CNN and swin-transformer based efficient model for Alzheimer’s disease diagnosis with sMRI

•Extracting features by combining CNN and swin-transformer.•Lightweight method didn’t degenerate the model with our 2.5D and 2-stream method.•Performance is close to previous 3D methods by only using 2D algorithms.•Only sMRI images are used as input data. Alzheimer's disease (AD) is a primary c...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical signal processing and control Vol. 86; p. 105189
Main Authors: Xin, Jiaming, Wang, Ancong, Guo, Rui, Liu, Weifeng, Tang, Xiaoying
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.09.2023
Subjects:
ISSN:1746-8094, 1746-8108
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Extracting features by combining CNN and swin-transformer.•Lightweight method didn’t degenerate the model with our 2.5D and 2-stream method.•Performance is close to previous 3D methods by only using 2D algorithms.•Only sMRI images are used as input data. Alzheimer's disease (AD) is a primary cause of dementia. Its early diagnosis is crucial to delay the progression of the disease. So far, many computer aided diagnosis (CAD) methods that combined deep learning algorithms and structural MRI have achieved encouraging results. To improve the AD diagnosis performance, more and more models are based on 3D algorithms, which make the training and deployment of these methods unaffordable. In this study, a CNN and swin-transformer based efficient model, Efficient Conv-Swin Net (ECSnet), was developed. In this model: (1) a 2.5D-subject method and two-stream structure are used to help the model to encode 3D information to 2D feature maps; (2) convolution blocks are applied in the early stages of the transformer-based backbone network to improve the generalization ability; (3) a series of lightweight approaches are applied to reduce the parameters and computational cost of the model to enable the model to train and infer efficiently. Due to the lack of multi-center data and the differences between test sets, it is difficult to make a fair comparison between the previous methods. Our model was trained on the ADNI dataset and evaluated on an independent test set from AIBL. After being lightened, our proposed method showed no performance degradation on both ADNI and AIBL compared to models such as swin-T tiny. The ECSnet achieved 92.8% balance accuracy and 91.1% sensitivity on the AIBL, which are better than those of previous works while the model is more efficient than those 3D methods.
AbstractList •Extracting features by combining CNN and swin-transformer.•Lightweight method didn’t degenerate the model with our 2.5D and 2-stream method.•Performance is close to previous 3D methods by only using 2D algorithms.•Only sMRI images are used as input data. Alzheimer's disease (AD) is a primary cause of dementia. Its early diagnosis is crucial to delay the progression of the disease. So far, many computer aided diagnosis (CAD) methods that combined deep learning algorithms and structural MRI have achieved encouraging results. To improve the AD diagnosis performance, more and more models are based on 3D algorithms, which make the training and deployment of these methods unaffordable. In this study, a CNN and swin-transformer based efficient model, Efficient Conv-Swin Net (ECSnet), was developed. In this model: (1) a 2.5D-subject method and two-stream structure are used to help the model to encode 3D information to 2D feature maps; (2) convolution blocks are applied in the early stages of the transformer-based backbone network to improve the generalization ability; (3) a series of lightweight approaches are applied to reduce the parameters and computational cost of the model to enable the model to train and infer efficiently. Due to the lack of multi-center data and the differences between test sets, it is difficult to make a fair comparison between the previous methods. Our model was trained on the ADNI dataset and evaluated on an independent test set from AIBL. After being lightened, our proposed method showed no performance degradation on both ADNI and AIBL compared to models such as swin-T tiny. The ECSnet achieved 92.8% balance accuracy and 91.1% sensitivity on the AIBL, which are better than those of previous works while the model is more efficient than those 3D methods.
ArticleNumber 105189
Author Tang, Xiaoying
Wang, Ancong
Guo, Rui
Liu, Weifeng
Xin, Jiaming
Author_xml – sequence: 1
  givenname: Jiaming
  surname: Xin
  fullname: Xin, Jiaming
  organization: School of Life Science, Beijing Institute of Technology, Beijing 100081, China
– sequence: 2
  givenname: Ancong
  surname: Wang
  fullname: Wang, Ancong
  organization: School of Life Science, Beijing Institute of Technology, Beijing 100081, China
– sequence: 3
  givenname: Rui
  surname: Guo
  fullname: Guo, Rui
  organization: School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
– sequence: 4
  givenname: Weifeng
  orcidid: 0000-0002-1546-214X
  surname: Liu
  fullname: Liu, Weifeng
  email: breeze@bit.edu.cn
  organization: School of Life Science, Beijing Institute of Technology, Beijing 100081, China
– sequence: 5
  givenname: Xiaoying
  surname: Tang
  fullname: Tang, Xiaoying
  email: xiaoying@bit.edu.cn
  organization: School of Life Science, Beijing Institute of Technology, Beijing 100081, China
BookMark eNp9kM9KAzEQh4Mo2FZfwFNeYGuyu90k4KUU_xRqBdGbELLJxKZssyVZLHryNXw9n8Qs1YuHnmaYmW_g9w3RsW89IHRByZgSWl2ux3Xc6nFO8iINJpSLIzSgrKwyTgk__uuJKE_RMMY1ISVntBygl9lyiZU3OO6cz7qgfLRt2EDAtYpgMFjrtAPf4U1roMFpiafNxwpcuvn-_IrYuAjpNFX16tvoIt65boXj_eP8DJ1Y1UQ4_60j9Hxz_TS7yxYPt_PZdJHpgpAuY4Sw0thaFXkuVFVrXSkqlGKGGq6r2oKxk5IJAKUpCMYLZQRjwvCaMNC8GCG-_6tDG2MAK7XrVOdanwK5RlIie0tyLXtLsrck95YSmv9Dt8FtVHg_DF3tIUih3hwEGXtHGowLoDtpWncI_wG9tYXU
CitedBy_id crossref_primary_10_1002_ajmg_b_32979
crossref_primary_10_1016_j_patrec_2025_01_029
crossref_primary_10_1038_s41598_024_78712_9
crossref_primary_10_1016_j_compbiomed_2024_108116
crossref_primary_10_1109_OJIM_2025_3589698
crossref_primary_10_1016_j_bspc_2024_107467
crossref_primary_10_1016_j_asoc_2025_113693
crossref_primary_10_3233_IDT_240652
crossref_primary_10_1109_TIM_2025_3555721
crossref_primary_10_1038_s41598_025_11743_y
crossref_primary_10_1049_pel2_12664
crossref_primary_10_3390_math12172720
crossref_primary_10_1016_j_imu_2024_101584
crossref_primary_10_1109_ACCESS_2024_3430325
crossref_primary_10_3390_land14010022
crossref_primary_10_1016_j_procs_2025_04_278
crossref_primary_10_1088_1402_4896_add2a6
crossref_primary_10_1109_ACCESS_2025_3606334
crossref_primary_10_1515_revneuro_2024_0088
crossref_primary_10_1186_s12880_024_01520_0
Cites_doi 10.1016/j.cmpb.2016.10.007
10.1109/ISBI52829.2022.9761549
10.1016/j.compbiomed.2019.103527
10.1186/s13024-019-0333-5
10.1145/3065386
10.1109/THMS.2023.3238113
10.1097/RLU.0000000000000547
10.1016/j.neuroimage.2017.03.057
10.1016/j.bspc.2020.102397
10.1055/s-0039-1678581
10.1109/CVPR.2017.243
10.1016/j.eswa.2021.115456
10.1016/j.bspc.2021.103445
10.1109/CVPR.2016.90
10.1109/RBME.2018.2796598
10.1016/j.neuron.2013.01.002
10.1007/s12021-013-9204-3
10.1016/j.jalz.2010.03.009
10.1002/alz.12068
10.1038/nature14539
10.1109/TMI.2021.3077079
10.1016/j.media.2020.101694
10.4018/978-1-6684-3947-0.ch012
10.1088/1361-6560/ac5ed5
10.1126/science.1132813
10.1002/jmri.21049
10.1093/brain/awaa137
10.1109/CVPR.2018.00378
10.1016/j.bspc.2021.103051
10.1007/s00259-011-2021-8
10.1109/CVPR.2018.00745
10.1088/1741-2552/ac37cc
10.1109/CVPR42600.2020.00165
10.1088/1361-6560/aa5dbe
10.1016/j.compbiomed.2021.104678
10.1109/ICCV48922.2021.00986
10.1016/j.nicl.2013.07.006
10.1186/alzrt100
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2023.105189
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2023_105189
S1746809423006225
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-70074dfba3229a6bcc6a19aa7d1d8c6bfedf5479eeac1e9783ad9779d8b07ec83
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001038041200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Sat Nov 29 06:58:08 EST 2025
Tue Nov 18 21:43:23 EST 2025
Fri Feb 23 02:36:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Alzheimer’s disease
Magnetic resonance imaging
Computational complexity
Image classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-70074dfba3229a6bcc6a19aa7d1d8c6bfedf5479eeac1e9783ad9779d8b07ec83
ORCID 0000-0002-1546-214X
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2023_105189
crossref_primary_10_1016_j_bspc_2023_105189
elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105189
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo. Swin transformer: Hierarchical vision transformer using shifted windows.
S. Sarraf, J. Sun. Functional brain imaging: A comprehensive survey (2016).
Atri (b0020) 2019; 39
LeCun, Bengio, Hinton (b0095) 2015; 521
Hosseini-Asl, Keynton, El-Baz (b0080) 2016; 2016
https://doi.org/10.48550/arXiv.2206.02680.
Khan, Pachori (b0255) 2021; 184
S. Wang, B.Z. Li, M. Khabsa, H. Fang, H. Ma. Linformer: Self-attention with linear complexity (2020).
G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger. Densely connected convolutional networks.
S.I. Khan, R.B. Pachori. Automated Eye Movement Classification Based on EMG of EOM Signals Using FBSE-EWT Technique. Ieee Transactions on Human-Machine Systems. https://doi.org/10.1109/thms.2023.3238113.
(2021), 10012-10022. https://doi.org/10.48550/arXiv.2103.14030.
Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Whitwell, Ward (b0190) 2008; 27
Zhang, Du, Liu (b0200) 2021; 18
Rathore, Habes, Iftikhar, Shacklett, Davatzikos (b0075) 2017; 155
Marcus, Mena, Subramaniam (b0055) 2014; 39
Kang, Lin, Zhang, Shen, Wu, Initiative (b0130) 2021; 136
Krizhevsky, Sutskever, Hinton (b0150) 2017; 60
Hon, Khan (b0120) 2017
(2018), 3588–3597. https://doi.org/10.1109/CVPR.2018.00378.
S.I. Khan, R.B. Pachori. Empirical Wavelet Transform-Based Framework for Diagnosis of Epilepsy Using EEG Signals. (2022). In R. K. Chaurasiya, D. Agrawal, & R. B. Pachori (Eds.), AI-Enabled Smart Healthcare Using Biomedical Signals (pp. 217-239). IGI Global. https://doi.org/10.4018/978-1-6684-3947-0.ch012.
J. Hu, L. Shen, G. Sun. Squeeze-and-excitation networks.
DeTure, Dickson (b0210) 2019; 14
https://doi.org/10.48550/arXiv.1704.04861.
K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, C. Xu. Ghostnet: More features from cheap operations. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (2020).
A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications (2017).
Xiao, Singh, Mintun, Darrell, Dollár, Girshick (b0215) 2021; 34
Qiu, Joshi, Miller, Xue, Zhou, Karjadi, Chang, Joshi, Dwyer, Zhu (b0205) 2020; 143
,
Gao, Hui, Tian (b0085) 2017; 138
Alzheimer's disease facts and figures. (2020).
(3),(2010), 291-296. https://doi.org/10.1016/j.jalz.2010.03.009.
Raffel, Shazeer, Roberts, Lee, Narang, Matena, Zhou, Li, Liu (b0220) 2020; 21
Xu, Ba, Kiros, Cho, Courville, Salakhudinov, Zemel, Bengio (b0170) 2015
Vemuri, Jones, Jack (b0045) 2012; 4
Roberson, Mucke (b0005) 2006; 314
Maggipinto, Bellotti, Amoroso, Diacono, Donvito, Lella, Monaco, Scelsi, Tangaro, Initiative (b0065) 2017; 62
Khojaste-Sarakhsi, Haghighi, Ghomi, Marchiori (b0090) 2022; 102332
Wen, Thibeau-Sutre, Diaz-Melo, Samper-González, Routier, Bottani, Dormont, Durrleman, Burgos, Colliot (b0115) 2020; 63
S. Mehta, M. Rastegari. Separable Self-attention for Mobile Vision Transformers (2022).
H. Hu, J. Gu, Z. Zhang, J. Dai, Y. Wei. Relation networks for object detection.
Khan, Qaisar, Pachori (b0030) 2022; 73
Mendoza-Léon, Puentes, Uriza, Hoyos (b0125) 2020; 116
https://doi.org/10.48550/arXiv.2010.11929.
(2016), 770-778.
(2022), 1-5. https://doi.org/10.1109/ISBI52829.2022.9761549.
Hedayati, Khedmati, Taghipour-Gorjikolaie (b0145) 2021; 66
Khan, Pachori (b0230) 2021; 70
C. Li, Y. Cui, N. Luo, Y. Liu, P. Bourgeat, J. Fripp, T. Jiang. Trans-ResNet: Integrating Transformers and CNNs for Alzheimer’s disease classification.
Jagust (b0015) 2013; 77
https://doi.org/10.48550/arXiv.1602.02225.
Nir, Jahanshad, Villalon-Reina, Toga, Jack, Weiner, Thompson, Initiative (b0060) 2013; 3
(2018), 7132-7141. https://doi.org/10.1109/TPAMI.2019.2913372.
Abraham, Pedregosa, Eickenberg, Gervais, Mueller, Kossaifi, Gramfort, Thirion, Varoquaux (b0105) 2014; 14
Leandrou, Petroudi, Kyriacou, Reyes-Aldasoro, Pattichis (b0070) 2018; 11
4700-4708 (2017). https://doi.org/10.1109/CVPR.2017.243.
Han, He, Yang, Zhang (b0245) 2022; 67
https://doi.org/10.48550/arXiv.2006.04768.
K.A. Ellis, C.C. Rowe, V.L. Villemagne, R.N. Martins, C.L. Masters, O. Salvado, C. Szoeke, D. Ames, Group, A. R. Addressing population aging and Alzheimer's disease through the Australian Imaging Biomarkers and Lifestyle study: Collaboration with the Alzheimer's Disease Neuroimaging Initiative.
Mwangi, Tian, Soares (b0110) 2014; 12
K. He, X. Zhang, S. Ren, J. Sun. Deep residual learning for image recognition.
https://doi.org/10.1002/alz.12068.
Lian, Liu, Pan, Shen (b0140) 2020
Zhu, Sun, Huang, Han, Zhang (b0135) 2021; 40
Camus, Payoux, Barré, Desgranges, Voisin, Tauber, La Joie, Tafani, Hommet, Chételat (b0050) 2012; 39
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly. An image is worth 16x16 words: Transformers for image recognition at scale (2020).
10.1016/j.bspc.2023.105189_b0165
DeTure (10.1016/j.bspc.2023.105189_b0210) 2019; 14
10.1016/j.bspc.2023.105189_b0240
10.1016/j.bspc.2023.105189_b0040
Hosseini-Asl (10.1016/j.bspc.2023.105189_b0080) 2016; 2016
Vemuri (10.1016/j.bspc.2023.105189_b0045) 2012; 4
Jack (10.1016/j.bspc.2023.105189_b0190) 2008; 27
Jagust (10.1016/j.bspc.2023.105189_b0015) 2013; 77
Zhang (10.1016/j.bspc.2023.105189_b0200) 2021; 18
Han (10.1016/j.bspc.2023.105189_b0245) 2022; 67
Wen (10.1016/j.bspc.2023.105189_b0115) 2020; 63
Khan (10.1016/j.bspc.2023.105189_b0255) 2021; 184
10.1016/j.bspc.2023.105189_b0035
Raffel (10.1016/j.bspc.2023.105189_b0220) 2020; 21
Zhu (10.1016/j.bspc.2023.105189_b0135) 2021; 40
10.1016/j.bspc.2023.105189_b0155
10.1016/j.bspc.2023.105189_b0195
Kang (10.1016/j.bspc.2023.105189_b0130) 2021; 136
Atri (10.1016/j.bspc.2023.105189_b0020) 2019; 39
10.1016/j.bspc.2023.105189_b0235
Khan (10.1016/j.bspc.2023.105189_b0230) 2021; 70
Khan (10.1016/j.bspc.2023.105189_b0030) 2022; 73
Gao (10.1016/j.bspc.2023.105189_b0085) 2017; 138
10.1016/j.bspc.2023.105189_b0160
10.1016/j.bspc.2023.105189_b0025
Maggipinto (10.1016/j.bspc.2023.105189_b0065) 2017; 62
10.1016/j.bspc.2023.105189_b0100
10.1016/j.bspc.2023.105189_b0185
Xiao (10.1016/j.bspc.2023.105189_b0215) 2021; 34
Xu (10.1016/j.bspc.2023.105189_b0170) 2015
Qiu (10.1016/j.bspc.2023.105189_b0205) 2020; 143
Abraham (10.1016/j.bspc.2023.105189_b0105) 2014; 14
Nir (10.1016/j.bspc.2023.105189_b0060) 2013; 3
10.1016/j.bspc.2023.105189_b0225
Mwangi (10.1016/j.bspc.2023.105189_b0110) 2014; 12
LeCun (10.1016/j.bspc.2023.105189_b0095) 2015; 521
Mendoza-Léon (10.1016/j.bspc.2023.105189_b0125) 2020; 116
Hon (10.1016/j.bspc.2023.105189_b0120) 2017
Hedayati (10.1016/j.bspc.2023.105189_b0145) 2021; 66
Krizhevsky (10.1016/j.bspc.2023.105189_b0150) 2017; 60
Camus (10.1016/j.bspc.2023.105189_b0050) 2012; 39
10.1016/j.bspc.2023.105189_b0010
10.1016/j.bspc.2023.105189_b0175
10.1016/j.bspc.2023.105189_b0250
Rathore (10.1016/j.bspc.2023.105189_b0075) 2017; 155
Lian (10.1016/j.bspc.2023.105189_b0140) 2020
Roberson (10.1016/j.bspc.2023.105189_b0005) 2006; 314
Marcus (10.1016/j.bspc.2023.105189_b0055) 2014; 39
Khojaste-Sarakhsi (10.1016/j.bspc.2023.105189_b0090) 2022; 102332
Leandrou (10.1016/j.bspc.2023.105189_b0070) 2018; 11
10.1016/j.bspc.2023.105189_b0180
References_xml – reference: . https://doi.org/10.48550/arXiv.1602.02225.
– reference: (2022), 1-5. https://doi.org/10.1109/ISBI52829.2022.9761549.
– volume: 77
  start-page: 219
  year: 2013
  end-page: 234
  ident: b0015
  article-title: Vulnerable neural systems and the borderland of brain aging and neurodegeneration
  publication-title: Neuron
– reference: K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, C. Xu. Ghostnet: More features from cheap operations. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (2020).
– volume: 184
  year: 2021
  ident: b0255
  article-title: Automated classification of lung sound signals based on empirical mode decomposition
  publication-title: Expert Syst. Appl.
– reference: K. He, X. Zhang, S. Ren, J. Sun. Deep residual learning for image recognition.
– volume: 70
  year: 2021
  ident: b0230
  article-title: Derived vectorcardiogram based automated detection of posterior myocardial infarction using FBSE-EWT technique [Article]
  publication-title: Biomed. Signal Process. Control
– volume: 314
  start-page: 781
  year: 2006
  end-page: 784
  ident: b0005
  article-title: 100 years and counting: prospects for defeating Alzheimer's disease
  publication-title: Science
– volume: 136
  year: 2021
  ident: b0130
  article-title: Multi-model and multi-slice ensemble learning architecture based on 2D convolutional neural networks for Alzheimer's disease diagnosis
  publication-title: Comput. Biol. Med.
– volume: 63
  year: 2020
  ident: b0115
  article-title: Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation
  publication-title: Med. Image Anal.
– volume: 67
  year: 2022
  ident: b0245
  article-title: Multi-task multi-level feature adversarial network for joint Alzheimer’s disease diagnosis and atrophy localization using sMRI
  publication-title: Phys. Med. Biol.
– volume: 143
  start-page: 1920
  year: 2020
  end-page: 1933
  ident: b0205
  article-title: Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification
  publication-title: Brain
– volume: 14
  start-page: 1
  year: 2019
  end-page: 18
  ident: b0210
  article-title: The neuropathological diagnosis of Alzheimer’s disease
  publication-title: Mol. Neurodegener.
– volume: 155
  start-page: 530
  year: 2017
  end-page: 548
  ident: b0075
  article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages
  publication-title: Neuroimage
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0095
  article-title: Deep learning
  publication-title: Nature
– reference: G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger. Densely connected convolutional networks.
– volume: 39
  start-page: 227
  year: 2019
  end-page: 240
  ident: b0020
  article-title: Current and future treatments in Alzheimer's disease
  publication-title: Semin. Neurol.
– reference: S. Mehta, M. Rastegari. Separable Self-attention for Mobile Vision Transformers (2022).
– reference: K.A. Ellis, C.C. Rowe, V.L. Villemagne, R.N. Martins, C.L. Masters, O. Salvado, C. Szoeke, D. Ames, Group, A. R. Addressing population aging and Alzheimer's disease through the Australian Imaging Biomarkers and Lifestyle study: Collaboration with the Alzheimer's Disease Neuroimaging Initiative.
– volume: 34
  start-page: 30392
  year: 2021
  end-page: 30400
  ident: b0215
  article-title: Early convolutions help transformers see better
  publication-title: Adv. Neural Inf. Proces. Syst.
– year: 2020
  ident: b0140
  article-title: Attention-guided hybrid network for dementia diagnosis with structural MR images
  publication-title: IEEE Trans. Cybern.
– start-page: 2048
  year: 2015
  end-page: 2057
  ident: b0170
  article-title: Show, attend and tell: Neural image caption generation with visual attention
  publication-title: International conference on machine learning
– year: 2017
  ident: b0120
  article-title: Towards Alzheimer's disease classification through transfer learning
  publication-title: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– volume: 40
  start-page: 2354
  year: 2021
  end-page: 2366
  ident: b0135
  article-title: Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI
  publication-title: IEEE Trans. Med. Imaging
– reference: (2018), 7132-7141. https://doi.org/10.1109/TPAMI.2019.2913372.
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: b0190
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine
– volume: 73
  year: 2022
  ident: b0030
  article-title: Automated classification of valvular heart diseases using FBSE-EWT and PSR based geometrical features
  publication-title: Biomed. Signal Process. Control
– reference: (2016), 770-778.
– volume: 138
  start-page: 49
  year: 2017
  end-page: 56
  ident: b0085
  article-title: Classification of CT brain images based on deep learning networks
  publication-title: Comput. Methods Programs Biomed.
– reference: Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo. Swin transformer: Hierarchical vision transformer using shifted windows.
– reference: . https://doi.org/10.48550/arXiv.2006.04768.
– reference: . https://doi.org/10.48550/arXiv.2206.02680.
– reference: S.I. Khan, R.B. Pachori. Empirical Wavelet Transform-Based Framework for Diagnosis of Epilepsy Using EEG Signals. (2022). In R. K. Chaurasiya, D. Agrawal, & R. B. Pachori (Eds.), AI-Enabled Smart Healthcare Using Biomedical Signals (pp. 217-239). IGI Global. https://doi.org/10.4018/978-1-6684-3947-0.ch012.
– reference: A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly. An image is worth 16x16 words: Transformers for image recognition at scale (2020).
– reference: . https://doi.org/10.48550/arXiv.1704.04861.
– volume: 21
  start-page: 1
  year: 2020
  end-page: 67
  ident: b0220
  article-title: Exploring the limits of transfer learning with a unified text-to-text transformer
  publication-title: J. Mach. Learn. Res.
– volume: 14
  year: 2014
  ident: b0105
  article-title: Machine learning for neuroimaging with scikit-learn
  publication-title: Front. Neuroinf.
– reference: (2018), 3588–3597. https://doi.org/10.1109/CVPR.2018.00378.
– volume: 3
  start-page: 180
  year: 2013
  end-page: 195
  ident: b0060
  article-title: Effectiveness of regional DTI measures in distinguishing Alzheimer's disease, MCI, and normal aging
  publication-title: NeuroImage: clinical
– volume: 116
  year: 2020
  ident: b0125
  article-title: Single-slice Alzheimer's disease classification and disease regional analysis with Supervised Switching Autoencoders
  publication-title: Comput. Biol. Med.
– reference: ,
– reference: J. Hu, L. Shen, G. Sun. Squeeze-and-excitation networks.
– reference: S. Sarraf, J. Sun. Functional brain imaging: A comprehensive survey (2016).
– volume: 62
  start-page: 2361
  year: 2017
  ident: b0065
  article-title: DTI measurements for Alzheimer’s classification
  publication-title: Phys. Med. Biol.
– reference: Alzheimer's disease facts and figures. (2020).
– reference: . https://doi.org/10.48550/arXiv.2010.11929.
– reference: . https://doi.org/10.1002/alz.12068.
– reference: H. Hu, J. Gu, Z. Zhang, J. Dai, Y. Wei. Relation networks for object detection.
– volume: 18
  year: 2021
  ident: b0200
  article-title: A whole-process interpretable and multi-modal deep reinforcement learning for diagnosis and analysis of Alzheimer’s disease∗
  publication-title: J. Neural Eng.
– reference: (3),(2010), 291-296. https://doi.org/10.1016/j.jalz.2010.03.009.
– reference: S.I. Khan, R.B. Pachori. Automated Eye Movement Classification Based on EMG of EOM Signals Using FBSE-EWT Technique. Ieee Transactions on Human-Machine Systems. https://doi.org/10.1109/thms.2023.3238113.
– volume: 39
  start-page: e413
  year: 2014
  ident: b0055
  article-title: Brain PET in the diagnosis of Alzheimer’s disease
  publication-title: Clin. Nucl. Med.
– volume: 11
  start-page: 97
  year: 2018
  end-page: 111
  ident: b0070
  article-title: Quantitative MRI brain studies in mild cognitive impairment and Alzheimer's disease: A methodological review
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 12
  start-page: 229
  year: 2014
  end-page: 244
  ident: b0110
  article-title: A review of feature reduction techniques in neuroimaging
  publication-title: Neuroinformatics
– volume: 66
  year: 2021
  ident: b0145
  article-title: Deep feature extraction method based on ensemble of convolutional auto encoders: Application to Alzheimer’s disease diagnosis
  publication-title: Biomed. Signal Process. Control
– reference: , 4700-4708 (2017). https://doi.org/10.1109/CVPR.2017.243.
– volume: 2016
  start-page: 126
  year: 2016
  end-page: 130
  ident: b0080
  article-title: Alzheimer's disease diagnostics by adaptation of 3D convolutional network
  publication-title: IEEE international conference on image processing (ICIP)
– reference: A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications (2017).
– volume: 4
  start-page: 1
  year: 2012
  end-page: 9
  ident: b0045
  article-title: Resting state functional MRI in Alzheimer's Disease
  publication-title: Alzheimers Res. Ther.
– volume: 39
  start-page: 621
  year: 2012
  end-page: 631
  ident: b0050
  article-title: Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
– volume: 102332
  year: 2022
  ident: b0090
  article-title: Deep learning for Alzheimer's disease diagnosis: A survey
  publication-title: Artif. Intell. Med.
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: b0150
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– reference: (2021), 10012-10022. https://doi.org/10.48550/arXiv.2103.14030.
– reference: C. Li, Y. Cui, N. Luo, Y. Liu, P. Bourgeat, J. Fripp, T. Jiang. Trans-ResNet: Integrating Transformers and CNNs for Alzheimer’s disease classification.
– reference: S. Wang, B.Z. Li, M. Khabsa, H. Fang, H. Ma. Linformer: Self-attention with linear complexity (2020).
– volume: 138
  start-page: 49
  year: 2017
  ident: 10.1016/j.bspc.2023.105189_b0085
  article-title: Classification of CT brain images based on deep learning networks
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.10.007
– ident: 10.1016/j.bspc.2023.105189_b0250
  doi: 10.1109/ISBI52829.2022.9761549
– volume: 14
  year: 2014
  ident: 10.1016/j.bspc.2023.105189_b0105
  article-title: Machine learning for neuroimaging with scikit-learn
  publication-title: Front. Neuroinf.
– volume: 116
  year: 2020
  ident: 10.1016/j.bspc.2023.105189_b0125
  article-title: Single-slice Alzheimer's disease classification and disease regional analysis with Supervised Switching Autoencoders
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103527
– volume: 14
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2023.105189_b0210
  article-title: The neuropathological diagnosis of Alzheimer’s disease
  publication-title: Mol. Neurodegener.
  doi: 10.1186/s13024-019-0333-5
– ident: 10.1016/j.bspc.2023.105189_b0100
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.bspc.2023.105189_b0150
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: 10.1016/j.bspc.2023.105189_b0185
– ident: 10.1016/j.bspc.2023.105189_b0025
  doi: 10.1109/THMS.2023.3238113
– volume: 39
  start-page: e413
  issue: 10
  year: 2014
  ident: 10.1016/j.bspc.2023.105189_b0055
  article-title: Brain PET in the diagnosis of Alzheimer’s disease
  publication-title: Clin. Nucl. Med.
  doi: 10.1097/RLU.0000000000000547
– volume: 155
  start-page: 530
  year: 2017
  ident: 10.1016/j.bspc.2023.105189_b0075
  article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.057
– volume: 66
  year: 2021
  ident: 10.1016/j.bspc.2023.105189_b0145
  article-title: Deep feature extraction method based on ensemble of convolutional auto encoders: Application to Alzheimer’s disease diagnosis
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102397
– volume: 39
  start-page: 227
  issue: 02
  year: 2019
  ident: 10.1016/j.bspc.2023.105189_b0020
  article-title: Current and future treatments in Alzheimer's disease
  publication-title: Semin. Neurol.
  doi: 10.1055/s-0039-1678581
– year: 2017
  ident: 10.1016/j.bspc.2023.105189_b0120
  article-title: Towards Alzheimer's disease classification through transfer learning
– ident: 10.1016/j.bspc.2023.105189_b0160
  doi: 10.1109/CVPR.2017.243
– volume: 184
  year: 2021
  ident: 10.1016/j.bspc.2023.105189_b0255
  article-title: Automated classification of lung sound signals based on empirical mode decomposition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115456
– volume: 73
  year: 2022
  ident: 10.1016/j.bspc.2023.105189_b0030
  article-title: Automated classification of valvular heart diseases using FBSE-EWT and PSR based geometrical features
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103445
– ident: 10.1016/j.bspc.2023.105189_b0040
– ident: 10.1016/j.bspc.2023.105189_b0180
– ident: 10.1016/j.bspc.2023.105189_b0235
  doi: 10.1109/CVPR.2016.90
– volume: 11
  start-page: 97
  year: 2018
  ident: 10.1016/j.bspc.2023.105189_b0070
  article-title: Quantitative MRI brain studies in mild cognitive impairment and Alzheimer's disease: A methodological review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2018.2796598
– volume: 77
  start-page: 219
  issue: 2
  year: 2013
  ident: 10.1016/j.bspc.2023.105189_b0015
  article-title: Vulnerable neural systems and the borderland of brain aging and neurodegeneration
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.01.002
– volume: 34
  start-page: 30392
  year: 2021
  ident: 10.1016/j.bspc.2023.105189_b0215
  article-title: Early convolutions help transformers see better
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 12
  start-page: 229
  issue: 2
  year: 2014
  ident: 10.1016/j.bspc.2023.105189_b0110
  article-title: A review of feature reduction techniques in neuroimaging
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-013-9204-3
– ident: 10.1016/j.bspc.2023.105189_b0195
  doi: 10.1016/j.jalz.2010.03.009
– ident: 10.1016/j.bspc.2023.105189_b0010
  doi: 10.1002/alz.12068
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.bspc.2023.105189_b0095
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 40
  start-page: 2354
  issue: 9
  year: 2021
  ident: 10.1016/j.bspc.2023.105189_b0135
  article-title: Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3077079
– volume: 63
  year: 2020
  ident: 10.1016/j.bspc.2023.105189_b0115
  article-title: Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101694
– ident: 10.1016/j.bspc.2023.105189_b0035
  doi: 10.4018/978-1-6684-3947-0.ch012
– volume: 67
  issue: 8
  year: 2022
  ident: 10.1016/j.bspc.2023.105189_b0245
  article-title: Multi-task multi-level feature adversarial network for joint Alzheimer’s disease diagnosis and atrophy localization using sMRI
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ac5ed5
– volume: 314
  start-page: 781
  issue: 5800
  year: 2006
  ident: 10.1016/j.bspc.2023.105189_b0005
  article-title: 100 years and counting: prospects for defeating Alzheimer's disease
  publication-title: Science
  doi: 10.1126/science.1132813
– volume: 21
  start-page: 1
  issue: 140
  year: 2020
  ident: 10.1016/j.bspc.2023.105189_b0220
  article-title: Exploring the limits of transfer learning with a unified text-to-text transformer
  publication-title: J. Mach. Learn. Res.
– volume: 27
  start-page: 685
  issue: 4
  year: 2008
  ident: 10.1016/j.bspc.2023.105189_b0190
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine
  doi: 10.1002/jmri.21049
– volume: 143
  start-page: 1920
  issue: 6
  year: 2020
  ident: 10.1016/j.bspc.2023.105189_b0205
  article-title: Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification
  publication-title: Brain
  doi: 10.1093/brain/awaa137
– ident: 10.1016/j.bspc.2023.105189_b0225
  doi: 10.1109/CVPR.2018.00378
– volume: 70
  year: 2021
  ident: 10.1016/j.bspc.2023.105189_b0230
  article-title: Derived vectorcardiogram based automated detection of posterior myocardial infarction using FBSE-EWT technique [Article]
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103051
– volume: 102332
  year: 2022
  ident: 10.1016/j.bspc.2023.105189_b0090
  article-title: Deep learning for Alzheimer's disease diagnosis: A survey
  publication-title: Artif. Intell. Med.
– ident: 10.1016/j.bspc.2023.105189_b0155
– volume: 39
  start-page: 621
  issue: 4
  year: 2012
  ident: 10.1016/j.bspc.2023.105189_b0050
  article-title: Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment
  publication-title: Eur. J. Nucl. Med. Mol. Imag.
  doi: 10.1007/s00259-011-2021-8
– ident: 10.1016/j.bspc.2023.105189_b0240
  doi: 10.1109/CVPR.2018.00745
– volume: 18
  issue: 6
  year: 2021
  ident: 10.1016/j.bspc.2023.105189_b0200
  article-title: A whole-process interpretable and multi-modal deep reinforcement learning for diagnosis and analysis of Alzheimer’s disease∗
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac37cc
– ident: 10.1016/j.bspc.2023.105189_b0165
  doi: 10.1109/CVPR42600.2020.00165
– year: 2020
  ident: 10.1016/j.bspc.2023.105189_b0140
  article-title: Attention-guided hybrid network for dementia diagnosis with structural MR images
  publication-title: IEEE Trans. Cybern.
– volume: 62
  start-page: 2361
  issue: 6
  year: 2017
  ident: 10.1016/j.bspc.2023.105189_b0065
  article-title: DTI measurements for Alzheimer’s classification
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa5dbe
– volume: 136
  year: 2021
  ident: 10.1016/j.bspc.2023.105189_b0130
  article-title: Multi-model and multi-slice ensemble learning architecture based on 2D convolutional neural networks for Alzheimer's disease diagnosis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104678
– start-page: 2048
  year: 2015
  ident: 10.1016/j.bspc.2023.105189_b0170
  article-title: Show, attend and tell: Neural image caption generation with visual attention
  publication-title: International conference on machine learning
– ident: 10.1016/j.bspc.2023.105189_b0175
  doi: 10.1109/ICCV48922.2021.00986
– volume: 3
  start-page: 180
  year: 2013
  ident: 10.1016/j.bspc.2023.105189_b0060
  article-title: Effectiveness of regional DTI measures in distinguishing Alzheimer's disease, MCI, and normal aging
  publication-title: NeuroImage: clinical
  doi: 10.1016/j.nicl.2013.07.006
– volume: 2016
  start-page: 126
  year: 2016
  ident: 10.1016/j.bspc.2023.105189_b0080
  article-title: Alzheimer's disease diagnostics by adaptation of 3D convolutional network
  publication-title: IEEE international conference on image processing (ICIP)
– volume: 4
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.bspc.2023.105189_b0045
  article-title: Resting state functional MRI in Alzheimer's Disease
  publication-title: Alzheimers Res. Ther.
  doi: 10.1186/alzrt100
SSID ssj0048714
Score 2.453796
Snippet •Extracting features by combining CNN and swin-transformer.•Lightweight method didn’t degenerate the model with our 2.5D and 2-stream method.•Performance is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105189
SubjectTerms Alzheimer’s disease
Computational complexity
Deep learning
Image classification
Magnetic resonance imaging
Title CNN and swin-transformer based efficient model for Alzheimer’s disease diagnosis with sMRI
URI https://dx.doi.org/10.1016/j.bspc.2023.105189
Volume 86
WOSCitedRecordID wos001038041200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE_R8pAP3KpUeW0cH1dVgaKyQlVBe0CKHNuBVKuw2uy2FScu_Aj-Hr-EGb-6XaCiBy7Ryus4UebTzHj8zQwhLzKma1EXRZQUQkc5kwWSANKIs7jJmzxhtWETfjhk43E5mfB3g8F3nwtzOmVdV56f89l_FTWMgbAxdfYa4g6LwgD8BqHDFcQO138S_N54bE4E-rO2ixbeL9XzHTRYCgkcrUmCtE1wDM1wNP36WbfYR8VRH3jvT24wOItcvNalwfVvjw4uHQSb9H2bW9l-Qtd2ZlMPfPKj48J7wU5c9y_MJ3dG04TzrcoZdTA9jL5amjju0bL1I4ft0pACddtoN89FLNIsULK8kmU5FkG2zY29Fi5X1Sg4fYntLPSbhrfBhpPdup9hBco0272YfLmc9pqZC-RDz2s7qXCNCteo7Bo3yGbKhhyU4-boYH_yxpt02NSZIvHhxV32lSUKrr_Jnz2cFa_l-C6547YbdGRhco8MdHef3F4pQvmAfATAUJAUXQcMNYChATDUAIbCnzQA5ue3Hz11UKEBKhShQhEqD8n7l_vHe68j13MjklkcLyKGPqVqagGKnouilrIQCReCqUSVsqgbrZphzrgGg51ojBsKBVsIrso6ZlqW2SOy0X3p9GNChcrSrEmRBZTlucxLpXjcDEupcc_K4y2S-O9USVeQHvuiTKu_S2iL7IR7ZrYcy5Wzh_7zV86htI5iBWi64r7taz3lCbl1gfKnZGMxX-pn5KY8XbT9_LmD0i8wF5eW
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN+and+swin-transformer+based+efficient+model+for+Alzheimer%E2%80%99s+disease+diagnosis+with+sMRI&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Xin%2C+Jiaming&rft.au=Wang%2C+Ancong&rft.au=Guo%2C+Rui&rft.au=Liu%2C+Weifeng&rft.date=2023-09-01&rft.issn=1746-8094&rft.volume=86&rft.spage=105189&rft_id=info:doi/10.1016%2Fj.bspc.2023.105189&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2023_105189
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon