Improving brain MRI denoising using convolutional AutoEncoder and sparse representations

Magnetic Resonance Imaging (MRI) is an essential tool for diagnosing and monitoring diseases under various conditions. However, noise often degrades image quality, leading to inaccurate diagnoses. To address this issue, a Convolutional AutoEncoder-based Orthogonal Matching Pursuit (CAE-OMP) model is...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 263; p. 125711
Main Authors: Velayudham, A, Madhan Kumar, K., Krishna Priya, MS
Format: Journal Article
Language:English
Published: Elsevier Ltd 05.03.2025
Subjects:
ISSN:0957-4174
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Magnetic Resonance Imaging (MRI) is an essential tool for diagnosing and monitoring diseases under various conditions. However, noise often degrades image quality, leading to inaccurate diagnoses. To address this issue, a Convolutional AutoEncoder-based Orthogonal Matching Pursuit (CAE-OMP) model is proposed for brain MRI image denoising. In this model, the encoder block extracts relevant features from the image while reducing overfitting, and the OMP algorithm creates a sparse representation to enhance denoising. To improve performance and computational efficiency, the traditional greedy search process in OMP is replaced with the Crossover Boosted Elephant Herd Optimization (CBEHO) algorithm. Rather than searching for atoms, CBEHO optimizes parameter selection, thereby reducing search times and enhancing convergence in the OMP process. Using this optimized sparse representation, the model iteratively improves the original image’s approximation by updating residuals and the support set. The decoder block then reconstructs the denoised image features. The proposed method was tested on multiple datasets, including the RSNA MICCAI PNG dataset, the Brain Tumor Detection MRI (BTD-MRI) dataset, the Brain Tumor Classification MRI (BTC-MRI) Images dataset, and the Brain Tumor Segmentation (BraTS2020) dataset. The results show that the CAE-OMP model achieves Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) values of 0.989 and 47.345 on the BTD-MRI dataset, 0.985 and 46.321 on the RSNA MICCAI PNG dataset, 0.978 and 45.453 on the BTC-MRI dataset, and 0.981 and 46.892 on the BraTS2020 dataset, all evaluated at a 15% noise level. These outcomes indicate that the proposed CAE-OMP model outperforms existing methods, demonstrating superior efficiency for denoising brain MRI images.
AbstractList Magnetic Resonance Imaging (MRI) is an essential tool for diagnosing and monitoring diseases under various conditions. However, noise often degrades image quality, leading to inaccurate diagnoses. To address this issue, a Convolutional AutoEncoder-based Orthogonal Matching Pursuit (CAE-OMP) model is proposed for brain MRI image denoising. In this model, the encoder block extracts relevant features from the image while reducing overfitting, and the OMP algorithm creates a sparse representation to enhance denoising. To improve performance and computational efficiency, the traditional greedy search process in OMP is replaced with the Crossover Boosted Elephant Herd Optimization (CBEHO) algorithm. Rather than searching for atoms, CBEHO optimizes parameter selection, thereby reducing search times and enhancing convergence in the OMP process. Using this optimized sparse representation, the model iteratively improves the original image’s approximation by updating residuals and the support set. The decoder block then reconstructs the denoised image features. The proposed method was tested on multiple datasets, including the RSNA MICCAI PNG dataset, the Brain Tumor Detection MRI (BTD-MRI) dataset, the Brain Tumor Classification MRI (BTC-MRI) Images dataset, and the Brain Tumor Segmentation (BraTS2020) dataset. The results show that the CAE-OMP model achieves Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) values of 0.989 and 47.345 on the BTD-MRI dataset, 0.985 and 46.321 on the RSNA MICCAI PNG dataset, 0.978 and 45.453 on the BTC-MRI dataset, and 0.981 and 46.892 on the BraTS2020 dataset, all evaluated at a 15% noise level. These outcomes indicate that the proposed CAE-OMP model outperforms existing methods, demonstrating superior efficiency for denoising brain MRI images.
ArticleNumber 125711
Author Krishna Priya, MS
Madhan Kumar, K.
Velayudham, A
Author_xml – sequence: 1
  givenname: A
  orcidid: 0009-0009-4095-0346
  surname: Velayudham
  fullname: Velayudham, A
  email: velayudham.a@jit.ac.in
  organization: Department of Computer Science and Engineering, Jansons Institute of Technology (Autonomous), Coimbatore, Tamilnadu, India
– sequence: 2
  givenname: K.
  surname: Madhan Kumar
  fullname: Madhan Kumar, K.
  email: principal@petengg.ac.in
  organization: Electronics And Communication Engineering, PET Engineering College, Vallioor, Tamilnadu, India
– sequence: 3
  givenname: MS
  surname: Krishna Priya
  fullname: Krishna Priya, MS
  email: krishnapriya.ms@jit.ac.in
  organization: Department of Artificial Intelligence and Data Science, Jansons Institute of Technology (Autonomous), Coimbatore, Tamilnadu, India
BookMark eNp9kM9KAzEQh3OoYKu-gKd9ga2T7J_sgpdSqhYqgih4C-lkVlK2yZJsK769XdeTh15mYPh9w8w3YxPnHTF2y2HOgZd3uznFLz0XIPI5F4XkfMKmUBcyzbnML9ksxh0AlwByyj7W-y74o3WfyTZo65Ln13ViyHkbh9nht6J3R98eeuudbpPFofcrh95QSLQzSex0iJQE6gJFcr0ecvGaXTS6jXTz16_Y-8PqbfmUbl4e18vFJsUMoE9laQzVCELXUHMBWGDOEbDJmsKICkgXUlRYEjYks3yLdc4NFDlWhuumbLIrJsa9GHyMgRrVBbvX4VtxUIMPtVODDzX4UKOPE1T9g9COd_cnCe159H5E6fTU0VJQES05JGMDYa-Mt-fwH8vZgiw
CitedBy_id crossref_primary_10_1002_ima_70106
crossref_primary_10_1007_s11831_025_10303_x
crossref_primary_10_1016_j_eswa_2025_129154
Cites_doi 10.1016/j.crad.2022.08.127
10.1016/j.compbiomed.2023.107619
10.1016/j.amc.2021.126083
10.1016/j.bspc.2023.105477
10.1016/j.compbiomed.2024.108450
10.1016/j.eswa.2021.114884
10.1007/s11042-019-7459-x
10.1007/s10772-020-09793-w
10.1016/j.patrec.2021.08.031
10.3389/fnins.2020.00728
10.1109/TMI.2022.3220681
10.1016/j.tcs.2021.06.005
10.3389/fnins.2020.577937
10.1016/j.patcog.2023.110176
10.3390/math8091415
10.1016/j.compbiomed.2023.107632
10.1016/j.mri.2020.04.006
10.1504/IJIIDS.2020.109462
10.32604/csse.2023.032508
10.1016/j.sciaf.2023.e01680
10.1016/j.compbiomed.2022.106513
10.1016/j.bspc.2023.104901
10.1016/j.bspc.2021.102844
10.1016/j.chemolab.2022.104639
10.1007/s11042-021-11521-8
10.1016/j.neucom.2024.127799
10.1007/s00500-020-05267-y
10.1007/s42979-022-01591-2
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2024.125711
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2024_125711
S0957417424025788
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY1
LY7
M41
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-76dde9c02a909120c5c41c0cf3f5d280ea5728c6ecfe734bc941d054c8d1af6f3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001363746100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Nov 18 21:40:59 EST 2025
Sat Nov 29 03:07:45 EST 2025
Sat Dec 21 15:58:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Neural Network
Noise
Autoencoder
MRI
Crossover Boosted Elephant Herd Optimization
Denoising
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-76dde9c02a909120c5c41c0cf3f5d280ea5728c6ecfe734bc941d054c8d1af6f3
ORCID 0009-0009-4095-0346
ParticipantIDs crossref_primary_10_1016_j_eswa_2024_125711
crossref_citationtrail_10_1016_j_eswa_2024_125711
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_125711
PublicationCentury 2000
PublicationDate 2025-03-05
PublicationDateYYYYMMDD 2025-03-05
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-05
  day: 05
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhu, Pan, Lv, Liu, Li (b0175) 2021; 880
Ali, Qureshi, Bhatti, Sohail, Hijji, Saeed (b0010) 2023; 45
Tajima, Akai, Yasaka, Kunimatsu, Yamashita, Akahane, Yoshioka, Abe, Ohtomo, Kiryu (b0130) 2023; 78
Singh, Kommuri, Kumar, Bajaj (b0110) 2021; 176
Upadhyay, Upadhyay, Shukla (b0135) 2021; 400
Xie, Wu, Ni, He (b0150) 2024; 148
https://www.kaggle.com/datasets/awsaf49/brats2020-training-data.
Doi: 10.48550/arXiv.2107.02314.
Doi: 10.48550/arXiv.2103.06575.
Kala, Deepa (b0080) 2020; 79
Wu, Chen, Xie, Shen, Zeng (b0145) 2023; 85
Juneja, Saini, Kaul, Acharjee, Thakur, Jindal (b0075) 2021; 69
Li, Wang, Gao (b0095) 2024; 174
Yan, Yang, Zhao, Jiao, Yang, Miao (b0155) 2023; 167
Hong, Huang, Yang, Li, Qian, Cai (b0040) 2020; 14
Dhabal, Chakrabarti, Mishra, Venkateswaran (b0030) 2021; 25
Juneja, Rathee, Verma, Bhutani, Baghel, Saini, Jindal (b0070) 2024; 87
https://www.kaggle.com/datasets/jarvisgroot/brain-tumor-classification-mri-images.
Amiri Golilarz, Gao, Kumar, Ali, Fu, Li (b0015) 2020; 14
Baid, U., Ghodasara, S., Mohan, S., Bilello, M., Calabrese, E., Colak, E., Farahani, K., Kalpathy-Cramer, J., Kitamura, F.C., Pati, S., & Prevedello, L.M. (2021). The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification.
https://www.kaggle.com/datasets/abhranta/brain-tumor-detection-mri.
Kavitha, Shanmugam, Imoize (b0085) 2023; 20
Li, Zhou, Liang, Liu (b0100) 2020; 71
Ali, Kumar, Patil, Ahmed, Banjar, Daud (b0005) 2022; 229
Li, Lei, Alavi, Wang (b0090) 2020; 8
https://www.kaggle.com/datasets/jonathanbesomi/rsna-miccai-png.
Zhao, Yang, Li, Zhang (b0170) 2023; 153
Yu, Guo, Zhang, Zhan, Zhao, Lukasiewicz, Xu (b0160) 2023; 167
Sreelakshmi, Inthiyaz (b0115) 2021; 24
Hu, Tian, Zhang, Zhang (b0065) 2024; 592
Zhang, Huang, Jiang, Xu, Chen, Xu (b0165) 2022; 81
Chung, Lee, Ye (b0025) 2022; 42
Hadri, Laghrib, Oummi (b0035) 2021; 151
Srinivas, Rao (b0120) 2020; 13
Rai, S., Bhatt, J.S., & Patra, S.K. (2021). An unsupervised deep learning framework for medical image denoising.
Wu, Hu, Liu (b0140) 2021; 2021
Srinivasan, Gurunathan (b0125) 2023; 4
Chung (10.1016/j.eswa.2024.125711_b0025) 2022; 42
Ali (10.1016/j.eswa.2024.125711_b0010) 2023; 45
Zhao (10.1016/j.eswa.2024.125711_b0170) 2023; 153
10.1016/j.eswa.2024.125711_b0055
Upadhyay (10.1016/j.eswa.2024.125711_b0135) 2021; 400
Hadri (10.1016/j.eswa.2024.125711_b0035) 2021; 151
Xie (10.1016/j.eswa.2024.125711_b0150) 2024; 148
10.1016/j.eswa.2024.125711_b0050
Zhu (10.1016/j.eswa.2024.125711_b0175) 2021; 880
Singh (10.1016/j.eswa.2024.125711_b0110) 2021; 176
Yan (10.1016/j.eswa.2024.125711_b0155) 2023; 167
10.1016/j.eswa.2024.125711_b0105
Kavitha (10.1016/j.eswa.2024.125711_b0085) 2023; 20
Wu (10.1016/j.eswa.2024.125711_b0140) 2021; 2021
Wu (10.1016/j.eswa.2024.125711_b0145) 2023; 85
Hong (10.1016/j.eswa.2024.125711_b0040) 2020; 14
Li (10.1016/j.eswa.2024.125711_b0095) 2024; 174
Yu (10.1016/j.eswa.2024.125711_b0160) 2023; 167
Tajima (10.1016/j.eswa.2024.125711_b0130) 2023; 78
Juneja (10.1016/j.eswa.2024.125711_b0075) 2021; 69
Zhang (10.1016/j.eswa.2024.125711_b0165) 2022; 81
Amiri Golilarz (10.1016/j.eswa.2024.125711_b0015) 2020; 14
10.1016/j.eswa.2024.125711_b0045
Kala (10.1016/j.eswa.2024.125711_b0080) 2020; 79
Li (10.1016/j.eswa.2024.125711_b0090) 2020; 8
10.1016/j.eswa.2024.125711_b0020
Sreelakshmi (10.1016/j.eswa.2024.125711_b0115) 2021; 24
Dhabal (10.1016/j.eswa.2024.125711_b0030) 2021; 25
10.1016/j.eswa.2024.125711_b0060
Ali (10.1016/j.eswa.2024.125711_b0005) 2022; 229
Hu (10.1016/j.eswa.2024.125711_b0065) 2024; 592
Srinivas (10.1016/j.eswa.2024.125711_b0120) 2020; 13
Li (10.1016/j.eswa.2024.125711_b0100) 2020; 71
Srinivasan (10.1016/j.eswa.2024.125711_b0125) 2023; 4
Juneja (10.1016/j.eswa.2024.125711_b0070) 2024; 87
References_xml – volume: 400
  year: 2021
  ident: b0135
  article-title: Magnetic resonance images denoising using a wavelet solution to laplace equation associated with a new variational model
  publication-title: Applied Mathematics and Computation
– volume: 45
  year: 2023
  ident: b0010
  article-title: De-noising brain MRI images by mixing concatenation and residual learning (MCR)
  publication-title: Computer Systems Science & Engineering
– volume: 229
  year: 2022
  ident: b0005
  article-title: DBP-DeepCNN: Prediction of DNA-binding proteins using wavelet-based denoising and deep learning
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 42
  start-page: 922
  year: 2022
  end-page: 934
  ident: b0025
  article-title: MR image denoising and super-resolution using regularized reverse diffusion
  publication-title: IEEE Transactions on Medical Imaging
– volume: 20
  year: 2023
  ident: b0085
  article-title: Optimized deep knowledge-based no-reference image quality index for denoised MRI images
  publication-title: Scientific African
– volume: 14
  start-page: 728
  year: 2020
  ident: b0015
  article-title: Adaptive wavelet based MRI brain image de-noising
  publication-title: Frontiers in neuroscience
– reference: . Doi: 10.48550/arXiv.2107.02314.
– reference: https://www.kaggle.com/datasets/abhranta/brain-tumor-detection-mri.
– volume: 8
  start-page: 1415
  year: 2020
  ident: b0090
  article-title: Elephant herding optimization: Variants, hybrids, and applications
  publication-title: Mathematics
– volume: 174
  year: 2024
  ident: b0095
  article-title: New non-local mean methods for MRI denoising based on global self-similarity between values
  publication-title: Computers in Biology and Medicine
– volume: 25
  start-page: 1941
  year: 2021
  end-page: 1961
  ident: b0030
  article-title: An improved image denoising technique using differential evolution-based salp swarm algorithm
  publication-title: Soft Computing
– volume: 167
  year: 2023
  ident: b0160
  article-title: RIRGAN: An end-to-end lightweight multi-task learning method for brain MRI super-resolution and denoising
  publication-title: Computers in Biology and Medicine
– volume: 24
  start-page: 529
  year: 2021
  end-page: 544
  ident: b0115
  article-title: Fast and denoise feature extraction based ADMF–CNN with GBML framework for MRI brain image
  publication-title: International Journal of Speech Technology
– reference: https://www.kaggle.com/datasets/jarvisgroot/brain-tumor-classification-mri-images.
– volume: 71
  start-page: 55
  year: 2020
  end-page: 68
  ident: b0100
  article-title: MRI denoising using progressively distribution-based neural network
  publication-title: Magnetic Resonance Imaging
– volume: 81
  start-page: 41751
  year: 2022
  end-page: 41763
  ident: b0165
  article-title: Denoising of brain magnetic resonance images using a MDB network
  publication-title: Multimedia Tools and Applications
– reference: Baid, U., Ghodasara, S., Mohan, S., Bilello, M., Calabrese, E., Colak, E., Farahani, K., Kalpathy-Cramer, J., Kitamura, F.C., Pati, S., & Prevedello, L.M. (2021). The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification.
– volume: 79
  start-page: 15513
  year: 2020
  end-page: 15530
  ident: b0080
  article-title: Adaptive fuzzy hexagonal bilateral filter for brain MRI denoising
  publication-title: Multimedia Tools and Applications
– volume: 14
  year: 2020
  ident: b0040
  article-title: FFA-DMRI: A network based on feature fusion and attention mechanism for brain MRI denoising
  publication-title: Frontiers in Neuroscience
– volume: 151
  start-page: 302
  year: 2021
  end-page: 309
  ident: b0035
  article-title: An optimal variable exponent model for Magnetic Resonance Images denoising
  publication-title: Pattern Recognition Letters
– volume: 153
  year: 2023
  ident: b0170
  article-title: SwinGAN: A dual-domain Swin Transformer-based generative adversarial network for MRI reconstruction
  publication-title: Computers in Biology and Medicine
– volume: 148
  year: 2024
  ident: b0150
  article-title: NODE-ImgNet: A PDE-informed effective and robust model for image denoising
  publication-title: Pattern Recognition
– reference: . Doi: 10.48550/arXiv.2103.06575.
– volume: 85
  year: 2023
  ident: b0145
  article-title: Super-resolution of brain MRI images based on denoising diffusion probabilistic model
  publication-title: Biomedical Signal Processing and Control
– volume: 78
  start-page: e13
  year: 2023
  end-page: e21
  ident: b0130
  article-title: Usefulness of deep learning-based noise reduction for 1.5 T MRI brain images
  publication-title: Clinical Radiology
– volume: 69
  year: 2021
  ident: b0075
  article-title: Denoising of magnetic resonance imaging using bayes shrinkage based fused wavelet transform and autoencoder based deep learning approach
  publication-title: Biomedical Signal Processing and Control
– reference: https://www.kaggle.com/datasets/jonathanbesomi/rsna-miccai-png.
– volume: 13
  start-page: 393
  year: 2020
  end-page: 410
  ident: b0120
  article-title: A novel DeepCNN model for denoising analysis of MRI brain tumour images
  publication-title: International Journal of Intelligent Information and Database Systems
– reference: Rai, S., Bhatt, J.S., & Patra, S.K. (2021). An unsupervised deep learning framework for medical image denoising.
– volume: 880
  start-page: 97
  year: 2021
  end-page: 110
  ident: b0175
  article-title: DESN: An unsupervised MR image denoising network with deep image prior
  publication-title: Theoretical Computer Science
– volume: 4
  start-page: 166
  year: 2023
  ident: b0125
  article-title: Enriched model of intuitionistic fuzzy adaptive noise filtering on MR brain image
  publication-title: SN Computer Science
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 18
  ident: b0140
  article-title: Denoising of 3D brain MR images with parallel residual learning of convolutional neural network using global and local feature extraction
  publication-title: Computational Intelligence and Neuroscience
– volume: 592
  year: 2024
  ident: b0065
  article-title: Efficient image denoising with heterogeneous kernel-based CNN
  publication-title: Neurocomputing
– volume: 167
  year: 2023
  ident: b0155
  article-title: DC-SiamNet: Deep contrastive Siamese network for self-supervised MRI reconstruction
  publication-title: Computers in Biology and Medicine
– volume: 176
  year: 2021
  ident: b0110
  article-title: A new technique for guided filter based image denoising using modified cuckoo search optimization
  publication-title: Expert Systems with Applications
– reference: https://www.kaggle.com/datasets/awsaf49/brats2020-training-data.
– volume: 87
  year: 2024
  ident: b0070
  article-title: Denoising of magnetic resonance images of brain tumor using BT-Autonet
  publication-title: Biomedical Signal Processing and Control
– volume: 78
  start-page: e13
  issue: 1
  year: 2023
  ident: 10.1016/j.eswa.2024.125711_b0130
  article-title: Usefulness of deep learning-based noise reduction for 1.5 T MRI brain images
  publication-title: Clinical Radiology
  doi: 10.1016/j.crad.2022.08.127
– volume: 167
  year: 2023
  ident: 10.1016/j.eswa.2024.125711_b0155
  article-title: DC-SiamNet: Deep contrastive Siamese network for self-supervised MRI reconstruction
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2023.107619
– ident: 10.1016/j.eswa.2024.125711_b0105
– volume: 400
  year: 2021
  ident: 10.1016/j.eswa.2024.125711_b0135
  article-title: Magnetic resonance images denoising using a wavelet solution to laplace equation associated with a new variational model
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2021.126083
– volume: 87
  year: 2024
  ident: 10.1016/j.eswa.2024.125711_b0070
  article-title: Denoising of magnetic resonance images of brain tumor using BT-Autonet
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2023.105477
– volume: 174
  year: 2024
  ident: 10.1016/j.eswa.2024.125711_b0095
  article-title: New non-local mean methods for MRI denoising based on global self-similarity between values
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2024.108450
– volume: 176
  year: 2021
  ident: 10.1016/j.eswa.2024.125711_b0110
  article-title: A new technique for guided filter based image denoising using modified cuckoo search optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.114884
– volume: 79
  start-page: 15513
  year: 2020
  ident: 10.1016/j.eswa.2024.125711_b0080
  article-title: Adaptive fuzzy hexagonal bilateral filter for brain MRI denoising
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-019-7459-x
– volume: 24
  start-page: 529
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2024.125711_b0115
  article-title: Fast and denoise feature extraction based ADMF–CNN with GBML framework for MRI brain image
  publication-title: International Journal of Speech Technology
  doi: 10.1007/s10772-020-09793-w
– ident: 10.1016/j.eswa.2024.125711_b0050
– volume: 151
  start-page: 302
  year: 2021
  ident: 10.1016/j.eswa.2024.125711_b0035
  article-title: An optimal variable exponent model for Magnetic Resonance Images denoising
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2021.08.031
– volume: 14
  start-page: 728
  year: 2020
  ident: 10.1016/j.eswa.2024.125711_b0015
  article-title: Adaptive wavelet based MRI brain image de-noising
  publication-title: Frontiers in neuroscience
  doi: 10.3389/fnins.2020.00728
– volume: 42
  start-page: 922
  issue: 4
  year: 2022
  ident: 10.1016/j.eswa.2024.125711_b0025
  article-title: MR image denoising and super-resolution using regularized reverse diffusion
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2022.3220681
– volume: 880
  start-page: 97
  year: 2021
  ident: 10.1016/j.eswa.2024.125711_b0175
  article-title: DESN: An unsupervised MR image denoising network with deep image prior
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2021.06.005
– volume: 14
  year: 2020
  ident: 10.1016/j.eswa.2024.125711_b0040
  article-title: FFA-DMRI: A network based on feature fusion and attention mechanism for brain MRI denoising
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2020.577937
– volume: 148
  year: 2024
  ident: 10.1016/j.eswa.2024.125711_b0150
  article-title: NODE-ImgNet: A PDE-informed effective and robust model for image denoising
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2023.110176
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2024.125711_b0140
  article-title: Denoising of 3D brain MR images with parallel residual learning of convolutional neural network using global and local feature extraction
  publication-title: Computational Intelligence and Neuroscience
– ident: 10.1016/j.eswa.2024.125711_b0045
– ident: 10.1016/j.eswa.2024.125711_b0020
– volume: 8
  start-page: 1415
  issue: 9
  year: 2020
  ident: 10.1016/j.eswa.2024.125711_b0090
  article-title: Elephant herding optimization: Variants, hybrids, and applications
  publication-title: Mathematics
  doi: 10.3390/math8091415
– volume: 167
  year: 2023
  ident: 10.1016/j.eswa.2024.125711_b0160
  article-title: RIRGAN: An end-to-end lightweight multi-task learning method for brain MRI super-resolution and denoising
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2023.107632
– volume: 71
  start-page: 55
  year: 2020
  ident: 10.1016/j.eswa.2024.125711_b0100
  article-title: MRI denoising using progressively distribution-based neural network
  publication-title: Magnetic Resonance Imaging
  doi: 10.1016/j.mri.2020.04.006
– volume: 13
  start-page: 393
  issue: 2–4
  year: 2020
  ident: 10.1016/j.eswa.2024.125711_b0120
  article-title: A novel DeepCNN model for denoising analysis of MRI brain tumour images
  publication-title: International Journal of Intelligent Information and Database Systems
  doi: 10.1504/IJIIDS.2020.109462
– volume: 45
  issue: 2
  year: 2023
  ident: 10.1016/j.eswa.2024.125711_b0010
  article-title: De-noising brain MRI images by mixing concatenation and residual learning (MCR)
  publication-title: Computer Systems Science & Engineering
  doi: 10.32604/csse.2023.032508
– volume: 20
  year: 2023
  ident: 10.1016/j.eswa.2024.125711_b0085
  article-title: Optimized deep knowledge-based no-reference image quality index for denoised MRI images
  publication-title: Scientific African
  doi: 10.1016/j.sciaf.2023.e01680
– volume: 153
  year: 2023
  ident: 10.1016/j.eswa.2024.125711_b0170
  article-title: SwinGAN: A dual-domain Swin Transformer-based generative adversarial network for MRI reconstruction
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2022.106513
– volume: 85
  year: 2023
  ident: 10.1016/j.eswa.2024.125711_b0145
  article-title: Super-resolution of brain MRI images based on denoising diffusion probabilistic model
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2023.104901
– volume: 69
  year: 2021
  ident: 10.1016/j.eswa.2024.125711_b0075
  article-title: Denoising of magnetic resonance imaging using bayes shrinkage based fused wavelet transform and autoencoder based deep learning approach
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.102844
– volume: 229
  year: 2022
  ident: 10.1016/j.eswa.2024.125711_b0005
  article-title: DBP-DeepCNN: Prediction of DNA-binding proteins using wavelet-based denoising and deep learning
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2022.104639
– ident: 10.1016/j.eswa.2024.125711_b0055
– volume: 81
  start-page: 41751
  issue: 29
  year: 2022
  ident: 10.1016/j.eswa.2024.125711_b0165
  article-title: Denoising of brain magnetic resonance images using a MDB network
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-021-11521-8
– volume: 592
  year: 2024
  ident: 10.1016/j.eswa.2024.125711_b0065
  article-title: Efficient image denoising with heterogeneous kernel-based CNN
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.127799
– volume: 25
  start-page: 1941
  issue: 3
  year: 2021
  ident: 10.1016/j.eswa.2024.125711_b0030
  article-title: An improved image denoising technique using differential evolution-based salp swarm algorithm
  publication-title: Soft Computing
  doi: 10.1007/s00500-020-05267-y
– ident: 10.1016/j.eswa.2024.125711_b0060
– volume: 4
  start-page: 166
  issue: 2
  year: 2023
  ident: 10.1016/j.eswa.2024.125711_b0125
  article-title: Enriched model of intuitionistic fuzzy adaptive noise filtering on MR brain image
  publication-title: SN Computer Science
  doi: 10.1007/s42979-022-01591-2
SSID ssj0017007
Score 2.468559
Snippet Magnetic Resonance Imaging (MRI) is an essential tool for diagnosing and monitoring diseases under various conditions. However, noise often degrades image...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 125711
SubjectTerms Autoencoder
Crossover Boosted Elephant Herd Optimization
Deep learning
Denoising
MRI
Neural Network
Noise
Title Improving brain MRI denoising using convolutional AutoEncoder and sparse representations
URI https://dx.doi.org/10.1016/j.eswa.2024.125711
Volume 263
WOSCitedRecordID wos001363746100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt0kMvfZemL3TozXiRbcmSj6FsaVoSQknL3oysB-wSvIt3N03-fUeWrH20Dc2hF2OELQvPx6fxeGY-hD7IqoFtWbBUEm5Sqq1OG6tYWpWMN5IqKhTpxSb42ZmYTKrzkFa07OUEeNuK6-tq8V9NDWNgbFc6ewdzx0lhAM7B6HAEs8Pxnwy_CRM0Tv4hOf12kgC5zKd9VGAdqmzbq7AIZ6L1aj5uXXG7T6gEkumWTk5lsalNCkG9WczcM90qtIEeCuS2foUPZvxhLuXNWoda7AiWUwlDbRLTu7-OIu87wftWJufd9EZuxcxDXCJnfWIW2wkw8pRmXoNn4No8sJlnS3CuuKfa34jcxxRmI7P86bpD5XS0uXi3a_bebhZzDIf0tVnt5qjdHLWf4z46zDmrgMYPj0_Gky_xrxMnvrx-WHkosvL5gPsr-bMjs-WcXDxBj8JXBT72aHiK7pn2GXo8KHbgQODP0SSCA_fgwAAOHMGBe3DgHXDgLXBgAAf24MB74HiBvn8aX3z8nAZtjVQVhKxSXsK-VimSywo8xpwopmimiLKFZToXxEjGc6FKo6zhBW1URTMN7r0SOpO2tMVLdNDOW_MK4VJnXIpGKmPBPaWZEJUtdGbhy55QrvURyoYXVavQeN7pn1zWfzfREUriPQvfduXWq9nw_uvgOHqHsAY43XLf6zs95Q16uMH5W3Sw6tbmHXqgrlbTZfc-YOkXGYKSrw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+brain+MRI+denoising+using+convolutional+AutoEncoder+and+sparse+representations&rft.jtitle=Expert+systems+with+applications&rft.au=Velayudham%2C+A&rft.au=Madhan+Kumar%2C+K.&rft.au=Krishna+Priya%2C+MS&rft.date=2025-03-05&rft.issn=0957-4174&rft.volume=263&rft.spage=125711&rft_id=info:doi/10.1016%2Fj.eswa.2024.125711&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2024_125711
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon