Adaptive gravitational clustering algorithm integrated with noise detection

Clustering analysis is frequently used in data mining, image processing, artificial intelligence, and so on. Traditional approaches heavily rely on manually configured parameters, of which the initial selection exerts a profound influence on the clustering outcomes. In addition, they usually only co...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 263; s. 125733
Hlavní autori: Yang, Juntao, Yang, Lijun, Wang, Wentong, Liu, Tao, Tang, Dongming
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 05.03.2025
Predmet:
ISSN:0957-4174
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Clustering analysis is frequently used in data mining, image processing, artificial intelligence, and so on. Traditional approaches heavily rely on manually configured parameters, of which the initial selection exerts a profound influence on the clustering outcomes. In addition, they usually only consider the relationship between two individual samples when calculating distances, neglecting the overall structure of the dataset, which can negatively affect clustering performance. At the same time, many contemporary algorithms are tailored to specific datasets, posing challenges in achieving optimal clustering performance for intricate, noisy datasets. To address these limitations, we propose an Adaptive Gravitational Clustering Algorithm Integrated with Noise Detection called GCIND. Inspired by the law of gravitation, GCIND takes into account the natural neighborhood structure of the entire dataset, adaptively computing the gravitation between data points by leveraging shared neighbors and Euclidean distance relationships. Our algorithm initially identifies and eliminates outliers or edge points in the dataset. It subsequently uses gravitation to autonomously cluster the remaining core data. Finally, the removed data are reallocated to their respective clusters. GCIND has four notable advantages: (1) it uses gravitation to build the neighborhood graph, reflecting the overall dataset structure; (2) it demonstrates stronger robustness in handling noisy datasets; (3) it uses adaptive gravitational neighborhood graph clustering, removing manual parameter tuning; (4) it adapts to complex manifold-structured datasets, offering broad applicability. Experiments have shown that GCIND, without requiring any parameter settings, demonstrates slightly better performance than the algorithms compared in the study, especially when dealing with complex manifold datasets. •Uses gravitation to build neighborhood graph, reflecting dataset structure.•Demonstrates strong robustness in handling noisy datasets.•Employs adaptive clustering, removing the need for manual parameter tuning.•Adapts to manifold-structured datasets, offering broad applicability.
AbstractList Clustering analysis is frequently used in data mining, image processing, artificial intelligence, and so on. Traditional approaches heavily rely on manually configured parameters, of which the initial selection exerts a profound influence on the clustering outcomes. In addition, they usually only consider the relationship between two individual samples when calculating distances, neglecting the overall structure of the dataset, which can negatively affect clustering performance. At the same time, many contemporary algorithms are tailored to specific datasets, posing challenges in achieving optimal clustering performance for intricate, noisy datasets. To address these limitations, we propose an Adaptive Gravitational Clustering Algorithm Integrated with Noise Detection called GCIND. Inspired by the law of gravitation, GCIND takes into account the natural neighborhood structure of the entire dataset, adaptively computing the gravitation between data points by leveraging shared neighbors and Euclidean distance relationships. Our algorithm initially identifies and eliminates outliers or edge points in the dataset. It subsequently uses gravitation to autonomously cluster the remaining core data. Finally, the removed data are reallocated to their respective clusters. GCIND has four notable advantages: (1) it uses gravitation to build the neighborhood graph, reflecting the overall dataset structure; (2) it demonstrates stronger robustness in handling noisy datasets; (3) it uses adaptive gravitational neighborhood graph clustering, removing manual parameter tuning; (4) it adapts to complex manifold-structured datasets, offering broad applicability. Experiments have shown that GCIND, without requiring any parameter settings, demonstrates slightly better performance than the algorithms compared in the study, especially when dealing with complex manifold datasets. •Uses gravitation to build neighborhood graph, reflecting dataset structure.•Demonstrates strong robustness in handling noisy datasets.•Employs adaptive clustering, removing the need for manual parameter tuning.•Adapts to manifold-structured datasets, offering broad applicability.
ArticleNumber 125733
Author Wang, Wentong
Tang, Dongming
Yang, Juntao
Liu, Tao
Yang, Lijun
Author_xml – sequence: 1
  givenname: Juntao
  orcidid: 0009-0003-0148-5708
  surname: Yang
  fullname: Yang, Juntao
  email: 2024030059@mail.hfut.edu.cn
  organization: College of Computer Science and Artificial Intelligence, Southwest Minzu University, Chengdu, China
– sequence: 2
  givenname: Lijun
  surname: Yang
  fullname: Yang, Lijun
  email: ylijun@swun.edu.cn
  organization: College of Computer Science and Artificial Intelligence, Southwest Minzu University, Chengdu, China
– sequence: 3
  givenname: Wentong
  surname: Wang
  fullname: Wang, Wentong
  email: 210854002023@stu.swun.edu.cn
  organization: College of Computer Science and Artificial Intelligence, Southwest Minzu University, Chengdu, China
– sequence: 4
  givenname: Tao
  orcidid: 0000-0002-0348-5977
  surname: Liu
  fullname: Liu, Tao
  email: tao_liu@swun.edu.cn
  organization: College of Computer Science and Artificial Intelligence, Southwest Minzu University, Chengdu, China
– sequence: 5
  givenname: Dongming
  orcidid: 0000-0002-6167-1292
  surname: Tang
  fullname: Tang, Dongming
  email: tdm_2010@swun.edu.cn
  organization: College of Computer Science and Artificial Intelligence, Southwest Minzu University, Chengdu, China
BookMark eNp9kMtqwzAQAHVIoUnaH-hJP2BXD8eSoJcQ-ggN9NKehSSvUwVHDpKa0L-vTXLqIaeFZWdhZoYmoQ-A0AMlJSW0ftyVkE6mZIRVJWULwfkETYlaiKKiorpFs5R2hFBBiJii92VjDtkfAW-jOfpssu-D6bDrflKG6MMWm27bR5-_99iHDMNZhgafhgUOvU-AG8jgRuwO3bSmS3B_mXP09fL8uXorNh-v69VyUzhOSC4Eq62VYESjGNBWtU4wLsFyqKglQK0iVlqpuDI1BSZry5kAyRQHa4hwfI7Y-a-LfUoRWn2Ifm_ir6ZEjwn0To8J9JhAnxMMkPwHuYttjsZ319GnMwqD1NFD1Ml5CA4aHwdz3fT-Gv4HoQp9aQ
CitedBy_id crossref_primary_10_1016_j_knosys_2025_113116
Cites_doi 10.1016/j.patrec.2016.05.007
10.1145/37888.37889
10.3390/s22197314
10.5220/0002735003500356
10.1016/j.ins.2023.119479
10.3233/JIFS-202449
10.1109/MIS.2004.1274907
10.1016/j.engappai.2024.108883
10.1007/s10489-022-03661-7
10.1109/TFUZZ.2019.2956900
10.1145/304181.304187
10.1016/j.eswa.2023.120799
10.1016/j.eswa.2022.117927
10.1109/TCYB.2017.2695218
10.1016/j.patcog.2023.109404
10.1007/s10791-008-9066-8
10.1007/s10489-022-03705-y
10.1016/j.patcog.2022.109190
10.1016/j.knosys.2014.03.001
10.1109/CBASE60015.2023.10439072
10.1007/s00521-018-3641-8
10.1016/j.engappai.2022.104743
10.1016/j.ins.2023.120082
10.1016/j.knosys.2015.10.014
10.1109/ACCESS.2022.3198992
10.1126/science.1242072
10.1016/j.engappai.2024.108551
10.1016/j.asoc.2022.109647
10.1016/j.patcog.2023.110063
10.1016/j.eswa.2021.116371
10.1109/TNNLS.2018.2853710
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2024.125733
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2024_125733
S0957417424026009
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY1
LY7
M41
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-726bb8ea7d92e1f9fc7238eb3e41b0e1b90b8b8939a61e286b327e8293eba07c3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001363773200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 03:07:45 EST 2025
Tue Nov 18 19:37:07 EST 2025
Sat Dec 21 15:58:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Parameter-free algorithm
Gravitation
Natural neighbor
Clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-726bb8ea7d92e1f9fc7238eb3e41b0e1b90b8b8939a61e286b327e8293eba07c3
ORCID 0009-0003-0148-5708
0000-0002-6167-1292
0000-0002-0348-5977
ParticipantIDs crossref_primary_10_1016_j_eswa_2024_125733
crossref_citationtrail_10_1016_j_eswa_2024_125733
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_125733
PublicationCentury 2000
PublicationDate 2025-03-05
PublicationDateYYYYMMDD 2025-03-05
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-05
  day: 05
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Valero-Mas, Gallego, Alonso-Jiménez, Serra (b29) 2023; 135
Alimohammadi, Nancy Chen (b4) 2022; 191
Rodriguez, Laio (b26) 2014; 344
Huang, Cheng, Zhang (b18) 2023; 231
Cheng, Zhu, Huang, Wu, Yang (b12) 2019; 30
Hinneburg, Keim (b16) 1998
Raeisi, Sesay (b24) 2022; 10
Ankerst, Breunig, Kriegel, Sander (b6) 1999; 28
Zhu, Feng, Huang (b42) 2016; 80
Chen, Yang, Pei, Chen, Du (b9) 2024; 133
Cheng, Huang, Zhang, Xia, Wang, Xie (b10) 2023
Wang, Wu, Huang, Zhang, Nie (b32) 2024; 255
Agrawal, Gehrke, Gunopulos, Raghavan (b2) 1998
Chen, Chen, Liu, Lv, He, Zhang (b8) 2023; 53
Ezugwu, Ikotun, Oyelade, Abualigah, Agushaka, Eke, Akinyelu (b14) 2022; 110
Ren, Sun, Gao, Yu (b25) 2022; 43
Huang, Zhu, Yang, Feng (b19) 2016; 92
Ha, Seok, Lee (b15) 2014; 63
Zhong, Khoshgoftaar, Seliya (b41) 2004; 19
Jin, Wu, Liu, Zhao, Wang (b20) 2023; 647
Zhang, Yang, Zhang (b39) 2021
(pp. 51–56).
Amigó, Gonzalo, Artiles, Verdejo (b5) 2009; 12
Visalakshi, S., K. (b30) 2021; 15
Shoaib, Tanveer, Ali, Hayat, Shah (b28) 2024; 659
Dueck (b13) 2009
Zhang, She (b38) 2020
Yang, Yang, Zhang, Liang, Wang, Tang, Liu (b37) 2024; 146
Yang, Xiao (b35) 2024; 136
Zhang, Yang, Zhang, Tang, Liu (b40) 2022; 130
Bache, Lichman (b7) 2013
Kumaravel, Buiatti, Parise, Farella (b21) 2022; 22
Yang, J., Yang, L., Wang, W., & Pu, R. (2023). An Outlier Detection Algorithm based on Local Density and Natural Neighbors. In
Albalate, A., Rhinow, S., & Suendermann, D. (2010). A Non-parameterised Hierarchical Pole-based Clustering Algorithm (HPoBC). In
Liang, Cai, Yang (b22) 2023; 53
(pp. 350–356).
Wang, L.-T., Hoover, N. E., Porter, E. H., & Zasio, J. J. (1987). SSIM: A software levelized compiled-code simulator. In
Hu, Liu, Zhang, Fang (b17) 2023; 139
Mau, Huynh (b23) 2021
Cheng, Zhu, Huang, Wu, Yang (b11) 2019; 31
Shirkhorshidi, Wah, Shirkhorshidi, Aghabozorgi (b27) 2021; 29
Abernathy, Celebi (b1) 2022; 207
Wang, Yang, Muntz (b33) 1997
Wang, Yu, Chen, You, Gu, Wong, Zhang (b34) 2018; 48
(pp. 2–8).
Agrawal (10.1016/j.eswa.2024.125733_b2) 1998
Zhong (10.1016/j.eswa.2024.125733_b41) 2004; 19
Hu (10.1016/j.eswa.2024.125733_b17) 2023; 139
10.1016/j.eswa.2024.125733_b3
Wang (10.1016/j.eswa.2024.125733_b32) 2024; 255
Kumaravel (10.1016/j.eswa.2024.125733_b21) 2022; 22
Amigó (10.1016/j.eswa.2024.125733_b5) 2009; 12
Cheng (10.1016/j.eswa.2024.125733_b12) 2019; 30
Bache (10.1016/j.eswa.2024.125733_b7) 2013
Zhang (10.1016/j.eswa.2024.125733_b40) 2022; 130
Chen (10.1016/j.eswa.2024.125733_b9) 2024; 133
Cheng (10.1016/j.eswa.2024.125733_b10) 2023
Rodriguez (10.1016/j.eswa.2024.125733_b26) 2014; 344
Zhu (10.1016/j.eswa.2024.125733_b42) 2016; 80
Shirkhorshidi (10.1016/j.eswa.2024.125733_b27) 2021; 29
Zhang (10.1016/j.eswa.2024.125733_b39) 2021
10.1016/j.eswa.2024.125733_b31
Wang (10.1016/j.eswa.2024.125733_b33) 1997
Liang (10.1016/j.eswa.2024.125733_b22) 2023; 53
Ankerst (10.1016/j.eswa.2024.125733_b6) 1999; 28
10.1016/j.eswa.2024.125733_b36
Mau (10.1016/j.eswa.2024.125733_b23) 2021
Huang (10.1016/j.eswa.2024.125733_b19) 2016; 92
Hinneburg (10.1016/j.eswa.2024.125733_b16) 1998
Wang (10.1016/j.eswa.2024.125733_b34) 2018; 48
Abernathy (10.1016/j.eswa.2024.125733_b1) 2022; 207
Visalakshi (10.1016/j.eswa.2024.125733_b30) 2021; 15
Dueck (10.1016/j.eswa.2024.125733_b13) 2009
Cheng (10.1016/j.eswa.2024.125733_b11) 2019; 31
Chen (10.1016/j.eswa.2024.125733_b8) 2023; 53
Jin (10.1016/j.eswa.2024.125733_b20) 2023; 647
Alimohammadi (10.1016/j.eswa.2024.125733_b4) 2022; 191
Valero-Mas (10.1016/j.eswa.2024.125733_b29) 2023; 135
Yang (10.1016/j.eswa.2024.125733_b37) 2024; 146
Ren (10.1016/j.eswa.2024.125733_b25) 2022; 43
Shoaib (10.1016/j.eswa.2024.125733_b28) 2024; 659
Ezugwu (10.1016/j.eswa.2024.125733_b14) 2022; 110
Raeisi (10.1016/j.eswa.2024.125733_b24) 2022; 10
Ha (10.1016/j.eswa.2024.125733_b15) 2014; 63
Huang (10.1016/j.eswa.2024.125733_b18) 2023; 231
Yang (10.1016/j.eswa.2024.125733_b35) 2024; 136
Zhang (10.1016/j.eswa.2024.125733_b38) 2020
References_xml – volume: 135
  year: 2023
  ident: b29
  article-title: Multilabel prototype generation for data reduction in K-nearest neighbour classification
  publication-title: Pattern Recognition
– volume: 22
  start-page: 7314
  year: 2022
  ident: b21
  article-title: Adaptable and robust EEG bad channel detection using local outlier factor (LOF)
  publication-title: Sensors
– start-page: 34:1
  year: 2021
  end-page: 34:6
  ident: b39
  publication-title: Robust non-parameter clustering algorithm based on saturated neighborhood graph
– volume: 10
  start-page: 86286
  year: 2022
  end-page: 86297
  ident: b24
  article-title: A distance metric for uneven clusters of unsupervised K-means clustering algorithm
  publication-title: IEEE Access
– volume: 139
  year: 2023
  ident: b17
  article-title: An effective and adaptable K-means algorithm for big data cluster analysis
  publication-title: Pattern Recognition
– volume: 647
  year: 2023
  ident: b20
  article-title: Varying-scale HCA-DBSCAN-based anomaly detection method for multi-dimensional energy data in steel industry
  publication-title: Information Sciences
– volume: 48
  start-page: 1383
  year: 2018
  end-page: 1396
  ident: b34
  article-title: Clustering by local gravitation
  publication-title: IEEE Transactions on Cybernetics
– reference: (pp. 51–56).
– volume: 28
  start-page: 49
  year: 1999
  end-page: 60
  ident: b6
  article-title: OPTICS: Ordering points to identify the clustering structure
  publication-title: SIGMOD Record
– volume: 19
  start-page: 20
  year: 2004
  end-page: 27
  ident: b41
  article-title: Analyzing software measurement data with clustering techniques
  publication-title: IEEE Intelligent Systems
– volume: 110
  year: 2022
  ident: b14
  article-title: A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 53
  start-page: 3221
  year: 2023
  end-page: 3239
  ident: b22
  article-title: Grid-DPC: Improved density peaks clustering based on spatial grid walk
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
– volume: 53
  start-page: 2506
  year: 2023
  end-page: 2526
  ident: b8
  article-title: Parallel gravitational clustering based on grid partitioning for large-scale data
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
– start-page: 205
  year: 2021
  end-page: 217
  ident: b23
  article-title: Automated attribute weighting fuzzy k-centers algorithm for categorical data clustering
  publication-title: Lecture notes in computer science
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: b26
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
– start-page: 58
  year: 1998
  end-page: 65
  ident: b16
  article-title: An efficient approach to clustering in large multimedia databases with noise
  publication-title: Proceedings of the fourth international conference on knowledge discovery and data mining
– volume: 29
  start-page: 560
  year: 2021
  end-page: 568
  ident: b27
  article-title: Evolving fuzzy clustering approach: An epoch clustering that enables heuristic postpruning
  publication-title: IEEE Transactions on Fuzzy Systems
– reference: (pp. 350–356).
– volume: 659
  year: 2024
  ident: b28
  article-title: Grid neighbourhood based three way clustering (3WC)
  publication-title: Information Sciences
– volume: 43
  start-page: 21
  year: 2022
  end-page: 34
  ident: b25
  article-title: Density peaks clustering based on local fair density and fuzzy k-nearest neighbors membership allocation strategy
  publication-title: Journal of Intelligent & Fuzzy Systems
– year: 2009
  ident: b13
  article-title: Affinity propagation: Clustering data by passing messages
– volume: 207
  year: 2022
  ident: b1
  article-title: The incremental online k-means clustering algorithm and its application to color quantization
  publication-title: Expert Systems with Applications
– reference: Wang, L.-T., Hoover, N. E., Porter, E. H., & Zasio, J. J. (1987). SSIM: A software levelized compiled-code simulator. In
– volume: 92
  start-page: 71
  year: 2016
  end-page: 77
  ident: b19
  article-title: A non-parameter outlier detection algorithm based on natural neighbor
  publication-title: Knowledge-Based Systems
– volume: 231
  year: 2023
  ident: b18
  article-title: A novel outlier detecting algorithm based on the outlier turning points
  publication-title: Expert Systems with Applications
– volume: 15
  start-page: 1
  year: 2021
  end-page: 23
  ident: b30
  article-title: MapReduce-based crow search-adopted partitional clustering algorithms for handling large-scale data
  publication-title: International Journal of Cognitive Informatics and Natural Intelligence
– reference: (pp. 2–8).
– volume: 31
  start-page: 8051
  year: 2019
  end-page: 8068
  ident: b11
  article-title: A local cores-based hierarchical clustering algorithm for data sets with complex structures
  publication-title: Neural Computing and Applications
– volume: 80
  start-page: 30
  year: 2016
  end-page: 36
  ident: b42
  article-title: Natural neighbor: A self-adaptive neighborhood method without parameter k
  publication-title: Pattern Recognition
– reference: Albalate, A., Rhinow, S., & Suendermann, D. (2010). A Non-parameterised Hierarchical Pole-based Clustering Algorithm (HPoBC). In
– start-page: 186
  year: 1997
  end-page: 195
  ident: b33
  article-title: STING: a statistical information grid approach to spatial data mining
– volume: 130
  year: 2022
  ident: b40
  article-title: Non-parameter clustering algorithm based on saturated neighborhood graph
  publication-title: Applied Soft Computing
– volume: 63
  start-page: 15
  year: 2014
  end-page: 23
  ident: b15
  article-title: Robust outlier detection using the instability factor
  publication-title: Knowledge-Based Systems
– volume: 146
  year: 2024
  ident: b37
  article-title: GNaN: A natural neighbor search algorithm based on universal gravitation
  publication-title: Pattern Recognition
– start-page: 1
  year: 2023
  end-page: 14
  ident: b10
  article-title: K-means clustering with natural density peaks for discovering arbitrary-shaped clusters
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 255
  year: 2024
  ident: b32
  article-title: Projected fuzzy c-means clustering algorithm with instance penalty
  publication-title: Expert Systems with Applications
– start-page: 94
  year: 1998
  end-page: 105
  ident: b2
  article-title: Automatic subspace clustering of high dimensional data for data mining applications
  publication-title: SIGMOD 1998, proceedings ACM SIGMOD international conference on management of data, June 2-4, 1998, seattle, washington, USA
– volume: 191
  year: 2022
  ident: b4
  article-title: Performance evaluation of outlier detection techniques in production timeseries: A systematic review and meta-analysis
  publication-title: Expert Systems with Applications
– volume: 30
  start-page: 985
  year: 2019
  end-page: 999
  ident: b12
  article-title: A novel cluster validity index based on local cores
  publication-title: IEEE Transactions on Neural Networks Learning Systems
– reference: Yang, J., Yang, L., Wang, W., & Pu, R. (2023). An Outlier Detection Algorithm based on Local Density and Natural Neighbors. In
– volume: 12
  start-page: 461
  year: 2009
  end-page: 486
  ident: b5
  article-title: A comparison of extrinsic clustering evaluation metrics based on formal constraints
  publication-title: Information Retrieval
– year: 2013
  ident: b7
  article-title: UCI machine learning repository
– volume: 133
  year: 2024
  ident: b9
  article-title: A simple rapid sample-based clustering for large-scale data
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 136
  year: 2024
  ident: b35
  article-title: An improved density peaks clustering algorithm based on the generalized neighbors similarity
  publication-title: Engineering Applications of Artificial Intelligence
– year: 2020
  ident: b38
  article-title: A novel hierarchical clustering approach based on universal gravitation
  publication-title: Mathematical Problems in Engineering
– volume: 15
  start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2024.125733_b30
  article-title: MapReduce-based crow search-adopted partitional clustering algorithms for handling large-scale data
  publication-title: International Journal of Cognitive Informatics and Natural Intelligence
– year: 2020
  ident: 10.1016/j.eswa.2024.125733_b38
  article-title: A novel hierarchical clustering approach based on universal gravitation
  publication-title: Mathematical Problems in Engineering
– volume: 80
  start-page: 30
  year: 2016
  ident: 10.1016/j.eswa.2024.125733_b42
  article-title: Natural neighbor: A self-adaptive neighborhood method without parameter k
  publication-title: Pattern Recognition
  doi: 10.1016/j.patrec.2016.05.007
– ident: 10.1016/j.eswa.2024.125733_b31
  doi: 10.1145/37888.37889
– volume: 22
  start-page: 7314
  year: 2022
  ident: 10.1016/j.eswa.2024.125733_b21
  article-title: Adaptable and robust EEG bad channel detection using local outlier factor (LOF)
  publication-title: Sensors
  doi: 10.3390/s22197314
– ident: 10.1016/j.eswa.2024.125733_b3
  doi: 10.5220/0002735003500356
– volume: 647
  year: 2023
  ident: 10.1016/j.eswa.2024.125733_b20
  article-title: Varying-scale HCA-DBSCAN-based anomaly detection method for multi-dimensional energy data in steel industry
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2023.119479
– volume: 43
  start-page: 21
  year: 2022
  ident: 10.1016/j.eswa.2024.125733_b25
  article-title: Density peaks clustering based on local fair density and fuzzy k-nearest neighbors membership allocation strategy
  publication-title: Journal of Intelligent & Fuzzy Systems
  doi: 10.3233/JIFS-202449
– volume: 19
  start-page: 20
  year: 2004
  ident: 10.1016/j.eswa.2024.125733_b41
  article-title: Analyzing software measurement data with clustering techniques
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2004.1274907
– volume: 136
  year: 2024
  ident: 10.1016/j.eswa.2024.125733_b35
  article-title: An improved density peaks clustering algorithm based on the generalized neighbors similarity
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2024.108883
– start-page: 34:1
  year: 2021
  ident: 10.1016/j.eswa.2024.125733_b39
– volume: 53
  start-page: 2506
  year: 2023
  ident: 10.1016/j.eswa.2024.125733_b8
  article-title: Parallel gravitational clustering based on grid partitioning for large-scale data
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
  doi: 10.1007/s10489-022-03661-7
– volume: 29
  start-page: 560
  year: 2021
  ident: 10.1016/j.eswa.2024.125733_b27
  article-title: Evolving fuzzy clustering approach: An epoch clustering that enables heuristic postpruning
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2019.2956900
– volume: 28
  start-page: 49
  year: 1999
  ident: 10.1016/j.eswa.2024.125733_b6
  article-title: OPTICS: Ordering points to identify the clustering structure
  publication-title: SIGMOD Record
  doi: 10.1145/304181.304187
– volume: 231
  year: 2023
  ident: 10.1016/j.eswa.2024.125733_b18
  article-title: A novel outlier detecting algorithm based on the outlier turning points
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.120799
– volume: 255
  year: 2024
  ident: 10.1016/j.eswa.2024.125733_b32
  article-title: Projected fuzzy c-means clustering algorithm with instance penalty
  publication-title: Expert Systems with Applications
– start-page: 186
  year: 1997
  ident: 10.1016/j.eswa.2024.125733_b33
  article-title: STING: a statistical information grid approach to spatial data mining
– start-page: 1
  year: 2023
  ident: 10.1016/j.eswa.2024.125733_b10
  article-title: K-means clustering with natural density peaks for discovering arbitrary-shaped clusters
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 207
  year: 2022
  ident: 10.1016/j.eswa.2024.125733_b1
  article-title: The incremental online k-means clustering algorithm and its application to color quantization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117927
– volume: 48
  start-page: 1383
  year: 2018
  ident: 10.1016/j.eswa.2024.125733_b34
  article-title: Clustering by local gravitation
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2017.2695218
– volume: 139
  year: 2023
  ident: 10.1016/j.eswa.2024.125733_b17
  article-title: An effective and adaptable K-means algorithm for big data cluster analysis
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2023.109404
– volume: 12
  start-page: 461
  year: 2009
  ident: 10.1016/j.eswa.2024.125733_b5
  article-title: A comparison of extrinsic clustering evaluation metrics based on formal constraints
  publication-title: Information Retrieval
  doi: 10.1007/s10791-008-9066-8
– year: 2013
  ident: 10.1016/j.eswa.2024.125733_b7
– year: 2009
  ident: 10.1016/j.eswa.2024.125733_b13
– volume: 53
  start-page: 3221
  year: 2023
  ident: 10.1016/j.eswa.2024.125733_b22
  article-title: Grid-DPC: Improved density peaks clustering based on spatial grid walk
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
  doi: 10.1007/s10489-022-03705-y
– volume: 135
  year: 2023
  ident: 10.1016/j.eswa.2024.125733_b29
  article-title: Multilabel prototype generation for data reduction in K-nearest neighbour classification
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2022.109190
– volume: 63
  start-page: 15
  year: 2014
  ident: 10.1016/j.eswa.2024.125733_b15
  article-title: Robust outlier detection using the instability factor
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2014.03.001
– start-page: 94
  year: 1998
  ident: 10.1016/j.eswa.2024.125733_b2
  article-title: Automatic subspace clustering of high dimensional data for data mining applications
– ident: 10.1016/j.eswa.2024.125733_b36
  doi: 10.1109/CBASE60015.2023.10439072
– volume: 31
  start-page: 8051
  year: 2019
  ident: 10.1016/j.eswa.2024.125733_b11
  article-title: A local cores-based hierarchical clustering algorithm for data sets with complex structures
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-018-3641-8
– volume: 110
  year: 2022
  ident: 10.1016/j.eswa.2024.125733_b14
  article-title: A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2022.104743
– start-page: 205
  year: 2021
  ident: 10.1016/j.eswa.2024.125733_b23
  article-title: Automated attribute weighting fuzzy k-centers algorithm for categorical data clustering
– volume: 659
  year: 2024
  ident: 10.1016/j.eswa.2024.125733_b28
  article-title: Grid neighbourhood based three way clustering (3WC)
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2023.120082
– volume: 92
  start-page: 71
  year: 2016
  ident: 10.1016/j.eswa.2024.125733_b19
  article-title: A non-parameter outlier detection algorithm based on natural neighbor
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.10.014
– start-page: 58
  year: 1998
  ident: 10.1016/j.eswa.2024.125733_b16
  article-title: An efficient approach to clustering in large multimedia databases with noise
– volume: 10
  start-page: 86286
  year: 2022
  ident: 10.1016/j.eswa.2024.125733_b24
  article-title: A distance metric for uneven clusters of unsupervised K-means clustering algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3198992
– volume: 344
  start-page: 1492
  year: 2014
  ident: 10.1016/j.eswa.2024.125733_b26
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 133
  year: 2024
  ident: 10.1016/j.eswa.2024.125733_b9
  article-title: A simple rapid sample-based clustering for large-scale data
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2024.108551
– volume: 130
  year: 2022
  ident: 10.1016/j.eswa.2024.125733_b40
  article-title: Non-parameter clustering algorithm based on saturated neighborhood graph
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2022.109647
– volume: 146
  year: 2024
  ident: 10.1016/j.eswa.2024.125733_b37
  article-title: GNaN: A natural neighbor search algorithm based on universal gravitation
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2023.110063
– volume: 191
  year: 2022
  ident: 10.1016/j.eswa.2024.125733_b4
  article-title: Performance evaluation of outlier detection techniques in production timeseries: A systematic review and meta-analysis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.116371
– volume: 30
  start-page: 985
  year: 2019
  ident: 10.1016/j.eswa.2024.125733_b12
  article-title: A novel cluster validity index based on local cores
  publication-title: IEEE Transactions on Neural Networks Learning Systems
  doi: 10.1109/TNNLS.2018.2853710
SSID ssj0017007
Score 2.4739025
Snippet Clustering analysis is frequently used in data mining, image processing, artificial intelligence, and so on. Traditional approaches heavily rely on manually...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 125733
SubjectTerms Clustering
Gravitation
Natural neighbor
Parameter-free algorithm
Title Adaptive gravitational clustering algorithm integrated with noise detection
URI https://dx.doi.org/10.1016/j.eswa.2024.125733
Volume 263
WOSCitedRecordID wos001363773200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELcq4GEvMNgm2MbkB96moMT5cPxYTUwMKjQJNvoW2anDUnVp1SbAn7-72E6gTGibtBcrOvWc9H6n0_l8H4QcgVFUgfQLL5FR4kU8LDzJOCx6Ush0ouOkreP-PuIXF-l4LL4OBueuFuZ2xqsqvb8Xi_8KNdAAbCyd_Qu4u02BAM8AOqwAO6x_BPxwIhdtPhBOFrIduLEJyKzBnghtTeLsZr4s6x8_-2YRNge9mpcrLKSq2wSt6lHYHnsi17bzs6uJe3D73ZkPG4A-a6paztepo3LadOp4bYnXGgcZ3zjyqGxaLbLcNiTB4jYnK-7jZK5Wpk9MMgFH7kWBmcnjbC8z1u2JHTchhemxXt1hcygWHYMjxk3LjLX-2Je4Me6L90RJW8y5yXgswEpvDr-cjM-6SyXum-p59yG2hsqk-62_6fd-ygPf4-ol2baHBjo0YO-Sga72yI4byEGtfX5Fzh329BH2tMeedtjTHnuKYNIWe9ph_5p8-3xy9enUs9MyvDz0_drjLFEq1ZJPBNNBIYoc58lpFeooUL4OlPBVqsA9FTIJNEsTFTKuU3D3tJI-z8M3ZKOaV3qfUF9IOEYGEpxrHMXCleBpnAvgCeGArOUBCZxsstz-GZxoMstczuA0Q3lmKM_MyPOAfOx4FqaRyrO_jp3IM-sKGhcvAw15hu_tP_K9Iy96RX5PNuplow_JVn5bl6vlB6tIvwB_voZP
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+gravitational+clustering+algorithm+integrated+with+noise+detection&rft.jtitle=Expert+systems+with+applications&rft.au=Yang%2C+Juntao&rft.au=Yang%2C+Lijun&rft.au=Wang%2C+Wentong&rft.au=Liu%2C+Tao&rft.date=2025-03-05&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=263&rft_id=info:doi/10.1016%2Fj.eswa.2024.125733&rft.externalDocID=S0957417424026009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon