learning. Existing driver identification methods have the disadvantages that the size...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive search
Deep learning
Driver identification
Feature extraction
Nonnegativity-constrained autoencoder
Title Driver identification based on hidden feature extraction by using adaptive nonnegativity-constrained autoencoder
URI https://dx.doi.org/10.1016/j.asoc.2018.09.030
Volume 74
WOSCitedRecordID wos000454251200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTQ-99F2SvtCht8VFWj8kHUOb0uYQCk1hb0YPK9kQnGVjhxTy4zN6eZ02DW2hF2NkSxaaz6NPoxkNQu-o1pVVpcqYciE5hMhMwqogg59SUQn8xDbSJ5tgBwd8sRBfJ5OrFAtzccrall9eitV_FTWUgbBd6OxfiHtoFArgHoQOVxA7XP9I8B_XztVitjTRDyhI2M1Wxu0MHLszQ9oZDI7fOwDdvI7pwoGI9t5yII1ceY-i1nnBHMUEE5l2VNJllICGZN-duSMwTXTuTefYRk57Dsrde6v3XZoavQtBjARZbjaEer87cnzWHrmnw6uDHXu_b8eGCRcLdcMw8WvETFCwFc8KEc2OTSjjbJ6JKqRuSVqZFSO1Skfzs7hV8QcbxMl7CZh2Dns8nF5LNtPc4Hz4zfXBdQG0GRBWxu6hrTkrBZ-ird0ve4v9YReqEj4379DnGHQV_AN__tLtxGZEVg4fo4dxlYF3AzqeoEnTPkWPUgYPHBX6M7QKYME3wYI9WDDcBLDgCBa8AQtWP7AHC05gwb8FCx6B5Tn6_mnv8MPnLObgyHROSAeLL0YboHjEKF7lMD2yQpfUUCNs3uSlrnJLKqutLYA856qUwsjS2NIA8WeaqPwFmsL3m22EgXnagksBK9S8yCsGLQB_VHNOJJGU6h1E0wDWOh5Q7zp6WidPxJPaDXrtBr0mooZB30Gzoc4qHM9y59tlkksdCWYgjjXA6I56L_-x3iv0YPNjvEbTbt03b9B9fdEtz9dvI9quAdZ2pJ8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Driver+identification+based+on+hidden+feature+extraction+by+using+adaptive+nonnegativity-constrained+autoencoder&rft.jtitle=Applied+soft+computing&rft.au=Chen%2C+Jie&rft.au=Wu%2C+ZhongCheng&rft.au=Zhang%2C+Jun&rft.date=2019-01-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=74&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1016%2Fj.asoc.2018.09.030&rft.externalDocID=S1568494618305477
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon