An automatic defect classification and segmentation method on three-dimensional point clouds for sewer pipes
•An 3D inspection method on point clouds for pipe defects was proposed.•The network structure was optimized to improve the inspection accuracy.•The training strategies were improved to stabilize training and avoid overfitting.•Two data augmentation methods are used to facilitate training. With the d...
Uloženo v:
| Vydáno v: | Tunnelling and underground space technology Ročník 143; s. 105480 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.01.2024
|
| Témata: | |
| ISSN: | 0886-7798, 1878-4364 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •An 3D inspection method on point clouds for pipe defects was proposed.•The network structure was optimized to improve the inspection accuracy.•The training strategies were improved to stabilize training and avoid overfitting.•Two data augmentation methods are used to facilitate training.
With the development of deep learning (DL), sewer pipe inspection on two-dimensional (2D) images has achieved remarkable accuracy. However, extracting defect measurements from these 2D images is challenging due to the curved nature of pipes and the lack of depth information. Point clouds can restore the three-dimensional (3D) information of objects. To effectively identify defects in disordered and sparse point clouds, a 3D sewer pipe classification and segmentation method was proposed. In the encoder, the original point clouds are sampled and grouped and the local features in the clusters are extracted by two symmetric functions (1 × 1 convolution and the maximization function) to process the points with permutation invariance. In the decoder, the multi-scaling abstract features are upsampled using feature pyramid network (FPN) to predict the category of each point. Especially, the network structure and training strategy of the inspection method is optimized to improve the inspection accuracy. Furthermore, two data augmentation methods, namely random scaling and point jitter, are used to increase the data volume. An ablation experiment shows that the optimization of network structure can effectively improve the performance of the inspection model and the novel training strategies can stabilize the training process and prevent overfitting. Comparison among the state-of-the-art networks demonstrates that the proposed segmentation model attains the highest mIoU of 94.15 %, which is improved by 11.46 % with the optimization of network structure and training strategy. For the classification task, the F1 score and accuracy of the established model are 6.79 % and 5.46 % higher than PointNet++, respectively. These results signify the high-accuracy defect inspection capability of our proposed method on 3D point clouds of sewer pipelines. |
|---|---|
| AbstractList | •An 3D inspection method on point clouds for pipe defects was proposed.•The network structure was optimized to improve the inspection accuracy.•The training strategies were improved to stabilize training and avoid overfitting.•Two data augmentation methods are used to facilitate training.
With the development of deep learning (DL), sewer pipe inspection on two-dimensional (2D) images has achieved remarkable accuracy. However, extracting defect measurements from these 2D images is challenging due to the curved nature of pipes and the lack of depth information. Point clouds can restore the three-dimensional (3D) information of objects. To effectively identify defects in disordered and sparse point clouds, a 3D sewer pipe classification and segmentation method was proposed. In the encoder, the original point clouds are sampled and grouped and the local features in the clusters are extracted by two symmetric functions (1 × 1 convolution and the maximization function) to process the points with permutation invariance. In the decoder, the multi-scaling abstract features are upsampled using feature pyramid network (FPN) to predict the category of each point. Especially, the network structure and training strategy of the inspection method is optimized to improve the inspection accuracy. Furthermore, two data augmentation methods, namely random scaling and point jitter, are used to increase the data volume. An ablation experiment shows that the optimization of network structure can effectively improve the performance of the inspection model and the novel training strategies can stabilize the training process and prevent overfitting. Comparison among the state-of-the-art networks demonstrates that the proposed segmentation model attains the highest mIoU of 94.15 %, which is improved by 11.46 % with the optimization of network structure and training strategy. For the classification task, the F1 score and accuracy of the established model are 6.79 % and 5.46 % higher than PointNet++, respectively. These results signify the high-accuracy defect inspection capability of our proposed method on 3D point clouds of sewer pipelines. |
| ArticleNumber | 105480 |
| Author | Duan, Yihang Di, Danyang Pang, Gaozhao Li, Bin Ma, Duo Wang, Niannian Du, Xueming |
| Author_xml | – sequence: 1 givenname: Niannian surname: Wang fullname: Wang, Niannian – sequence: 2 givenname: Duo surname: Ma fullname: Ma, Duo email: md13255961153@gs.zzu.edu.cn – sequence: 3 givenname: Xueming surname: Du fullname: Du, Xueming – sequence: 4 givenname: Bin surname: Li fullname: Li, Bin – sequence: 5 givenname: Danyang surname: Di fullname: Di, Danyang – sequence: 6 givenname: Gaozhao surname: Pang fullname: Pang, Gaozhao – sequence: 7 givenname: Yihang surname: Duan fullname: Duan, Yihang |
| BookMark | eNp9kM1qxCAURqVModNpX6ArXyBTY4wx0M0w9A8GumnX4ui145DEoE5L376GdNXFrJTv41zuPddoMfgBELorybokJb8_rtMppjUltMpBzQS5QMtSNKJgFWcLtCRC8KJpWnGFrmM8EkJqStsl6jYDVqfke5WcxgYs6IR1p2J01ukc-twPBkf47GFIc9BDOniD8y8dAkBhXO5iblSHR--GaYI_mYitD5n8hoBHN0K8QZdWdRFu_94V-nh6fN--FLu359ftZlfoipBUNLylivG9EKpinGiVt-WW16xqjW0Vp9Aw3nDD1H5fl5QSa5k1xLaWtNCUrFohMc_VwccYwErt5tVTUK6TJZGTNXmUkzU5WZOztYzSf-gYXK_Cz3noYYYgH_XlIMioHQwajAvZpzTencN_AeuSiuY |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2024_115954 crossref_primary_10_1111_mice_13241 crossref_primary_10_1061_JCCEE5_CPENG_6549 crossref_primary_10_1016_j_inffus_2024_102575 crossref_primary_10_1155_2024_9217395 crossref_primary_10_1016_j_tust_2025_106755 crossref_primary_10_1016_j_measurement_2025_117434 crossref_primary_10_3390_rs17010133 crossref_primary_10_1016_j_tust_2024_106130 crossref_primary_10_1016_j_autcon_2024_105769 crossref_primary_10_1016_j_aei_2024_102936 crossref_primary_10_1016_j_autcon_2025_106098 crossref_primary_10_1016_j_undsp_2025_01_007 crossref_primary_10_3390_s24237557 crossref_primary_10_1016_j_tust_2024_106195 crossref_primary_10_3390_s24237786 crossref_primary_10_1016_j_measurement_2025_117370 crossref_primary_10_3390_photonics11070635 crossref_primary_10_1061_JCCEE5_CPENG_6672 crossref_primary_10_3390_w17182781 crossref_primary_10_1016_j_asoc_2024_111622 crossref_primary_10_1109_TIM_2025_3575961 crossref_primary_10_3390_app15073518 |
| Cites_doi | 10.1016/j.autcon.2021.103874 10.1111/mice.12970 10.1016/j.autcon.2022.104367 10.1016/j.tust.2022.104861 10.1109/TITS.2021.3054026 10.1016/j.autcon.2022.104555 10.1109/JSTARS.2018.2817227 10.1061/(ASCE)1076-0342(2005)11:3(165) 10.1016/j.autcon.2014.12.015 10.1016/j.autcon.2022.104494 10.1016/j.autcon.2021.103755 10.3390/buildings12020213 10.1016/j.autcon.2022.104285 10.1016/j.tust.2022.104403 10.1016/j.tust.2021.103840 10.1109/CVPR.2016.90 10.1016/j.aei.2020.101200 10.1016/j.autcon.2022.104519 10.1016/j.autcon.2017.11.004 10.1016/j.undsp.2021.08.004 10.1016/j.enggeo.2018.03.020 10.1109/MGRS.2019.2937630 10.1016/j.autcon.2022.104167 10.5220/0010207908910900 10.1016/j.tust.2022.104965 10.1016/j.asoc.2018.11.016 10.1016/j.autcon.2020.103383 10.1016/S0926-5805(97)00071-X 10.1111/mice.12918 10.3390/w11102101 10.1016/j.autcon.2020.103289 10.1007/s10044-013-0355-5 10.1016/j.autcon.2021.103992 10.1016/j.tust.2022.104761 10.1016/j.autcon.2018.03.028 10.1016/j.aei.2018.05.005 10.1016/j.autcon.2022.104163 10.1016/j.conbuildmat.2021.125385 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.tust.2023.105480 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1878-4364 |
| ExternalDocumentID | 10_1016_j_tust_2023_105480 S088677982300500X |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSE SST SSZ T5K WUQ ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-7692a46b88a3460ca0006f65439df9a62e74676d4abb51220ff4fd0f9f09e7143 |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001100271500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0886-7798 |
| IngestDate | Tue Nov 18 22:35:44 EST 2025 Sat Nov 29 07:10:21 EST 2025 Fri Feb 23 02:35:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning 3D segmentation Point cloud Sewer pipeline Defect inspection |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-7692a46b88a3460ca0006f65439df9a62e74676d4abb51220ff4fd0f9f09e7143 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_tust_2023_105480 crossref_primary_10_1016_j_tust_2023_105480 elsevier_sciencedirect_doi_10_1016_j_tust_2023_105480 |
| PublicationCentury | 2000 |
| PublicationDate | January 2024 2024-01-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Tunnelling and underground space technology |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wirahadikusumah, Abraham, Iseley, Prasanth (b0145) 1998; 7 Meng, S., Gao, Z., Zhou, Y., He, B., Djerrad, A., 2022. Real‐time automatic crack detection method based on drone. Comput.-Aided Civil Infrastruct. Eng. Zhang, Du, Tannant, Zhu, Zheng (b0200) 2018; 239 Zhang, Hu, Ai (b0205) 2019; 11 Zhao, S., Kang, F., Li, J., 2022. Concrete dam damage detection and localisation based on YOLOv5s-HSC and photogrammetric 3D reconstruction. Autom. Constr. 143. Liu, H., Yue, Y., Liu, C., Spencer, B.F., Cui, J., 2022. Automatic recognition and localization of underground pipelines in GPR B-scans using a deep learning model. Tunn. Undergr. Space Technol. Xia, T., Yang, J., Chen, L., 2022. Automated semantic segmentation of bridge point cloud based on local descriptor and machine learning. Autom. Constr. 133. Yin, C., Wang, B., Gan, V.J.L., Wang, M., Cheng, J.C.P., 2021. Automated semantic segmentation of industrial point clouds using ResPointNet++. Autom. Constr. 130. Zhai, Moore (b0195) 2023; 133 Ma, Liu, Fang, Wang, Zhang, Li, Dong (b0075) 2021; 312 Xu, Yao, Tuttas, Hoegner, Stilla (b0170) 2018; 11 A.C. Wilson R. Roelofs M. Stern N. Srebro B. Recht The Marginal Value of Adaptive Gradient Methods in Machine Learning 2017. He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 770-778. Ma, J.W., Leite, F., 2022. Performance boosting of conventional deep learning-based semantic segmentation leveraging unsupervised clustering. Autom. Constr. 136. Moeslund, T., Nikolov, I., Henriksen, K., Lynge, M., Allahham, M., Haurum, J., 2021. Sewer defect classification using synthetic point clouds. In: Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp. 891-900. Wu, Liu, He (b0150) 2013; 18 Wang, Cheng (b0130) 2020; 35 Koo, Jung, Yu, Kim (b0040) 2021; 8 Shehab, Moselhi (b0115) 2005; 11 Zhou, Y., Ji, A., Zhang, L., 2022b. Sewer defect detection from 3D point clouds using a transformer-based deep learning model. Autom. Constr. 136. Reyes-Acosta, Lopez-Juarez, Osorio-Comparan, Lefranc (b0110) 2019; 75 Xie, Tian, Zhu (b0160) 2020; 8 Ahmed, Ashfaque, Ulhaq, Mathavan, Kamal, Rahman (b0005) 2022; 23 Koo, Jung, Yu (b0035) 2021; 47 Pan, Zheng, Guo, Lv (b0100) 2020; 119 Oh, Lee, Kim, Kim, Cho (b0095) 2021; 13 Insa-Iglesias, M., Jenkins, M.D., Morison, G., 2021. 3D visual inspection system framework for structural condition monitoring and analysis. Autom. Constr. 128. Sun, J., Peng, B., Wang, C.C., Chen, K., Zhong, B., Wu, J., 2022. Building displacement measurement and analysis based on UAV images. Autom. Constr. 140. Fang, X., Li, Q., Zhu, J., Chen, Z., Zhang, D., Wu, K., Ding, K., Li, Q., 2022. Sewer defect instance segmentation, localization, and 3D reconstruction for sewer floating capsule robots. Autom. Constr. 142. Huang, Wang, Fang, Liu, Pang (b0025) 2022; 12 Ma, D., Fang, H., Wang, N., Lu, H., Matthews, J., Zhang, C., 2023. Transformer‐optimized generation, detection, and tracking network for images with drainage pipeline defects. Comput.-Aided Civil Infrastruct. Eng. United States Department of Transportation, Pipeline Incident 20 Year Trends, https://www.phmsa.dot.gov/data-and-statistics/pipeline/pipeline-incident-20-year-trends. Xu, Liu (b0165) 2021; 37 Pang, Wang, Fang, Liu, Huang (b0105) 2022; 12 Xue, Shi, Jia, Huang (b0175) 2022; 7 Li, Fang, Yang, Zhang, Du, Wang, Guo (b0050) 2022; 130 Yoon, Wang, Sohn (b0190) 2018; 86 Dimitrov, Golparvar-Fard (b0010) 2015; 51 Yang, X., del Rey Castillo, E., Zou, Y., Wotherspoon, L., Tan, Y., 2022. Automated semantic segmentation of bridge components from large-scale point clouds using a weighted superpoint graph. Autom. Constr. 142. Kumar, Abraham, Jahanshahi, Iseley, Starr (b0045) 2018; 91 Zhou, Situ, Teng, Liu, Chen, Chen (b0225) 2022; 123 Zhang, Zhang, Fu, Ozevin, Yuan (b0210) 2021 Wang, Luo, Cheng (b0135) 2021; 110 Ma, Liu (b0070) 2018; 37 Meijer, D., Luimes, R., Knobbe, A., Bäck, T., 2022. Anomaly detection in urban drainage with stereovision. Autom. Constr. 139. Zuo, X., Dai, B., Shan, Y., Shen, J., Hu, C., Huang, S., 2020. Classifying cracks at sub-class level in closed circuit television sewer inspection videos. Autom. Constr. 118. Yoon (10.1016/j.tust.2023.105480_b0190) 2018; 86 Pan (10.1016/j.tust.2023.105480_b0100) 2020; 119 10.1016/j.tust.2023.105480_b0215 10.1016/j.tust.2023.105480_b0015 Oh (10.1016/j.tust.2023.105480_b0095) 2021; 13 10.1016/j.tust.2023.105480_b0020 Li (10.1016/j.tust.2023.105480_b0050) 2022; 130 Xu (10.1016/j.tust.2023.105480_b0170) 2018; 11 10.1016/j.tust.2023.105480_b0185 10.1016/j.tust.2023.105480_b0065 Pang (10.1016/j.tust.2023.105480_b0105) 2022; 12 10.1016/j.tust.2023.105480_b0120 10.1016/j.tust.2023.105480_b0085 10.1016/j.tust.2023.105480_b0140 Wang (10.1016/j.tust.2023.105480_b0130) 2020; 35 Wang (10.1016/j.tust.2023.105480_b0135) 2021; 110 Zhang (10.1016/j.tust.2023.105480_b0205) 2019; 11 10.1016/j.tust.2023.105480_b0220 Koo (10.1016/j.tust.2023.105480_b0040) 2021; 8 Kumar (10.1016/j.tust.2023.105480_b0045) 2018; 91 Shehab (10.1016/j.tust.2023.105480_b0115) 2005; 11 10.1016/j.tust.2023.105480_b0060 10.1016/j.tust.2023.105480_b0080 Reyes-Acosta (10.1016/j.tust.2023.105480_b0110) 2019; 75 10.1016/j.tust.2023.105480_b0180 Ma (10.1016/j.tust.2023.105480_b0070) 2018; 37 Koo (10.1016/j.tust.2023.105480_b0035) 2021; 47 Xue (10.1016/j.tust.2023.105480_b0175) 2022; 7 Ahmed (10.1016/j.tust.2023.105480_b0005) 2022; 23 Zhai (10.1016/j.tust.2023.105480_b0195) 2023; 133 Zhou (10.1016/j.tust.2023.105480_b0225) 2022; 123 Ma (10.1016/j.tust.2023.105480_b0075) 2021; 312 10.1016/j.tust.2023.105480_b0125 Zhang (10.1016/j.tust.2023.105480_b0210) 2021 Wu (10.1016/j.tust.2023.105480_b0150) 2013; 18 Zhang (10.1016/j.tust.2023.105480_b0200) 2018; 239 Dimitrov (10.1016/j.tust.2023.105480_b0010) 2015; 51 10.1016/j.tust.2023.105480_b0230 10.1016/j.tust.2023.105480_b0030 Huang (10.1016/j.tust.2023.105480_b0025) 2022; 12 Xie (10.1016/j.tust.2023.105480_b0160) 2020; 8 10.1016/j.tust.2023.105480_b0055 Wirahadikusumah (10.1016/j.tust.2023.105480_b0145) 1998; 7 10.1016/j.tust.2023.105480_b0155 10.1016/j.tust.2023.105480_b0090 Xu (10.1016/j.tust.2023.105480_b0165) 2021; 37 |
| References_xml | – volume: 8 start-page: 38 year: 2020 end-page: 59 ident: b0160 article-title: Linking Points With Labels in 3D: A Review of Point Cloud Semantic Segmentation publication-title: IEEE Geosci. Remote Sens. Mag. – volume: 130 year: 2022 ident: b0050 article-title: Impact of erosion voids and internal corrosion on concrete pipes under traffic loads publication-title: Tunn. Undergr. Space Technol. – volume: 23 start-page: 4685 year: 2022 end-page: 4694 ident: b0005 article-title: Pothole 3D reconstruction with a novel imaging system and structure from motion techniques publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 133 year: 2023 ident: b0195 article-title: Axial stresses in pressure pipe liners spanning joints with initial gap, opening as a result of differential ground movements publication-title: Tunn. Undergr. Space Technol. – reference: Fang, X., Li, Q., Zhu, J., Chen, Z., Zhang, D., Wu, K., Ding, K., Li, Q., 2022. Sewer defect instance segmentation, localization, and 3D reconstruction for sewer floating capsule robots. Autom. Constr. 142. – volume: 35 start-page: 162 year: 2020 end-page: 177 ident: b0130 article-title: A unified convolutional neural network integrated with conditional random field for pipe defect segmentation. Comput.-Aided Civil Infrastruct publication-title: Eng. – reference: Zhou, Y., Ji, A., Zhang, L., 2022b. Sewer defect detection from 3D point clouds using a transformer-based deep learning model. Autom. Constr. 136. – volume: 123 start-page: 1 year: 2022 end-page: 14 ident: b0225 article-title: Automatic sewer defect detection and severity quantification based on pixel-level semantic segmentation publication-title: Tunn. Undergr. Space Technol. – volume: 51 start-page: 32 year: 2015 end-page: 45 ident: b0010 article-title: Segmentation of building point cloud models including detailed architectural/structural features and MEP systems publication-title: Autom. Constr. – volume: 11 start-page: 2101 year: 2019 ident: b0205 article-title: A 3D reconstruction pipeline of urban drainage pipes based on multiviewImage matching using low-cost panoramic video cameras publication-title: Water – volume: 110 start-page: 1 year: 2021 end-page: 20 ident: b0135 article-title: Towards an automated condition assessment framework of underground sewer pipes based on closed-circuit television (CCTV) images publication-title: Tunn. Undergr. Space Technol. – reference: Liu, H., Yue, Y., Liu, C., Spencer, B.F., Cui, J., 2022. Automatic recognition and localization of underground pipelines in GPR B-scans using a deep learning model. Tunn. Undergr. Space Technol. – volume: 7 start-page: 259 year: 1998 end-page: 270 ident: b0145 article-title: Assessment technologies for sewer system rehabilitation publication-title: Autom. Constr. – reference: Zuo, X., Dai, B., Shan, Y., Shen, J., Hu, C., Huang, S., 2020. Classifying cracks at sub-class level in closed circuit television sewer inspection videos. Autom. Constr. 118. – volume: 47 year: 2021 ident: b0035 article-title: Automatic classification of wall and door BIM element subtypes using 3D geometric deep neural networks publication-title: Adv. Eng. Inf. – reference: Sun, J., Peng, B., Wang, C.C., Chen, K., Zhong, B., Wu, J., 2022. Building displacement measurement and analysis based on UAV images. Autom. Constr. 140. – reference: Yang, X., del Rey Castillo, E., Zou, Y., Wotherspoon, L., Tan, Y., 2022. Automated semantic segmentation of bridge components from large-scale point clouds using a weighted superpoint graph. Autom. Constr. 142. – reference: Zhao, S., Kang, F., Li, J., 2022. Concrete dam damage detection and localisation based on YOLOv5s-HSC and photogrammetric 3D reconstruction. Autom. Constr. 143. – reference: Ma, D., Fang, H., Wang, N., Lu, H., Matthews, J., Zhang, C., 2023. Transformer‐optimized generation, detection, and tracking network for images with drainage pipeline defects. Comput.-Aided Civil Infrastruct. Eng. – volume: 12 start-page: 213 year: 2022 ident: b0105 article-title: Study of damage quantification of concrete drainage pipes based on point cloud segmentation and reconstruction publication-title: Buildings – reference: Meng, S., Gao, Z., Zhou, Y., He, B., Djerrad, A., 2022. Real‐time automatic crack detection method based on drone. Comput.-Aided Civil Infrastruct. Eng. – volume: 119 start-page: 1 year: 2020 end-page: 12 ident: b0100 article-title: Automatic sewer pipe defect semantic segmentation based on improved U-Net publication-title: Autom. Constr. – volume: 11 start-page: 4270 year: 2018 end-page: 4286 ident: b0170 article-title: Unsupervised Segmentation of Point Clouds From Buildings Using Hierarchical Clustering Based on Gestalt Principles publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 239 start-page: 109 year: 2018 end-page: 118 ident: b0200 article-title: Automated method for extracting and analysing the rock discontinuities from point clouds based on digital surface model of rock mass publication-title: Eng. Geol. – volume: 37 start-page: 163 year: 2018 end-page: 174 ident: b0070 article-title: A review of 3D reconstruction techniques in civil engineering and their applications publication-title: Adv. Eng. Inf. – volume: 312 start-page: 1 year: 2021 end-page: 18 ident: b0075 article-title: A multi-defect detection system for sewer pipelines based on StyleGAN-SDM and fusion CNN publication-title: Constr. Build. Mater. – volume: 18 start-page: 263 year: 2013 end-page: 276 ident: b0150 article-title: Classification of defects with ensemble methods in the automated visual inspection of sewer pipes publication-title: Pattern Anal. Appl. – reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 770-778. – volume: 8 start-page: 239 year: 2021 end-page: 250 ident: b0040 article-title: A geometric deep learning approach for checking element-to-entity mappings in infrastructure building information models publication-title: J. Comput. Des. Eng. – reference: Yin, C., Wang, B., Gan, V.J.L., Wang, M., Cheng, J.C.P., 2021. Automated semantic segmentation of industrial point clouds using ResPointNet++. Autom. Constr. 130. – reference: Moeslund, T., Nikolov, I., Henriksen, K., Lynge, M., Allahham, M., Haurum, J., 2021. Sewer defect classification using synthetic point clouds. In: Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp. 891-900. – reference: United States Department of Transportation, Pipeline Incident 20 Year Trends, https://www.phmsa.dot.gov/data-and-statistics/pipeline/pipeline-incident-20-year-trends. – volume: 12 year: 2022 ident: b0025 article-title: Research on 3D Defect Information Management of Drainage Pipeline Based on BIM publication-title: Buildings – reference: Meijer, D., Luimes, R., Knobbe, A., Bäck, T., 2022. Anomaly detection in urban drainage with stereovision. Autom. Constr. 139. – volume: 13 year: 2021 ident: b0095 article-title: Building Component Detection on Unstructured 3D Indoor Point Clouds Using RANSAC-Based Region Growing publication-title: Remote Sens. (Basel) – reference: A.C. Wilson R. Roelofs M. Stern N. Srebro B. Recht The Marginal Value of Adaptive Gradient Methods in Machine Learning 2017. – volume: 37 start-page: 354 year: 2021 end-page: 369 ident: b0165 article-title: A 3D reconstruction method for buildings based on monocular vision. Comput.-Aided Civil Infrastruct publication-title: Eng. – volume: 91 start-page: 273 year: 2018 end-page: 283 ident: b0045 article-title: Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks publication-title: Autom. Constr. – volume: 75 start-page: 562 year: 2019 end-page: 574 ident: b0110 article-title: 3D pipe reconstruction employing video information from mobile robots publication-title: Appl. Soft Comput. – volume: 7 start-page: 311 year: 2022 end-page: 323 ident: b0175 article-title: 3D reconstruction and automatic leakage defect quantification of metro tunnel based on SfM-Deep learning method publication-title: Underground Space – reference: Xia, T., Yang, J., Chen, L., 2022. Automated semantic segmentation of bridge point cloud based on local descriptor and machine learning. Autom. Constr. 133. – volume: 11 start-page: 165 year: 2005 end-page: 171 ident: b0115 article-title: Automated detection and classification of infiltration in sewer pipes publication-title: J. Infrastruct. Syst. – reference: Insa-Iglesias, M., Jenkins, M.D., Morison, G., 2021. 3D visual inspection system framework for structural condition monitoring and analysis. Autom. Constr. 128. – reference: Ma, J.W., Leite, F., 2022. Performance boosting of conventional deep learning-based semantic segmentation leveraging unsupervised clustering. Autom. Constr. 136. – volume: 86 start-page: 81 year: 2018 end-page: 98 ident: b0190 article-title: Optimal placement of precast bridge deck slabs with respect to precast girders using 3D laser scanning publication-title: Autom. Constr. – year: 2021 ident: b0210 article-title: Study on leak localization for buried gas pipelines based on an acoustic method publication-title: Tunn. Undergr. Space Technol. – volume: 12 year: 2022 ident: 10.1016/j.tust.2023.105480_b0025 article-title: Research on 3D Defect Information Management of Drainage Pipeline Based on BIM publication-title: Buildings – ident: 10.1016/j.tust.2023.105480_b0185 doi: 10.1016/j.autcon.2021.103874 – ident: 10.1016/j.tust.2023.105480_b0065 doi: 10.1111/mice.12970 – ident: 10.1016/j.tust.2023.105480_b0120 doi: 10.1016/j.autcon.2022.104367 – ident: 10.1016/j.tust.2023.105480_b0055 doi: 10.1016/j.tust.2022.104861 – volume: 23 start-page: 4685 year: 2022 ident: 10.1016/j.tust.2023.105480_b0005 article-title: Pothole 3D reconstruction with a novel imaging system and structure from motion techniques publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3054026 – ident: 10.1016/j.tust.2023.105480_b0215 doi: 10.1016/j.autcon.2022.104555 – volume: 11 start-page: 4270 year: 2018 ident: 10.1016/j.tust.2023.105480_b0170 article-title: Unsupervised Segmentation of Point Clouds From Buildings Using Hierarchical Clustering Based on Gestalt Principles publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2817227 – ident: 10.1016/j.tust.2023.105480_b0125 – volume: 11 start-page: 165 year: 2005 ident: 10.1016/j.tust.2023.105480_b0115 article-title: Automated detection and classification of infiltration in sewer pipes publication-title: J. Infrastruct. Syst. doi: 10.1061/(ASCE)1076-0342(2005)11:3(165) – volume: 51 start-page: 32 year: 2015 ident: 10.1016/j.tust.2023.105480_b0010 article-title: Segmentation of building point cloud models including detailed architectural/structural features and MEP systems publication-title: Autom. Constr. doi: 10.1016/j.autcon.2014.12.015 – ident: 10.1016/j.tust.2023.105480_b0015 doi: 10.1016/j.autcon.2022.104494 – ident: 10.1016/j.tust.2023.105480_b0030 doi: 10.1016/j.autcon.2021.103755 – volume: 12 start-page: 213 year: 2022 ident: 10.1016/j.tust.2023.105480_b0105 article-title: Study of damage quantification of concrete drainage pipes based on point cloud segmentation and reconstruction publication-title: Buildings doi: 10.3390/buildings12020213 – ident: 10.1016/j.tust.2023.105480_b0080 doi: 10.1016/j.autcon.2022.104285 – volume: 123 start-page: 1 year: 2022 ident: 10.1016/j.tust.2023.105480_b0225 article-title: Automatic sewer defect detection and severity quantification based on pixel-level semantic segmentation publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2022.104403 – volume: 110 start-page: 1 year: 2021 ident: 10.1016/j.tust.2023.105480_b0135 article-title: Towards an automated condition assessment framework of underground sewer pipes based on closed-circuit television (CCTV) images publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2021.103840 – ident: 10.1016/j.tust.2023.105480_b0020 doi: 10.1109/CVPR.2016.90 – volume: 47 year: 2021 ident: 10.1016/j.tust.2023.105480_b0035 article-title: Automatic classification of wall and door BIM element subtypes using 3D geometric deep neural networks publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2020.101200 – volume: 37 start-page: 354 year: 2021 ident: 10.1016/j.tust.2023.105480_b0165 article-title: A 3D reconstruction method for buildings based on monocular vision. Comput.-Aided Civil Infrastruct publication-title: Eng. – ident: 10.1016/j.tust.2023.105480_b0180 doi: 10.1016/j.autcon.2022.104519 – volume: 86 start-page: 81 year: 2018 ident: 10.1016/j.tust.2023.105480_b0190 article-title: Optimal placement of precast bridge deck slabs with respect to precast girders using 3D laser scanning publication-title: Autom. Constr. doi: 10.1016/j.autcon.2017.11.004 – volume: 7 start-page: 311 year: 2022 ident: 10.1016/j.tust.2023.105480_b0175 article-title: 3D reconstruction and automatic leakage defect quantification of metro tunnel based on SfM-Deep learning method publication-title: Underground Space doi: 10.1016/j.undsp.2021.08.004 – volume: 239 start-page: 109 year: 2018 ident: 10.1016/j.tust.2023.105480_b0200 article-title: Automated method for extracting and analysing the rock discontinuities from point clouds based on digital surface model of rock mass publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2018.03.020 – volume: 8 start-page: 38 year: 2020 ident: 10.1016/j.tust.2023.105480_b0160 article-title: Linking Points With Labels in 3D: A Review of Point Cloud Semantic Segmentation publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2019.2937630 – volume: 8 start-page: 239 year: 2021 ident: 10.1016/j.tust.2023.105480_b0040 article-title: A geometric deep learning approach for checking element-to-entity mappings in infrastructure building information models publication-title: J. Comput. Des. Eng. – ident: 10.1016/j.tust.2023.105480_b0140 – ident: 10.1016/j.tust.2023.105480_b0060 doi: 10.1016/j.autcon.2022.104167 – ident: 10.1016/j.tust.2023.105480_b0090 doi: 10.5220/0010207908910900 – volume: 133 year: 2023 ident: 10.1016/j.tust.2023.105480_b0195 article-title: Axial stresses in pressure pipe liners spanning joints with initial gap, opening as a result of differential ground movements publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2022.104965 – volume: 75 start-page: 562 year: 2019 ident: 10.1016/j.tust.2023.105480_b0110 article-title: 3D pipe reconstruction employing video information from mobile robots publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.11.016 – volume: 119 start-page: 1 year: 2020 ident: 10.1016/j.tust.2023.105480_b0100 article-title: Automatic sewer pipe defect semantic segmentation based on improved U-Net publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103383 – volume: 7 start-page: 259 year: 1998 ident: 10.1016/j.tust.2023.105480_b0145 article-title: Assessment technologies for sewer system rehabilitation publication-title: Autom. Constr. doi: 10.1016/S0926-5805(97)00071-X – ident: 10.1016/j.tust.2023.105480_b0085 doi: 10.1111/mice.12918 – volume: 11 start-page: 2101 year: 2019 ident: 10.1016/j.tust.2023.105480_b0205 article-title: A 3D reconstruction pipeline of urban drainage pipes based on multiviewImage matching using low-cost panoramic video cameras publication-title: Water doi: 10.3390/w11102101 – ident: 10.1016/j.tust.2023.105480_b0230 doi: 10.1016/j.autcon.2020.103289 – volume: 18 start-page: 263 year: 2013 ident: 10.1016/j.tust.2023.105480_b0150 article-title: Classification of defects with ensemble methods in the automated visual inspection of sewer pipes publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-013-0355-5 – ident: 10.1016/j.tust.2023.105480_b0155 doi: 10.1016/j.autcon.2021.103992 – volume: 130 year: 2022 ident: 10.1016/j.tust.2023.105480_b0050 article-title: Impact of erosion voids and internal corrosion on concrete pipes under traffic loads publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2022.104761 – volume: 13 year: 2021 ident: 10.1016/j.tust.2023.105480_b0095 article-title: Building Component Detection on Unstructured 3D Indoor Point Clouds Using RANSAC-Based Region Growing publication-title: Remote Sens. (Basel) – volume: 91 start-page: 273 year: 2018 ident: 10.1016/j.tust.2023.105480_b0045 article-title: Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.03.028 – volume: 37 start-page: 163 year: 2018 ident: 10.1016/j.tust.2023.105480_b0070 article-title: A review of 3D reconstruction techniques in civil engineering and their applications publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2018.05.005 – year: 2021 ident: 10.1016/j.tust.2023.105480_b0210 article-title: Study on leak localization for buried gas pipelines based on an acoustic method publication-title: Tunn. Undergr. Space Technol. – volume: 35 start-page: 162 year: 2020 ident: 10.1016/j.tust.2023.105480_b0130 article-title: A unified convolutional neural network integrated with conditional random field for pipe defect segmentation. Comput.-Aided Civil Infrastruct publication-title: Eng. – ident: 10.1016/j.tust.2023.105480_b0220 doi: 10.1016/j.autcon.2022.104163 – volume: 312 start-page: 1 year: 2021 ident: 10.1016/j.tust.2023.105480_b0075 article-title: A multi-defect detection system for sewer pipelines based on StyleGAN-SDM and fusion CNN publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.125385 |
| SSID | ssj0005229 |
| Score | 2.4945118 |
| Snippet | •An 3D inspection method on point clouds for pipe defects was proposed.•The network structure was optimized to improve the inspection accuracy.•The training... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105480 |
| SubjectTerms | 3D segmentation Deep learning Defect inspection Point cloud Sewer pipeline |
| Title | An automatic defect classification and segmentation method on three-dimensional point clouds for sewer pipes |
| URI | https://dx.doi.org/10.1016/j.tust.2023.105480 |
| Volume | 143 |
| WOSCitedRecordID | wos001100271500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1878-4364 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005229 issn: 0886-7798 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWlgMcEJ-i5UM-cFulyqbeJD4uqAhQWSGxoNyiJLarrRYnWpKqv6C_mxmPk122VQVIXKLIiuPI8zJ5dmbeMPZGiYlO06IMjE6ngZiUYSB1UoJBEjM1okyNKwbz_TSZz9Msk19Go6s-F-ZilVibXl7K5r-aGtrA2Jg6-xfmHm4KDXAORocjmB2Of2T4mR0XXVuTFKvSTpy4Qo6MQUFkbrdZrs9--Lwj6-tI04-DtdaBQs1_0usYN_XS4h3qTjntBuiJgfXNsvHhh57aLjoXMtMnPWJy2hpzRnAsWJjrcXvDLj55mvkSKydtcPqZfkJ19YZmY0PWoRLKWd946gIR3nrpcL9zEYmdnYshpWYTv0ReLwbKT6WpjzR55RSWuuKY5M4Ht03yTtc-AbQbcX7UYsoKFofHUsaCykXtSGt_xcFwrAhF-8Mwu8P2o2QqwTvuzz6eZJ-2goVcvbvh4Xz6FUUK7o50M8XZoi2Lh-yBX2_wGeHkERtp-5jd31KhfMJWM8sHxHBCDP8dMRwsyrcRwwkxHM6uIYY7xHBCDAfEcIcY7hDzlH17f7J49yHwRTiCCialDZJYRoWIS3ihj0UcVgUSHIMZyVIZWcSRxoI1sRJFWQJ5jEJjhFGhkSaElx6M9Izt2drq54xXKF-gIqEKKQWsU0spwR8A5y8iM5GVPmCTft7yyivUY6GUVd6HIp7nONc5znVOc33AxkOfhvRZbr162psj9wyTmGMO6Lml3-E_9nvB7m2A_5LttetOv2J3q4t2-XP92oPsF-pppSw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+automatic+defect+classification+and+segmentation+method+on+three-dimensional+point+clouds+for+sewer+pipes&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Wang%2C+Niannian&rft.au=Ma%2C+Duo&rft.au=Du%2C+Xueming&rft.au=Li%2C+Bin&rft.date=2024-01-01&rft.pub=Elsevier+Ltd&rft.issn=0886-7798&rft.eissn=1878-4364&rft.volume=143&rft_id=info:doi/10.1016%2Fj.tust.2023.105480&rft.externalDocID=S088677982300500X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon |