Parallel evolutionary approaches for game playing and verification using Intel Xeon Phi
Automatic generation of artificial players is an important subject for the videogames industry. Different strategies have been proposed to implement realistic and intelligent agents for gameplaying and verification. This article presents a parallel evolutionary approach for the automation of compute...
Uloženo v:
| Vydáno v: | Journal of parallel and distributed computing Ročník 133; s. 258 - 271 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.11.2019
|
| Témata: | |
| ISSN: | 0743-7315, 1096-0848 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Automatic generation of artificial players is an important subject for the videogames industry. Different strategies have been proposed to implement realistic and intelligent agents for gameplaying and verification. This article presents a parallel evolutionary approach for the automation of computer player generation for video games. A learning pipeline model is defined to study the generation problem for Nintendo Entertainment System games composed of three stages: objective inference, objective refinement and artificial intelligence generation. Two case studies based on the defined pipeline are presented: an evolutionary algorithm to learn how to play the game Pinball, offloading the evaluation of the fitness function to a Xeon Phi coprocessor, and a full pipeline implementation that uses neuroevolution to generate RNNs that can play different games successfully. Results show that the proposed pipeline can be applied for the automatic generation of artificial players for the studied games.
•Parallel evolutionary approaches for the automation of computer player generation for video games are introduced.•A learning pipeline model is defined to study the generation problem for Nintendo Entertainment System games.•A parallel evolutionary algorithm using Xeon Phi to learn how to play the game Pinball is presented.•A full pipeline implementation that uses neuroevolution to generate RNNs for playing different games is introduced. |
|---|---|
| AbstractList | Automatic generation of artificial players is an important subject for the videogames industry. Different strategies have been proposed to implement realistic and intelligent agents for gameplaying and verification. This article presents a parallel evolutionary approach for the automation of computer player generation for video games. A learning pipeline model is defined to study the generation problem for Nintendo Entertainment System games composed of three stages: objective inference, objective refinement and artificial intelligence generation. Two case studies based on the defined pipeline are presented: an evolutionary algorithm to learn how to play the game Pinball, offloading the evaluation of the fitness function to a Xeon Phi coprocessor, and a full pipeline implementation that uses neuroevolution to generate RNNs that can play different games successfully. Results show that the proposed pipeline can be applied for the automatic generation of artificial players for the studied games.
•Parallel evolutionary approaches for the automation of computer player generation for video games are introduced.•A learning pipeline model is defined to study the generation problem for Nintendo Entertainment System games.•A parallel evolutionary algorithm using Xeon Phi to learn how to play the game Pinball is presented.•A full pipeline implementation that uses neuroevolution to generate RNNs for playing different games is introduced. |
| Author | Parodi, Facundo Rodríguez, Sebastián Nesmachnow, Sergio |
| Author_xml | – sequence: 1 givenname: Sebastián surname: Rodríguez fullname: Rodríguez, Sebastián email: sebastian.rodriguez.leopold@fing.edu.uy – sequence: 2 givenname: Facundo surname: Parodi fullname: Parodi, Facundo email: facundo.parodi@fing.edu.uy – sequence: 3 givenname: Sergio orcidid: 0000-0002-8146-4012 surname: Nesmachnow fullname: Nesmachnow, Sergio email: sergion@fing.edu.uy |
| BookMark | eNp9kM1Kw0AUhQepYFt9AVfzAol3Mpmfghsp_hQKdqHobphMbtoJaRImaaFvb2JduejqwuF-B843I5O6qZGQewYxAyYfyrhscxcnwHQMKgYGV2TKYCEj0KmekCmolEeKM3FDZl1XAjAmlJ6Sr40NtqqwonhsqkPvm9qGE7VtGxrrdtjRogl0a_dI28qefL2lts7pEYMvvLPjPz10Y7yq-6HlG4dgs_O35LqwVYd3f3dOPl-eP5Zv0fr9dbV8WkeOA_SRLDKmQOaopBa5c7lSMteCS7koUp6BwJRrxtMiYc7aRGIGizQTLBHSilQgn5Pk3OtC03UBC9MGvx8mGAZmVGNKM6oxoxoDygxqBkj_g5zvf7f0wfrqMvp4RnEYdfQYTOc81g5zH9D1Jm_8JfwHDoyCNg |
| CitedBy_id | crossref_primary_10_1016_j_jpdc_2019_07_010 |
| Cites_doi | 10.1016/j.entcom.2012.10.001 10.1504/IJMHEUR.2014.068914 10.1162/106365602320169811 10.1038/nature14236 10.1016/0305-0548(86)90048-1 10.1109/TCIAIG.2015.2494596 10.1109/TCIAIG.2013.2294713 10.1109/TSSC.1968.300136 10.1109/TCIAIG.2014.2339221 10.1109/COGANN.1992.273950 10.24963/ijcai.2017/390 10.1111/j.1475-3995.2012.00862.x |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Inc. |
| Copyright_xml | – notice: 2018 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jpdc.2018.07.010 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1096-0848 |
| EndPage | 271 |
| ExternalDocumentID | 10_1016_j_jpdc_2018_07_010 S074373151830491X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFSI ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADHUB ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 E.L EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 TWZ WUQ XJT XOL XPP ZMT ZU3 ZY4 ~G- ~G0 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-6fb1706de7685dccd776d853669f43b05e438134f21caa26eb094b51256a545e3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000488138800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0743-7315 |
| IngestDate | Sat Nov 29 07:14:16 EST 2025 Tue Nov 18 21:09:47 EST 2025 Fri Feb 23 02:31:21 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Xeon Phi Parallel evolutionary algorithms Neuroevolution NES |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-6fb1706de7685dccd776d853669f43b05e438134f21caa26eb094b51256a545e3 |
| ORCID | 0000-0002-8146-4012 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1016_j_jpdc_2018_07_010 crossref_citationtrail_10_1016_j_jpdc_2018_07_010 elsevier_sciencedirect_doi_10_1016_j_jpdc_2018_07_010 |
| PublicationCentury | 2000 |
| PublicationDate | November 2019 2019-11-00 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: November 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of parallel and distributed computing |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Alba, Luque, Nesmachnow (b1) 2013; 20 García-Sánchez, Tonda, Mora, Squillero, Merelo (b10) 2015 Glover (b11) 1986; 13 Barriga, Stanescu, Buro (b4) 2014 Bourki, Chaslot, Coulm, Danjean, Doghmen, Hoock, Hérault, Rimmel, Teytaud, Teytaud (b6) 2010 Murphy (b21) 2013 Hausknecht, Lehman, Miikkulainen, Stone (b15) 2014; 6 Osborn, Mateas (b25) 2014 Togelius, Karakovskiy, Koutník, Schmidhuber (b32) 2009 D. Dyer, Watchmaker framework for evolutionary computation, [Online] Jørgensen, Sandberg (b17) 2009 Chaslot, Winands, van Den Herik (b7) 2008 Guzdial, Riedl (b13) 2016 M. Bodén, A guide to recurrent neural networks and backpropagation, The Dallas project, 2001. Nesmachnow (b22) 2010; 61 A. Summerville, J. Osborn, M. Mateas, Charda: Causal hybrid automata recovery via dynamic analysis, 2017. ArXiv preprint Bäck, Fogel, Michalewicz (b3) 1997 Hong, Cho (b16) 2004 (Accessed October 2016). J. Schaffer, D. Whitley, L. Eshelman, Combinations of genetic algorithms and neural networks: a survey of the state of the art, in: International Workshop on Combinations of Genetic Algorithms and Neural Networks, 1992, 1–37. Ortega, Shaker, Togelius, Yannakakis (b24) 2013; 4 Yannakakis, Togelius (b35) 2018 Aloupis, Demaine, Guo, Viglietta (b2) 2014 Leane, Noman (b18) 2017 Fang, Sips, Zhang, Xu, Che, Varbanescu (b9) 2014 Nesmachnow (b23) 2014; 3 Van Hasselt, Guez, Silver (b33) 2016 Risi, Togelius (b27) 2017; 9 Stanley, Miikkulainen (b30) 2002; 10 Yannakakis, Togelius (b34) 2015 Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (b20) 2015; 518 . F. Parodi, S. Rodríguez Leopold, S. Iturriaga, S. Nesmachnow, Optimizing a pinball computer player using evolutionary algorithms, in: Proceedings of the XVIII Latin-Iberoamerican Conference on Operations Research, 2016. Logas, Whitehead, Mateas, Vallejos, Scott, Shapiro, Murray, Compton, Osborn, Salvatore (b19) 2014 Simpson (b29) 2012 Hart, Nilsson, Raphael (b14) 1968; 4 Guzdial, Li, Riedl (b12) 2017 Zook, Harrison, Riedl (b36) 2015 Bourki (10.1016/j.jpdc.2018.07.010_b6) 2010 García-Sánchez (10.1016/j.jpdc.2018.07.010_b10) 2015 Mnih (10.1016/j.jpdc.2018.07.010_b20) 2015; 518 10.1016/j.jpdc.2018.07.010_b5 Guzdial (10.1016/j.jpdc.2018.07.010_b13) 2016 10.1016/j.jpdc.2018.07.010_b8 Guzdial (10.1016/j.jpdc.2018.07.010_b12) 2017 Fang (10.1016/j.jpdc.2018.07.010_b9) 2014 Togelius (10.1016/j.jpdc.2018.07.010_b32) 2009 Nesmachnow (10.1016/j.jpdc.2018.07.010_b22) 2010; 61 10.1016/j.jpdc.2018.07.010_b31 Stanley (10.1016/j.jpdc.2018.07.010_b30) 2002; 10 Hong (10.1016/j.jpdc.2018.07.010_b16) 2004 10.1016/j.jpdc.2018.07.010_b28 Simpson (10.1016/j.jpdc.2018.07.010_b29) 2012 Logas (10.1016/j.jpdc.2018.07.010_b19) 2014 Yannakakis (10.1016/j.jpdc.2018.07.010_b34) 2015 Hausknecht (10.1016/j.jpdc.2018.07.010_b15) 2014; 6 Leane (10.1016/j.jpdc.2018.07.010_b18) 2017 Ortega (10.1016/j.jpdc.2018.07.010_b24) 2013; 4 Alba (10.1016/j.jpdc.2018.07.010_b1) 2013; 20 Murphy (10.1016/j.jpdc.2018.07.010_b21) 2013 Van Hasselt (10.1016/j.jpdc.2018.07.010_b33) 2016 Risi (10.1016/j.jpdc.2018.07.010_b27) 2017; 9 Zook (10.1016/j.jpdc.2018.07.010_b36) 2015 Hart (10.1016/j.jpdc.2018.07.010_b14) 1968; 4 Bäck (10.1016/j.jpdc.2018.07.010_b3) 1997 Osborn (10.1016/j.jpdc.2018.07.010_b25) 2014 Yannakakis (10.1016/j.jpdc.2018.07.010_b35) 2018 Chaslot (10.1016/j.jpdc.2018.07.010_b7) 2008 Jørgensen (10.1016/j.jpdc.2018.07.010_b17) 2009 Nesmachnow (10.1016/j.jpdc.2018.07.010_b23) 2014; 3 10.1016/j.jpdc.2018.07.010_b26 Aloupis (10.1016/j.jpdc.2018.07.010_b2) 2014 Glover (10.1016/j.jpdc.2018.07.010_b11) 1986; 13 Barriga (10.1016/j.jpdc.2018.07.010_b4) 2014 |
| References_xml | – year: 2016 ident: b13 article-title: Game level generation from gameplay videos publication-title: Twelfth Artificial Intelligence and Interactive Digital Entertainment Conference – start-page: 284 year: 2015 end-page: 291 ident: b10 article-title: Towards automatic StarCraft strategy generation using genetic programming publication-title: Computational Intelligence and Games (CIG), 2015 IEEE Conference on – reference: F. Parodi, S. Rodríguez Leopold, S. Iturriaga, S. Nesmachnow, Optimizing a pinball computer player using evolutionary algorithms, in: Proceedings of the XVIII Latin-Iberoamerican Conference on Operations Research, 2016. – volume: 13 start-page: 533 year: 1986 end-page: 549 ident: b11 article-title: Future paths for integer programming and links to artificial intelligence publication-title: Comput. Oper. Res. – year: 2009 ident: b17 article-title: Playing Mario Using Advanced AI Techniques – volume: 9 start-page: 25 year: 2017 end-page: 41 ident: b27 article-title: Neuroevolution in games: state of the art and open challenges publication-title: IEEE Trans. Comput. Intell. AI Games – year: 2018 ident: b35 article-title: Artificial Intelligence and Games – start-page: 19 year: 2017 end-page: 24 ident: b18 article-title: An evolutionary metaheuristic algorithm to optimise solutions to NES games publication-title: Intelligent and Evolutionary Systems (IES), 2017 21st Asia Pacific Symposium on – start-page: 112 year: 2013 end-page: 133 ident: b21 article-title: The first level of Super Mario Bros. is easy with lexicographic orderings and time travel publication-title: Proc. 7th Annual SIGBOVIK Conference – reference: A. Summerville, J. Osborn, M. Mateas, Charda: Causal hybrid automata recovery via dynamic analysis, 2017. ArXiv preprint – start-page: 1 year: 2014 end-page: 7 ident: b4 article-title: Parallel UCT search on GPUs publication-title: Computational Intelligence and Games (CIG), 2014 IEEE Conference on – volume: 61 start-page: 12 year: 2010 end-page: 15 ident: b22 article-title: Computacion científica de alto desempeño en la F́acultad de Ingeniería, Universidad de la República publication-title: Rev. Asoc. Ingenieros Uruguay – year: 2014 ident: b25 article-title: A game-independent play trace dissimilarity metric publication-title: Proceedings of the 9th International Conference on Foundations of Digital Games – year: 1997 ident: b3 article-title: Handbook of Evolutionary Computation – reference: J. Schaffer, D. Whitley, L. Eshelman, Combinations of genetic algorithms and neural networks: a survey of the state of the art, in: International Workshop on Combinations of Genetic Algorithms and Neural Networks, 1992, 1–37. – year: 2012 ident: b29 article-title: Evolutionary Artificial Intelligence in Video Games – reference: D. Dyer, Watchmaker framework for evolutionary computation, [Online] – start-page: 317 year: 2015 end-page: 335 ident: b34 article-title: A panorama of artificial and computational intelligence in games publication-title: IEEE Trans. Comput. Intell. AI Games – start-page: 40 year: 2014 ident: b2 article-title: Classic nintendo games are (computationally) hard publication-title: Fun with Algorithms: 7th International Conference, FUN 2014, Lipari Island, Sicily, Italy, July 1–3, 2014, Proceedings, vol. 8496 – year: 2017 ident: b12 article-title: Game engine learning from video publication-title: 26th International Joint Conference on Artificial Intelligence – start-page: 2094 year: 2016 end-page: 2100 ident: b33 article-title: Deep Reinforcement Learning with Double Q-Learning publication-title: AAAI, vol. 16 – volume: 10 start-page: 99 year: 2002 end-page: 127 ident: b30 article-title: Evolving neural networks through augmenting topologies publication-title: Evol. Comput. – volume: 4 start-page: 93 year: 2013 end-page: 104 ident: b24 article-title: Imitating human playing styles in super mario bros publication-title: Entertainment Comput. – start-page: 156 year: 2009 end-page: 161 ident: b32 article-title: Super mario evolution publication-title: Computational Intelligence and Games, 2009. CIG 2009. IEEE Symposium on – year: 2015 ident: b36 article-title: Monte-carlo tree search for simulation-based strategy analysis publication-title: Proceedings of the 10th Conference on the Foundations of Digital Games – volume: 4 start-page: 100 year: 1968 end-page: 107 ident: b14 article-title: A formal basis for the heuristic determination of minimum cost paths publication-title: IEEE Trans. Syst. Sci. Cybern. – volume: 3 start-page: 320 year: 2014 end-page: 347 ident: b23 article-title: An overview of metaheuristics: accurate and efficient methods for optimisation publication-title: Int. J. Metaheuristics – volume: 20 start-page: 1 year: 2013 end-page: 48 ident: b1 article-title: Parallel metaheuristics: recent advances and new trends publication-title: Int. Trans. Oper. Res. – start-page: 60 year: 2008 end-page: 71 ident: b7 article-title: Parallel monte-carlo tree search publication-title: International Conference on Computers and Games – volume: 6 start-page: 355 year: 2014 end-page: 366 ident: b15 article-title: A neuroevolution approach to general Atari game playing publication-title: IEEE Trans. Comput. Intell. AI Games – volume: 518 start-page: 529 year: 2015 ident: b20 article-title: Human-level control through deep reinforcement learning publication-title: Nature – reference: . – start-page: 48 year: 2010 end-page: 58 ident: b6 article-title: Scalability and parallelization of monte-carlo tree search publication-title: International Conference on Computers and Games – reference: M. Bodén, A guide to recurrent neural networks and backpropagation, The Dallas project, 2001. – reference: . (Accessed October 2016). – start-page: 137 year: 2014 end-page: 148 ident: b9 article-title: Test-driving Intel Xeon Phi publication-title: 5th ACM/SPEC international conference on Performance engineering – start-page: 634 year: 2004 end-page: 638 ident: b16 article-title: Evolution of emergent behaviors for shooting game characters in Robocode publication-title: Evolutionary Computation, 2004. CEC2004. Congress on, vol. 1 – year: 2014 ident: b19 article-title: Software verification games: Designing Xylem, The Code of Plants publication-title: Proceedings of the 9th International Conference on Foundations of Digital Games – volume: 4 start-page: 93 issue: 2 year: 2013 ident: 10.1016/j.jpdc.2018.07.010_b24 article-title: Imitating human playing styles in super mario bros publication-title: Entertainment Comput. doi: 10.1016/j.entcom.2012.10.001 – volume: 3 start-page: 320 issue: 4 year: 2014 ident: 10.1016/j.jpdc.2018.07.010_b23 article-title: An overview of metaheuristics: accurate and efficient methods for optimisation publication-title: Int. J. Metaheuristics doi: 10.1504/IJMHEUR.2014.068914 – ident: 10.1016/j.jpdc.2018.07.010_b5 – volume: 10 start-page: 99 issue: 2 year: 2002 ident: 10.1016/j.jpdc.2018.07.010_b30 article-title: Evolving neural networks through augmenting topologies publication-title: Evol. Comput. doi: 10.1162/106365602320169811 – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 10.1016/j.jpdc.2018.07.010_b20 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 13 start-page: 533 issue: 5 year: 1986 ident: 10.1016/j.jpdc.2018.07.010_b11 article-title: Future paths for integer programming and links to artificial intelligence publication-title: Comput. Oper. Res. doi: 10.1016/0305-0548(86)90048-1 – volume: 9 start-page: 25 issue: 1 year: 2017 ident: 10.1016/j.jpdc.2018.07.010_b27 article-title: Neuroevolution in games: state of the art and open challenges publication-title: IEEE Trans. Comput. Intell. AI Games doi: 10.1109/TCIAIG.2015.2494596 – start-page: 60 year: 2008 ident: 10.1016/j.jpdc.2018.07.010_b7 article-title: Parallel monte-carlo tree search – year: 2017 ident: 10.1016/j.jpdc.2018.07.010_b12 article-title: Game engine learning from video – volume: 6 start-page: 355 issue: 4 year: 2014 ident: 10.1016/j.jpdc.2018.07.010_b15 article-title: A neuroevolution approach to general Atari game playing publication-title: IEEE Trans. Comput. Intell. AI Games doi: 10.1109/TCIAIG.2013.2294713 – start-page: 156 year: 2009 ident: 10.1016/j.jpdc.2018.07.010_b32 article-title: Super mario evolution – ident: 10.1016/j.jpdc.2018.07.010_b26 – year: 2018 ident: 10.1016/j.jpdc.2018.07.010_b35 – start-page: 48 year: 2010 ident: 10.1016/j.jpdc.2018.07.010_b6 article-title: Scalability and parallelization of monte-carlo tree search – year: 2009 ident: 10.1016/j.jpdc.2018.07.010_b17 – volume: 4 start-page: 100 issue: 2 year: 1968 ident: 10.1016/j.jpdc.2018.07.010_b14 article-title: A formal basis for the heuristic determination of minimum cost paths publication-title: IEEE Trans. Syst. Sci. Cybern. doi: 10.1109/TSSC.1968.300136 – start-page: 19 year: 2017 ident: 10.1016/j.jpdc.2018.07.010_b18 article-title: An evolutionary metaheuristic algorithm to optimise solutions to NES games – year: 1997 ident: 10.1016/j.jpdc.2018.07.010_b3 – start-page: 2094 year: 2016 ident: 10.1016/j.jpdc.2018.07.010_b33 article-title: Deep Reinforcement Learning with Double Q-Learning – year: 2014 ident: 10.1016/j.jpdc.2018.07.010_b19 article-title: Software verification games: Designing Xylem, The Code of Plants – year: 2014 ident: 10.1016/j.jpdc.2018.07.010_b25 article-title: A game-independent play trace dissimilarity metric – start-page: 40 year: 2014 ident: 10.1016/j.jpdc.2018.07.010_b2 article-title: Classic nintendo games are (computationally) hard – start-page: 137 year: 2014 ident: 10.1016/j.jpdc.2018.07.010_b9 article-title: Test-driving Intel Xeon Phi – start-page: 634 year: 2004 ident: 10.1016/j.jpdc.2018.07.010_b16 article-title: Evolution of emergent behaviors for shooting game characters in Robocode – start-page: 317 year: 2015 ident: 10.1016/j.jpdc.2018.07.010_b34 article-title: A panorama of artificial and computational intelligence in games publication-title: IEEE Trans. Comput. Intell. AI Games doi: 10.1109/TCIAIG.2014.2339221 – volume: 61 start-page: 12 issue: 1 year: 2010 ident: 10.1016/j.jpdc.2018.07.010_b22 article-title: Computacion científica de alto desempeño en la F́acultad de Ingeniería, Universidad de la República publication-title: Rev. Asoc. Ingenieros Uruguay – start-page: 1 year: 2014 ident: 10.1016/j.jpdc.2018.07.010_b4 article-title: Parallel UCT search on GPUs – year: 2015 ident: 10.1016/j.jpdc.2018.07.010_b36 article-title: Monte-carlo tree search for simulation-based strategy analysis – ident: 10.1016/j.jpdc.2018.07.010_b28 doi: 10.1109/COGANN.1992.273950 – ident: 10.1016/j.jpdc.2018.07.010_b8 – year: 2016 ident: 10.1016/j.jpdc.2018.07.010_b13 article-title: Game level generation from gameplay videos – start-page: 284 year: 2015 ident: 10.1016/j.jpdc.2018.07.010_b10 article-title: Towards automatic StarCraft strategy generation using genetic programming – year: 2012 ident: 10.1016/j.jpdc.2018.07.010_b29 – ident: 10.1016/j.jpdc.2018.07.010_b31 doi: 10.24963/ijcai.2017/390 – volume: 20 start-page: 1 year: 2013 ident: 10.1016/j.jpdc.2018.07.010_b1 article-title: Parallel metaheuristics: recent advances and new trends publication-title: Int. Trans. Oper. Res. doi: 10.1111/j.1475-3995.2012.00862.x – start-page: 112 year: 2013 ident: 10.1016/j.jpdc.2018.07.010_b21 article-title: The first level of Super Mario Bros. is easy with lexicographic orderings and time travel |
| SSID | ssj0011578 |
| Score | 2.240639 |
| Snippet | Automatic generation of artificial players is an important subject for the videogames industry. Different strategies have been proposed to implement realistic... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 258 |
| SubjectTerms | NES Neuroevolution Parallel evolutionary algorithms Xeon Phi |
| Title | Parallel evolutionary approaches for game playing and verification using Intel Xeon Phi |
| URI | https://dx.doi.org/10.1016/j.jpdc.2018.07.010 |
| Volume | 133 |
| WOSCitedRecordID | wos000488138800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-0848 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011578 issn: 0743-7315 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3ojy0h64Ra78fhwraAUIVZFawDfL3h2HRKljBTtqf0z_KzP7cF0eFSBxsaJVdr3Z-TI7uzPzDWOvQ0hjPHaBQ-aGE4KbOakIJApE-FldQ1wrD_7nj8nxcZrn2WwyubS5MNtV0jTp-XnW_ldRYxsKm1Jn_0Lcw6DYgJ9R6PhEsePzjwQ_KzdUH2U1ha15DwXGWe5wUPwL03l5BlRB-sLmKOLPpKAhDYfexBF0OEoO2DD7uviNFdvat9Egklh4qYAWqFy5tu_sxqhcOlK75d_Oe31tfQK4h3YL1egNIMX5r6WKMTgqRd_I9ciXdVaSI0B7o2Az1zFk9tLCy0z23nCTZrNprgV7KrrUJNDpnfugFbJLQdKpZuMcNHYQjHWu5n4327evK7r8tDPoS4rl_rKVxFzppYqz1YTUXmfcPqGJ0DxQ3eEBystvsV0_iTLU-7sH7w_zD4Obyov0Vm8nbrKydADhj2_6teUzsmZO77O7RoD8QMPnAZtA85DdsyU-uNH4j9gXiyY-RhO_QhNHNHFCEzdo4ggEPkYTV2jiCk2c0MQRTY_Zp6PD0zfvHFOLwxGB63ZOXFdEtCQBj6eRFEImSSzR1IvjrA6Dyo2AuOKCsPY9UZZ-DJWbhRVak1FcopEOwRO206wbeMo4GsGxW6KhWnoyJL9tLUQkqlAE4INfx3vMs-tUCENUT_VSVoWNSFwWtLYFrW3hJgWu7R6bDn1aTdNy47cju_yFMTS1AVkgWm7o9-wf-z1nd67-BC_YTrfp4SW7Lbbd4tvmlQHVd8K7o-A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+evolutionary+approaches+for+game+playing+and+verification+using+Intel+Xeon+Phi&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Rodr%C3%ADguez%2C+Sebasti%C3%A1n&rft.au=Parodi%2C+Facundo&rft.au=Nesmachnow%2C+Sergio&rft.date=2019-11-01&rft.pub=Elsevier+Inc&rft.issn=0743-7315&rft.eissn=1096-0848&rft.volume=133&rft.spage=258&rft.epage=271&rft_id=info:doi/10.1016%2Fj.jpdc.2018.07.010&rft.externalDocID=S074373151830491X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon |