TAP with ease: a generic recommendation system for trigger-action programming based on multi-modal representation learning

The escalating popularity of smart devices has given rise to an increasing trend wherein users leverage customized trigger-action programming (TAP) rules within the Internet of Things (IoT) to automate various aspects of their lives. This article addresses the challenge of effectively combining func...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 166; s. 112163
Hlavní autoři: Wu, Gang, Wang, Ming, Wang, Feng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.11.2024
Témata:
ISSN:1568-4946
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The escalating popularity of smart devices has given rise to an increasing trend wherein users leverage customized trigger-action programming (TAP) rules within the Internet of Things (IoT) to automate various aspects of their lives. This article addresses the challenge of effectively combining functions provided by many smart devices and online services by introducing a novel multi-modal representation learning model called TAP-TAG. This model integrates both textual and graph structures inherent in TAP rules, offering a holistic method to rule recommendation. TAP-TAG comprises two branches: the Knowledge Graph Embedding model, which projects triplets extracted from the TAP dataset into embeddings, and convolution neural networks that extract semantic features from the textual content of TAP rules. Extensive experiments are conducted on real-world TAP datasets to evaluate our model’s ability to recommend relevant rules based on user preferences. The experimental results show that TAP-TAG can outperform the state-of-the-art method by 5% in Precision@5, indicating that TAP-TAG is highly effective in providing accurate and diverse recommendations for TAP rules. •Present a multimodal data representation framework for recommending TAP rules.•TAP rules are divided into semantic and relation levels based on their modality.•Improve the representation quality by training text and graph modalities jointly.•Extensive experiments verify the effectiveness of the proposed framework.
AbstractList The escalating popularity of smart devices has given rise to an increasing trend wherein users leverage customized trigger-action programming (TAP) rules within the Internet of Things (IoT) to automate various aspects of their lives. This article addresses the challenge of effectively combining functions provided by many smart devices and online services by introducing a novel multi-modal representation learning model called TAP-TAG. This model integrates both textual and graph structures inherent in TAP rules, offering a holistic method to rule recommendation. TAP-TAG comprises two branches: the Knowledge Graph Embedding model, which projects triplets extracted from the TAP dataset into embeddings, and convolution neural networks that extract semantic features from the textual content of TAP rules. Extensive experiments are conducted on real-world TAP datasets to evaluate our model’s ability to recommend relevant rules based on user preferences. The experimental results show that TAP-TAG can outperform the state-of-the-art method by 5% in Precision@5, indicating that TAP-TAG is highly effective in providing accurate and diverse recommendations for TAP rules. •Present a multimodal data representation framework for recommending TAP rules.•TAP rules are divided into semantic and relation levels based on their modality.•Improve the representation quality by training text and graph modalities jointly.•Extensive experiments verify the effectiveness of the proposed framework.
ArticleNumber 112163
Author Wu, Gang
Wang, Ming
Wang, Feng
Author_xml – sequence: 1
  givenname: Gang
  surname: Wu
  fullname: Wu, Gang
– sequence: 2
  givenname: Ming
  surname: Wang
  fullname: Wang, Ming
– sequence: 3
  givenname: Feng
  surname: Wang
  fullname: Wang, Feng
  email: wangfeng12@mails.jlu.edu.cn
BookMark eNp9kMtOwzAQRb0oEm3hB1j5B1LsvIPYVBUvCQkWZW0540lwFduVbUDl60kJKxZdjTQz52rmLMjMOouEXHG24oyX17uVDA5WKUvzFecpL7MZmfOirJO8yctzsghhx8bFJq3n5Hu7fqVfOr5TlAFvqKQ9WvQaqEdwxqBVMmpnaTiEiIZ2ztPodd-jTyT8Tvbe9V4ao21P2zFE0bFpPoaoE-OUHMakvceANk5JA0pvx-ULctbJIeDlX12St_u77eYxeX55eNqsnxPIGItJxVuZNTmDNisUq4qq5E3WVp0EYFnX5HVVFy3kaQPQoeK8akBVWLSdysu2KDBbknTKBe9C8NiJvddG-oPgTByNiZ04GhNHY2IyNkL1Pwj0dH_0Ug-n0dsJxfGpT41eBNBoAZUenUahnD6F_wDxb45M
CitedBy_id crossref_primary_10_1016_j_neucom_2025_131529
crossref_primary_10_1109_JIOT_2025_3532977
crossref_primary_10_1145_3734863
crossref_primary_10_1016_j_eswa_2024_126198
Cites_doi 10.1109/CVPR.2018.00601
10.1016/j.ipm.2021.102709
10.1145/3576842.3582328
10.1145/3344211
10.1145/3524610.3527922
10.3115/v1/D14-1167
10.1016/j.neucom.2021.10.050
10.1145/3131365.3131369
10.1016/j.patcog.2019.01.006
10.1145/3219819.3220023
10.1016/j.eswa.2023.121065
10.1109/CVPR52729.2023.00859
10.1109/TII.2021.3092774
10.1109/JIOT.2019.2962630
10.1016/j.ipm.2022.102869
10.1109/TII.2021.3128240
10.1145/3290605.3300618
10.1145/3240323.3240377
10.3390/electronics9050750
10.1109/TIP.2023.3331309
10.1016/j.neucom.2021.03.122
10.1145/3447264
10.1109/MC.2017.4041355
10.1016/j.knosys.2022.108859
10.1609/aaai.v37i9.26283
10.1016/j.ins.2021.09.006
10.1109/ICCV.2013.261
10.1109/TIP.2020.3043125
10.1109/CVPR52729.2023.00572
10.1109/TSC.2021.3098756
10.1016/j.neunet.2022.05.026
10.1109/CVPR.2018.00911
10.1145/2962719
10.3115/v1/P15-1085
10.1109/CVPR.2019.00850
10.1016/j.dib.2020.106632
10.1109/JIOT.2019.2940709
10.1145/3290605.3300782
10.1109/JIOT.2018.2866328
10.1109/ACCESS.2019.2903310
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2024.112163
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2024_112163
S1568494624009372
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-71ba3940cb35d07576193b7facc03f948785bc429ccfed1179cd7e5bfd46b55e3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001312587900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 03:06:05 EST 2025
Tue Nov 18 21:44:17 EST 2025
Sat Nov 23 15:54:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Knowledge graph embedding
Multi-modal representation learning
Natural language processing
Trigger-action programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-71ba3940cb35d07576193b7facc03f948785bc429ccfed1179cd7e5bfd46b55e3
ParticipantIDs crossref_primary_10_1016_j_asoc_2024_112163
crossref_citationtrail_10_1016_j_asoc_2024_112163
elsevier_sciencedirect_doi_10_1016_j_asoc_2024_112163
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Reimers, Gurevych (b49) 2019
Corno, De Russis, Monge Roffarello (b3) 2021; 39
X. Yang, M. Yan, S. Pan, X. Ye, D. Fan, Simple and efficient heterogeneous graph neural network, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, No. 9, 2023, pp. 10816–10824.
Liu, Li (b45) 2018; 6
Dai, Wang, Xiong, Guo (b46) 2020; 9
Liu, Liu, Jiang, Fan, Luo (b8) 2020; 30
Ni, Huang, Hu, Lin (b13) 2022; 582
K. Wang, R. He, W. Wang, L. Wang, T. Tan, Learning Coupled Feature Spaces for Cross-Modal Matching, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2013.
Hu, Wu, Xing, Wang (b24) 2019; 7
Y. Yao, M.M. Kamani, Z. Cheng, L. Chen, C. Joe-Wong, T. Liu, FedRule: Federated Rule Recommendation System with Graph Neural Networks, in: Proceedings of the 8th ACM/IEEE Conference on Internet of Things Design and Implementation, 2023, pp. 197–208.
M. Cornia, L. Baraldi, R. Cucchiara, Show, control and tell: A framework for generating controllable and grounded captions, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 8307–8316.
H. Caselles-Dupré, F. Lesaint, J. Royo-Letelier, Word2vec applied to recommendation: Hyperparameters matter, in: Proceedings of the 12th ACM Conference on Recommender Systems, 2018, pp. 352–356.
Liu, Zhang, Deng, Xie, Liu, Li (b39) 2023
Li, Liu, Zhang, Lin, Fang, Li, Xiong (b23) 2021; 455
Huang, Xu, Ni, Zhu, Wang (b40) 2019; 6
F. Corno, L. De Russis, A. Monge Roffarello, Empowering End Users in Debugging Trigger-Action Rules, in: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, New York, NY, USA, 2019, pp. 1–13.
Castellano, Digeno, Sansaro, Vessio (b34) 2022; 248
W. Brackenbury, A. Deora, J. Ritchey, J. Vallee, W. He, G. Wang, M.L. Littman, B. Ur, How users interpret bugs in trigger-action programming, in: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 2019, pp. 1–12.
Zhu, Liu, Liu (b30) 2021; 58
Corno, De Russis, Roffarello (b18) 2017; 50
X. Mi, F. Qian, Y. Zhang, X. Wang, An empirical characterization of IFTTT: ecosystem, usage, and performance, in: Proceedings of the 2017 Internet Measurement Conference, 2017, pp. 398–404.
Liu, Li, Zhang, Hao, Ma, Wang (b14) 2024
Kim, Suh, Lee (b25) 2022; 59
Wu, Shen, Van Den Hengel (b43) 2019; 90
Liu, Zhang, Deng, Liu, Zhang, Li (b38) 2023; 32
Mattioli, Paternò (b19) 2021
Wu, Dinkel, Yu (b10) 2019
Yang, Zhang, Xu (b44) 2016; 12
L. Zhou, Y. Zhou, J.J. Corso, R. Socher, C. Xiong, End-to-end dense video captioning with masked transformer, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8739–8748.
Z. Zhao, H. Bai, J. Zhang, Y. Zhang, S. Xu, Z. Lin, R. Timofte, L. Van Gool, Cddfuse: Correlation-driven dual-branch feature decomposition for multi-modality image fusion, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5906–5916.
Corno, De Russis, Monge Roffarello (b28) 2019; 10
Q. You, Z. Zhang, J. Luo, End-to-end convolutional semantic embeddings, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5735–5744.
Sun, Deng, Nie, Tang (b48) 2019
I.N.B. Yusuf, L. Jiang, D. Lo, Accurate generation of trigger-action programs with domain-adapted sequence-to-sequence learning, in: Proceedings of the 30th IEEE/ACM International Conference on Program Comprehension, 2022, pp. 99–110.
C. Quirk, R. Mooney, M. Galley, Language to code: Learning semantic parsers for if-this-then-that recipes, in: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2015, pp. 878–888.
Wu, Hu, Mao, Xing, Wang (b7) 2024; 235
Yun, Jeong, Yoo, Lee, Sean, Kim, Kang, Kim (b50) 2022; 153
P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio, Graph Attention Networks, in: International Conference on Learning Representations, 2018.
Ricci, Rokach, Shapira (b52) 2011
Hu, Gong, Xing, Wang (b26) 2019; 7
J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, G. Sun, xdeepfm: Combining explicit and implicit feature interactions for recommender systems, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 1754–1763.
Xing, Hu, Zhang, Wu, Wang (b5) 2021; 18
Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge graph and text jointly embedding, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP, 2014, pp. 1591–1601.
Liu, Zheng, Li, Zhang, Lin, Shen, Xiong, Wang (b22) 2022; 468
Chimamiwa, Alirezaie, Pecora, Loutfi (b53) 2021; 34
Thomsen, Giaretta, Dragoni (b29) 2020
Mattioli, Paternò (b20) 2020
C. Zhang, H. Liu, Y. Deng, B. Xie, Y. Li, TokenHPE: Learning orientation tokens for efficient head pose estimation via transformers, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 8897–8906.
Liu, Zheng, Li, Shen, Lin, Wang, Zhang, Zhang, Xiong (b21) 2021; 18
Park, Bae, Kim, Kim, Choi (b32) 2022
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, in: ICLR, 2021.
Wu, Duan, Yue, Zhang (b12) 2021; 15
Mikolov, Sutskever, Chen, Corrado, Dean (b16) 2013; 26
Mattioli (10.1016/j.asoc.2024.112163_b20) 2020
Dai (10.1016/j.asoc.2024.112163_b46) 2020; 9
Li (10.1016/j.asoc.2024.112163_b23) 2021; 455
Hu (10.1016/j.asoc.2024.112163_b26) 2019; 7
Thomsen (10.1016/j.asoc.2024.112163_b29) 2020
Reimers (10.1016/j.asoc.2024.112163_b49) 2019
Liu (10.1016/j.asoc.2024.112163_b39) 2023
10.1016/j.asoc.2024.112163_b41
10.1016/j.asoc.2024.112163_b42
Liu (10.1016/j.asoc.2024.112163_b45) 2018; 6
Ricci (10.1016/j.asoc.2024.112163_b52) 2011
10.1016/j.asoc.2024.112163_b47
Corno (10.1016/j.asoc.2024.112163_b18) 2017; 50
Corno (10.1016/j.asoc.2024.112163_b28) 2019; 10
Wu (10.1016/j.asoc.2024.112163_b10) 2019
10.1016/j.asoc.2024.112163_b6
10.1016/j.asoc.2024.112163_b9
Wu (10.1016/j.asoc.2024.112163_b43) 2019; 90
10.1016/j.asoc.2024.112163_b31
10.1016/j.asoc.2024.112163_b1
10.1016/j.asoc.2024.112163_b2
10.1016/j.asoc.2024.112163_b35
10.1016/j.asoc.2024.112163_b4
10.1016/j.asoc.2024.112163_b33
Sun (10.1016/j.asoc.2024.112163_b48) 2019
10.1016/j.asoc.2024.112163_b36
10.1016/j.asoc.2024.112163_b37
Wu (10.1016/j.asoc.2024.112163_b12) 2021; 15
Ni (10.1016/j.asoc.2024.112163_b13) 2022; 582
Park (10.1016/j.asoc.2024.112163_b32) 2022
Wu (10.1016/j.asoc.2024.112163_b7) 2024; 235
Mattioli (10.1016/j.asoc.2024.112163_b19) 2021
Kim (10.1016/j.asoc.2024.112163_b25) 2022; 59
Liu (10.1016/j.asoc.2024.112163_b22) 2022; 468
Hu (10.1016/j.asoc.2024.112163_b24) 2019; 7
Mikolov (10.1016/j.asoc.2024.112163_b16) 2013; 26
10.1016/j.asoc.2024.112163_b27
Xing (10.1016/j.asoc.2024.112163_b5) 2021; 18
Zhu (10.1016/j.asoc.2024.112163_b30) 2021; 58
Yang (10.1016/j.asoc.2024.112163_b44) 2016; 12
Liu (10.1016/j.asoc.2024.112163_b38) 2023; 32
Corno (10.1016/j.asoc.2024.112163_b3) 2021; 39
Liu (10.1016/j.asoc.2024.112163_b14) 2024
10.1016/j.asoc.2024.112163_b51
Liu (10.1016/j.asoc.2024.112163_b8) 2020; 30
Huang (10.1016/j.asoc.2024.112163_b40) 2019; 6
Yun (10.1016/j.asoc.2024.112163_b50) 2022; 153
10.1016/j.asoc.2024.112163_b11
10.1016/j.asoc.2024.112163_b17
Liu (10.1016/j.asoc.2024.112163_b21) 2021; 18
10.1016/j.asoc.2024.112163_b15
Chimamiwa (10.1016/j.asoc.2024.112163_b53) 2021; 34
Castellano (10.1016/j.asoc.2024.112163_b34) 2022; 248
References_xml – volume: 153
  start-page: 104
  year: 2022
  end-page: 119
  ident: b50
  article-title: Graph transformer networks: Learning meta-path graphs to improve GNNs
  publication-title: Neural Netw.
– reference: X. Mi, F. Qian, Y. Zhang, X. Wang, An empirical characterization of IFTTT: ecosystem, usage, and performance, in: Proceedings of the 2017 Internet Measurement Conference, 2017, pp. 398–404.
– volume: 18
  start-page: 1231
  year: 2021
  end-page: 1239
  ident: b5
  article-title: Nonnegative matrix factorization based heterogeneous graph embedding method for trigger-action programming in IoT
  publication-title: IEEE Trans. Ind. Inform.
– reference: P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio, Graph Attention Networks, in: International Conference on Learning Representations, 2018.
– volume: 58
  year: 2021
  ident: b30
  article-title: Learning multimodal word representation with graph convolutional networks
  publication-title: Inf. Process. Manage.
– reference: L. Zhou, Y. Zhou, J.J. Corso, R. Socher, C. Xiong, End-to-end dense video captioning with masked transformer, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8739–8748.
– year: 2024
  ident: b14
  article-title: Cross-modality gesture recognition with complete representation projection
  publication-title: IEEE Internet Things J.
– year: 2019
  ident: b48
  article-title: RotatE: Knowledge graph embedding by relational rotation in complex space
  publication-title: International Conference on Learning Representations
– volume: 248
  year: 2022
  ident: b34
  article-title: Leveraging knowledge graphs and deep learning for automatic art analysis
  publication-title: Knowl.-Based Syst.
– reference: A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, in: ICLR, 2021.
– start-page: 261
  year: 2022
  end-page: 281
  ident: b32
  article-title: Graph-text multi-modal pre-training for medical representation learning
  publication-title: Conference on Health, Inference, and Learning
– start-page: 3980
  year: 2019
  end-page: 3990
  ident: b49
  article-title: Sentence-BERT: Sentence embeddings using siamese BERT-networks
  publication-title: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019
– reference: C. Quirk, R. Mooney, M. Galley, Language to code: Learning semantic parsers for if-this-then-that recipes, in: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2015, pp. 878–888.
– reference: X. Yang, M. Yan, S. Pan, X. Ye, D. Fan, Simple and efficient heterogeneous graph neural network, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, No. 9, 2023, pp. 10816–10824.
– start-page: 1
  year: 2021
  end-page: 11
  ident: b19
  article-title: Recommendations for creating trigger-action rules in a block-based environment
  publication-title: Behav. Inf. Technol.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 27
  ident: b28
  article-title: RecRules: recommending IF-THEN rules for end-user development
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 15
  start-page: 3330
  year: 2021
  end-page: 3343
  ident: b12
  article-title: Mashup-oriented web API recommendation via multi-model fusion and multi-task learning
  publication-title: IEEE Trans. Serv. Comput.
– year: 2023
  ident: b39
  article-title: Transifc: invariant cues-aware feature concentration learning for efficient fine-grained bird image classification
  publication-title: IEEE Trans. Multimed.
– volume: 6
  start-page: 10675
  year: 2019
  end-page: 10685
  ident: b40
  article-title: Multimodal representation learning for recommendation in internet of things
  publication-title: IEEE Internet Things J.
– reference: W. Brackenbury, A. Deora, J. Ritchey, J. Vallee, W. He, G. Wang, M.L. Littman, B. Ur, How users interpret bugs in trigger-action programming, in: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 2019, pp. 1–12.
– start-page: 830
  year: 2019
  end-page: 834
  ident: b10
  article-title: Audio caption: Listen and tell
  publication-title: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
– reference: Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge graph and text jointly embedding, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP, 2014, pp. 1591–1601.
– volume: 18
  start-page: 4361
  year: 2021
  end-page: 4371
  ident: b21
  article-title: EDMF: Efficient deep matrix factorization with review feature learning for industrial recommender system
  publication-title: IEEE Trans. Ind. Inform.
– volume: 6
  start-page: 6034
  year: 2018
  end-page: 6041
  ident: b45
  article-title: Multimodal GAN for energy efficiency and cloud classification in internet of things
  publication-title: IEEE Internet Things J.
– volume: 39
  start-page: 1
  year: 2021
  end-page: 33
  ident: b3
  article-title: From users’ intentions to if-then rules in the internet of things
  publication-title: ACM Trans. Inf. Syst. (TOIS)
– volume: 12
  start-page: 1
  year: 2016
  end-page: 22
  ident: b44
  article-title: Semantic feature mining for video event understanding
  publication-title: ACM Trans. Multimedia Comput. Commun. Appl. (TOMM)
– volume: 32
  start-page: 6289
  year: 2023
  end-page: 6302
  ident: b38
  article-title: Orientation cues-aware facial relationship representation for head pose estimation via transformer
  publication-title: IEEE Trans. Image Process.
– start-page: 1
  year: 2011
  end-page: 35
  ident: b52
  article-title: Introduction to recommender systems handbook
  publication-title: Recommender Systems Handbook
– volume: 59
  year: 2022
  ident: b25
  article-title: What IoT devices and applications should be connected? Predicting user behaviors of IoT services with node2vec embedding
  publication-title: Inf. Process. Manage.
– year: 2020
  ident: b20
  article-title: A visual environment for end-user creation of IoT customization rules with recommendation support
– volume: 30
  start-page: 1261
  year: 2020
  end-page: 1274
  ident: b8
  article-title: A bilevel integrated model with data-driven layer ensemble for multi-modality image fusion
  publication-title: IEEE Trans. Image Process.
– reference: I.N.B. Yusuf, L. Jiang, D. Lo, Accurate generation of trigger-action programs with domain-adapted sequence-to-sequence learning, in: Proceedings of the 30th IEEE/ACM International Conference on Program Comprehension, 2022, pp. 99–110.
– volume: 582
  start-page: 22
  year: 2022
  end-page: 37
  ident: b13
  article-title: A two-stage embedding model for recommendation with multimodal auxiliary information
  publication-title: Inform. Sci.
– volume: 468
  start-page: 469
  year: 2022
  end-page: 481
  ident: b22
  article-title: Multi-perspective social recommendation method with graph representation learning
  publication-title: Neurocomputing
– volume: 7
  start-page: 1939
  year: 2019
  end-page: 1948
  ident: b24
  article-title: Things2Vec: Semantic modeling in the internet of things with graph representation learning
  publication-title: IEEE Internet Things J.
– reference: C. Zhang, H. Liu, Y. Deng, B. Xie, Y. Li, TokenHPE: Learning orientation tokens for efficient head pose estimation via transformers, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 8897–8906.
– reference: M. Cornia, L. Baraldi, R. Cucchiara, Show, control and tell: A framework for generating controllable and grounded captions, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 8307–8316.
– volume: 9
  start-page: 750
  year: 2020
  ident: b46
  article-title: A survey on knowledge graph embedding: Approaches, applications and benchmarks
  publication-title: Electronics
– reference: K. Wang, R. He, W. Wang, L. Wang, T. Tan, Learning Coupled Feature Spaces for Cross-Modal Matching, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2013.
– volume: 235
  year: 2024
  ident: b7
  article-title: A data fusion framework based on heterogeneous information network embedding for trigger-action programming in IoT
  publication-title: Expert Syst. Appl.
– volume: 50
  start-page: 18
  year: 2017
  end-page: 24
  ident: b18
  article-title: A semantic web approach to simplifying trigger-action programming in the IoT
  publication-title: Computer
– volume: 455
  start-page: 283
  year: 2021
  end-page: 296
  ident: b23
  article-title: CARM: Confidence-aware recommender model via review representation learning and historical rating behavior in the online platforms
  publication-title: Neurocomputing
– reference: Z. Zhao, H. Bai, J. Zhang, Y. Zhang, S. Xu, Z. Lin, R. Timofte, L. Van Gool, Cddfuse: Correlation-driven dual-branch feature decomposition for multi-modality image fusion, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5906–5916.
– volume: 26
  year: 2013
  ident: b16
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 7
  start-page: 31233
  year: 2019
  end-page: 31242
  ident: b26
  article-title: Semantic representation with heterogeneous information network using matrix factorization for clustering in the internet of things
  publication-title: IEEE Access
– reference: J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, G. Sun, xdeepfm: Combining explicit and implicit feature interactions for recommender systems, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 1754–1763.
– volume: 34
  year: 2021
  ident: b53
  article-title: Multi-sensor dataset of human activities in a smart home environment
  publication-title: Data Brief
– reference: F. Corno, L. De Russis, A. Monge Roffarello, Empowering End Users in Debugging Trigger-Action Rules, in: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, New York, NY, USA, 2019, pp. 1–13.
– reference: H. Caselles-Dupré, F. Lesaint, J. Royo-Letelier, Word2vec applied to recommendation: Hyperparameters matter, in: Proceedings of the 12th ACM Conference on Recommender Systems, 2018, pp. 352–356.
– volume: 90
  start-page: 119
  year: 2019
  end-page: 133
  ident: b43
  article-title: Wider or deeper: Revisiting the resnet model for visual recognition
  publication-title: Pattern Recognit.
– start-page: 85
  year: 2020
  end-page: 99
  ident: b29
  article-title: Smart lamp or security camera? Automatic identification of IoT devices
  publication-title: International Networking Conference
– reference: Y. Yao, M.M. Kamani, Z. Cheng, L. Chen, C. Joe-Wong, T. Liu, FedRule: Federated Rule Recommendation System with Graph Neural Networks, in: Proceedings of the 8th ACM/IEEE Conference on Internet of Things Design and Implementation, 2023, pp. 197–208.
– reference: Q. You, Z. Zhang, J. Luo, End-to-end convolutional semantic embeddings, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5735–5744.
– year: 2020
  ident: 10.1016/j.asoc.2024.112163_b20
– ident: 10.1016/j.asoc.2024.112163_b15
  doi: 10.1109/CVPR.2018.00601
– volume: 58
  issue: 6
  year: 2021
  ident: 10.1016/j.asoc.2024.112163_b30
  article-title: Learning multimodal word representation with graph convolutional networks
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2021.102709
– ident: 10.1016/j.asoc.2024.112163_b6
  doi: 10.1145/3576842.3582328
– volume: 10
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.asoc.2024.112163_b28
  article-title: RecRules: recommending IF-THEN rules for end-user development
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/3344211
– ident: 10.1016/j.asoc.2024.112163_b35
– ident: 10.1016/j.asoc.2024.112163_b4
  doi: 10.1145/3524610.3527922
– ident: 10.1016/j.asoc.2024.112163_b33
  doi: 10.3115/v1/D14-1167
– volume: 26
  year: 2013
  ident: 10.1016/j.asoc.2024.112163_b16
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 468
  start-page: 469
  year: 2022
  ident: 10.1016/j.asoc.2024.112163_b22
  article-title: Multi-perspective social recommendation method with graph representation learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.10.050
– ident: 10.1016/j.asoc.2024.112163_b47
  doi: 10.1145/3131365.3131369
– volume: 90
  start-page: 119
  year: 2019
  ident: 10.1016/j.asoc.2024.112163_b43
  article-title: Wider or deeper: Revisiting the resnet model for visual recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.01.006
– ident: 10.1016/j.asoc.2024.112163_b41
  doi: 10.1145/3219819.3220023
– volume: 235
  year: 2024
  ident: 10.1016/j.asoc.2024.112163_b7
  article-title: A data fusion framework based on heterogeneous information network embedding for trigger-action programming in IoT
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121065
– year: 2024
  ident: 10.1016/j.asoc.2024.112163_b14
  article-title: Cross-modality gesture recognition with complete representation projection
  publication-title: IEEE Internet Things J.
– ident: 10.1016/j.asoc.2024.112163_b37
  doi: 10.1109/CVPR52729.2023.00859
– volume: 18
  start-page: 1231
  issue: 2
  year: 2021
  ident: 10.1016/j.asoc.2024.112163_b5
  article-title: Nonnegative matrix factorization based heterogeneous graph embedding method for trigger-action programming in IoT
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3092774
– start-page: 3980
  year: 2019
  ident: 10.1016/j.asoc.2024.112163_b49
  article-title: Sentence-BERT: Sentence embeddings using siamese BERT-networks
– volume: 7
  start-page: 1939
  issue: 3
  year: 2019
  ident: 10.1016/j.asoc.2024.112163_b24
  article-title: Things2Vec: Semantic modeling in the internet of things with graph representation learning
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2962630
– start-page: 830
  year: 2019
  ident: 10.1016/j.asoc.2024.112163_b10
  article-title: Audio caption: Listen and tell
– volume: 59
  issue: 2
  year: 2022
  ident: 10.1016/j.asoc.2024.112163_b25
  article-title: What IoT devices and applications should be connected? Predicting user behaviors of IoT services with node2vec embedding
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2022.102869
– volume: 18
  start-page: 4361
  issue: 7
  year: 2021
  ident: 10.1016/j.asoc.2024.112163_b21
  article-title: EDMF: Efficient deep matrix factorization with review feature learning for industrial recommender system
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3128240
– year: 2019
  ident: 10.1016/j.asoc.2024.112163_b48
  article-title: RotatE: Knowledge graph embedding by relational rotation in complex space
– ident: 10.1016/j.asoc.2024.112163_b1
  doi: 10.1145/3290605.3300618
– start-page: 1
  year: 2021
  ident: 10.1016/j.asoc.2024.112163_b19
  article-title: Recommendations for creating trigger-action rules in a block-based environment
  publication-title: Behav. Inf. Technol.
– ident: 10.1016/j.asoc.2024.112163_b17
  doi: 10.1145/3240323.3240377
– volume: 9
  start-page: 750
  issue: 5
  year: 2020
  ident: 10.1016/j.asoc.2024.112163_b46
  article-title: A survey on knowledge graph embedding: Approaches, applications and benchmarks
  publication-title: Electronics
  doi: 10.3390/electronics9050750
– year: 2023
  ident: 10.1016/j.asoc.2024.112163_b39
  article-title: Transifc: invariant cues-aware feature concentration learning for efficient fine-grained bird image classification
  publication-title: IEEE Trans. Multimed.
– volume: 32
  start-page: 6289
  year: 2023
  ident: 10.1016/j.asoc.2024.112163_b38
  article-title: Orientation cues-aware facial relationship representation for head pose estimation via transformer
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2023.3331309
– volume: 455
  start-page: 283
  year: 2021
  ident: 10.1016/j.asoc.2024.112163_b23
  article-title: CARM: Confidence-aware recommender model via review representation learning and historical rating behavior in the online platforms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.122
– volume: 39
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.asoc.2024.112163_b3
  article-title: From users’ intentions to if-then rules in the internet of things
  publication-title: ACM Trans. Inf. Syst. (TOIS)
  doi: 10.1145/3447264
– volume: 50
  start-page: 18
  issue: 11
  year: 2017
  ident: 10.1016/j.asoc.2024.112163_b18
  article-title: A semantic web approach to simplifying trigger-action programming in the IoT
  publication-title: Computer
  doi: 10.1109/MC.2017.4041355
– volume: 248
  year: 2022
  ident: 10.1016/j.asoc.2024.112163_b34
  article-title: Leveraging knowledge graphs and deep learning for automatic art analysis
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108859
– start-page: 1
  year: 2011
  ident: 10.1016/j.asoc.2024.112163_b52
  article-title: Introduction to recommender systems handbook
– ident: 10.1016/j.asoc.2024.112163_b51
  doi: 10.1609/aaai.v37i9.26283
– volume: 582
  start-page: 22
  year: 2022
  ident: 10.1016/j.asoc.2024.112163_b13
  article-title: A two-stage embedding model for recommendation with multimodal auxiliary information
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.09.006
– ident: 10.1016/j.asoc.2024.112163_b31
  doi: 10.1109/ICCV.2013.261
– start-page: 85
  year: 2020
  ident: 10.1016/j.asoc.2024.112163_b29
  article-title: Smart lamp or security camera? Automatic identification of IoT devices
– volume: 30
  start-page: 1261
  year: 2020
  ident: 10.1016/j.asoc.2024.112163_b8
  article-title: A bilevel integrated model with data-driven layer ensemble for multi-modality image fusion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3043125
– ident: 10.1016/j.asoc.2024.112163_b36
– ident: 10.1016/j.asoc.2024.112163_b9
  doi: 10.1109/CVPR52729.2023.00572
– volume: 15
  start-page: 3330
  issue: 6
  year: 2021
  ident: 10.1016/j.asoc.2024.112163_b12
  article-title: Mashup-oriented web API recommendation via multi-model fusion and multi-task learning
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2021.3098756
– volume: 153
  start-page: 104
  year: 2022
  ident: 10.1016/j.asoc.2024.112163_b50
  article-title: Graph transformer networks: Learning meta-path graphs to improve GNNs
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2022.05.026
– start-page: 261
  year: 2022
  ident: 10.1016/j.asoc.2024.112163_b32
  article-title: Graph-text multi-modal pre-training for medical representation learning
– ident: 10.1016/j.asoc.2024.112163_b42
  doi: 10.1109/CVPR.2018.00911
– volume: 12
  start-page: 1
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2024.112163_b44
  article-title: Semantic feature mining for video event understanding
  publication-title: ACM Trans. Multimedia Comput. Commun. Appl. (TOMM)
  doi: 10.1145/2962719
– ident: 10.1016/j.asoc.2024.112163_b27
  doi: 10.3115/v1/P15-1085
– ident: 10.1016/j.asoc.2024.112163_b11
  doi: 10.1109/CVPR.2019.00850
– volume: 34
  year: 2021
  ident: 10.1016/j.asoc.2024.112163_b53
  article-title: Multi-sensor dataset of human activities in a smart home environment
  publication-title: Data Brief
  doi: 10.1016/j.dib.2020.106632
– volume: 6
  start-page: 10675
  issue: 6
  year: 2019
  ident: 10.1016/j.asoc.2024.112163_b40
  article-title: Multimodal representation learning for recommendation in internet of things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2940709
– ident: 10.1016/j.asoc.2024.112163_b2
  doi: 10.1145/3290605.3300782
– volume: 6
  start-page: 6034
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2024.112163_b45
  article-title: Multimodal GAN for energy efficiency and cloud classification in internet of things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2866328
– volume: 7
  start-page: 31233
  year: 2019
  ident: 10.1016/j.asoc.2024.112163_b26
  article-title: Semantic representation with heterogeneous information network using matrix factorization for clustering in the internet of things
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2903310
SSID ssj0016928
Score 2.4394805
Snippet The escalating popularity of smart devices has given rise to an increasing trend wherein users leverage customized trigger-action programming (TAP) rules...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112163
SubjectTerms Knowledge graph embedding
Multi-modal representation learning
Natural language processing
Trigger-action programming
Title TAP with ease: a generic recommendation system for trigger-action programming based on multi-modal representation learning
URI https://dx.doi.org/10.1016/j.asoc.2024.112163
Volume 166
WOSCitedRecordID wos001312587900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016928
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBdtukMv27qtNN1WdOhtODiWZVu7hdGxFRpySCE3oy-HlsYJ-Shlf32fLMlxmi0sh15MEPKz8fvl6aen94HQZUgjmYU8DUIViSBmXAVMhCoAppDwSMACTmyzibTfz0YjNnA-3UXVTiAty-zpic1eVdUwBso2qbN7qLsWCgPwG5QOV1A7XP9P8b2B9a6agxebyzw2taWrWs3wwIl2fZRcFWcbaAibdOPec53DXdTWxPgRzDqnzJlCFXsYTKaq6gUwW-ctlb73xLhJdT2_XYChryLXV0s_wywCq8ojzxsjznN9c7c9Bh943PRPRLFL1GuY1CQDEDhHo7e5SdNqAufrWjO3ZdCtb-G-wwGrHSO-s568WT37xapWxxr6MLb73MjIjYzcyjhER1FKWdZCR73fV6Pr-vQpYVVP3vrNXbKVjQt8-SZ_JzQNkjJ8j9663QXuWVScoANdfkDvfOcO7Az5R_QHQIINSLAByXfMsYMI3oQIthDBABG8CRHcgAiuIIJhsAERvAkR7CHyCd3-vBr--BW4LhyBJGG4DNKu4ITFoRSEKiCYxu9FRFpwKUNSMNjwZlRIoDVSFlqZCoNSpZqKQsWJoFSTU9Qqp6U-QziShFGuY80IEHcSCRDHBaNZRguukm4bdf2nzKUrUW86pTzk_1ZiG32r75nZAi07Z1OvodxRTEsdcwDcjvvO93rKZ3S8_id8Qa3lfKW_ojfycXm3mF84tD0DMCafng
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TAP+with+ease%3A+a+generic+recommendation+system+for+trigger-action+programming+based+on+multi-modal+representation+learning&rft.jtitle=Applied+soft+computing&rft.au=Wu%2C+Gang&rft.au=Wang%2C+Ming&rft.au=Wang%2C+Feng&rft.date=2024-11-01&rft.issn=1568-4946&rft.volume=166&rft.spage=112163&rft_id=info:doi/10.1016%2Fj.asoc.2024.112163&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2024_112163
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon