Parameter convexity and concavity of generalized trigonometric functions
We study the convexity properties of the generalized trigonometric functions viewed as functions of the parameter. We show that p→sinp(y) and p→cosp(y) are log-concave on the appropriate intervals while p→tanp(y) is log-convex. We also prove similar facts about the generalized hyperbolic function...
Uložené v:
| Vydané v: | Journal of mathematical analysis and applications Ročník 421; číslo 1; s. 370 - 382 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.01.2015
|
| Predmet: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We study the convexity properties of the generalized trigonometric functions viewed as functions of the parameter. We show that p→sinp(y) and p→cosp(y) are log-concave on the appropriate intervals while p→tanp(y) is log-convex. We also prove similar facts about the generalized hyperbolic functions. In particular, our results settle a major part of the conjecture recently put forward in [4]. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2014.07.017 |