Order selection for regression-based hidden Markov model
Hidden Markov models (HMMs) describe the relationship between two stochastic processes: an observed process and an unobservable finite-state transition process. Owing to their modeling dynamic heterogeneity, HMMs are widely used to analyze heterogeneous longitudinal data. Traditional HMMs frequently...
Gespeichert in:
| Veröffentlicht in: | Journal of multivariate analysis Jg. 192; S. 105061 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.11.2022
|
| Schlagworte: | |
| ISSN: | 0047-259X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Hidden Markov models (HMMs) describe the relationship between two stochastic processes: an observed process and an unobservable finite-state transition process. Owing to their modeling dynamic heterogeneity, HMMs are widely used to analyze heterogeneous longitudinal data. Traditional HMMs frequently assume that the number of hidden states (i.e., the order of HMM) is a constant and should be specified prior to analysis. This assumption is unrealistic and restrictive in many applications. In this study, we consider regression-based hidden Markov model (RHMM) while allowing the number of hidden states to be unknown and determined by the data. We propose a novel likelihood-based double penalized method, along with an efficient expectation-conditional maximization with iterative thresholding-based descent (ECM–ITD) algorithm, to perform order selection in the context of RHMM. An extended Group-Sort-Fuse procedure is proposed to rank the regression coefficients and impose penalties on the discrepancy of adjacent coefficients. The order selection consistency and convergence of the ECM–ITD algorithm are established under mild conditions. Simulation studies are conducted to evaluate the empirical performance of the proposed method. An application of the proposed methodology to a real-life study on Alzheimer’s disease is presented. |
|---|---|
| AbstractList | Hidden Markov models (HMMs) describe the relationship between two stochastic processes: an observed process and an unobservable finite-state transition process. Owing to their modeling dynamic heterogeneity, HMMs are widely used to analyze heterogeneous longitudinal data. Traditional HMMs frequently assume that the number of hidden states (i.e., the order of HMM) is a constant and should be specified prior to analysis. This assumption is unrealistic and restrictive in many applications. In this study, we consider regression-based hidden Markov model (RHMM) while allowing the number of hidden states to be unknown and determined by the data. We propose a novel likelihood-based double penalized method, along with an efficient expectation-conditional maximization with iterative thresholding-based descent (ECM–ITD) algorithm, to perform order selection in the context of RHMM. An extended Group-Sort-Fuse procedure is proposed to rank the regression coefficients and impose penalties on the discrepancy of adjacent coefficients. The order selection consistency and convergence of the ECM–ITD algorithm are established under mild conditions. Simulation studies are conducted to evaluate the empirical performance of the proposed method. An application of the proposed methodology to a real-life study on Alzheimer’s disease is presented. |
| ArticleNumber | 105061 |
| Author | Lin, Yiqi Song, Xinyuan |
| Author_xml | – sequence: 1 givenname: Yiqi surname: Lin fullname: Lin, Yiqi – sequence: 2 givenname: Xinyuan orcidid: 0000-0002-4877-3200 surname: Song fullname: Song, Xinyuan email: xysong@sta.cuhk.edu.hk |
| BookMark | eNp9kE1LxDAQhnNYwV31D3jqH-g6SZu0BS-y-AUre1HwFtJkoqndRiZlwX9vy3rysKfhHXiG95kVWwxxQMauOaw5cHXTrbv9wawFCDEtJCi-YEuAssqFbN7P2SqlDoBzWZVLVu_IIWUJe7RjiEPmI2WEH4QpTTFvTUKXfQbncMheDH3FQ7aPDvtLduZNn_Dqb16wt4f7181Tvt09Pm_utrktAMZcYeOxqCR4hZVqauSmrQELYx13Emwpna3QlgVw5I2UyisvkLetqxqhfFFcsPp411JMidBrG0YzVx3JhF5z0LO17vRsrWdrfbSeUPEP_aawN_RzGro9QjhJHQKSTjbgYNEFml6kXQyn8F8JwnVT |
| CitedBy_id | crossref_primary_10_1016_j_spl_2024_110247 crossref_primary_10_1007_s11222_024_10462_0 crossref_primary_10_1002_sim_10069 crossref_primary_10_1038_s41598_024_74246_2 crossref_primary_10_1080_10618600_2023_2231055 crossref_primary_10_1155_2022_8361194 crossref_primary_10_1007_s42081_025_00315_z crossref_primary_10_1007_s11203_023_09292_0 crossref_primary_10_1111_2041_210X_70025 |
| Cites_doi | 10.1214/aos/1024691255 10.1214/aos/1176344136 10.1016/j.csda.2011.11.013 10.1198/jasa.2009.0103 10.3389/fnagi.2013.00011 10.1080/03610918.2013.781628 10.1214/09-AOS729 10.1109/TASE.2013.2256349 10.1016/S1474-4422(12)70291-0 10.1214/aos/1017938921 10.1097/00002093-199700112-00003 10.1198/016214506000001086 10.1016/j.jmva.2020.104646 10.1080/01621459.2013.836973 10.2307/2532308 10.1101/gr.090597.108 10.1111/j.1467-9868.2008.00693.x 10.1111/biom.12536 10.1016/j.jalz.2015.03.003 10.2307/3316097 10.1177/0962280217748675 10.1097/WAD.0b013e3181f5b8d8 10.1198/016214506000000735 10.1198/016214501753382273 10.1016/S0079-6123(08)64022-4 10.1214/aoms/1177697196 10.1214/21-AOS2072 10.1111/j.2517-6161.1996.tb02080.x 10.1109/TAC.1974.1100705 10.1080/01621459.2013.770307 10.1016/j.jalz.2012.09.017 10.3389/fnagi.2013.00055 10.1016/j.csda.2006.10.006 10.31887/DCNS.2016.18.4/cepperson |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Inc. |
| Copyright_xml | – notice: 2022 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jmva.2022.105061 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | 10_1016_j_jmva_2022_105061 S0047259X22000707 |
| GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYJJ ABAOU ABEFU ABFNM ABIVO ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFS ACIWK ACNCT ACRLP ACRPL ADBBV ADEZE ADFGL ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEXQZ AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HVGLF HZ~ IHE IXB J1W KOM LG5 M25 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSB SSD SSH SSW SSZ T5K TN5 UHS WUQ XOL XPP YHZ ZGI ZMT ZU3 ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-6e9fe3750f6e7698e1ab80e3acd1d50c45dc7ec4301e19556f6f2e1bbd7926f33 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000833526500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0047-259X |
| IngestDate | Sat Nov 29 07:29:45 EST 2025 Tue Nov 18 22:27:33 EST 2025 Sun Apr 06 06:53:22 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | secondary ECM–ITD algorithm Order selection Hidden Markov model Longitudinal data Group-Sort-Fuse procedure primary |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-6e9fe3750f6e7698e1ab80e3acd1d50c45dc7ec4301e19556f6f2e1bbd7926f33 |
| ORCID | 0000-0002-4877-3200 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jmva_2022_105061 crossref_primary_10_1016_j_jmva_2022_105061 elsevier_sciencedirect_doi_10_1016_j_jmva_2022_105061 |
| PublicationCentury | 2000 |
| PublicationDate | November 2022 2022-11-00 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of multivariate analysis |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Yu, Deng (b41) 2016 Zucchini, MacDonald (b46) 2009 Fan, Li (b12) 2001; 96 Manole, Khalili (b27) 2021; 49 Tibshirani (b37) 1996; 58 Akaike (b2) 1974; 19 Trabelsi, Mohammed, Chamroukhi, Oukhellou, Amirat (b38) 2013; 10 Bickel, Ritov, Rydén (b6) 1998; 26 Zhang (b42) 2010; 38 Kantarci, Gunter, Tosakulwong, Weigand, Senjem, Petersen, Aisen, Jagust, Weiner, Jack (b21) 2013; 9 Mohs, Knopman, Petersen, Ferris, Ernesto, Grundman, Sano, Bieliauskas, Geldmacher, Clark (b28) 1997 She (b35) 2012; 56 Dacunha-Castelle, Gassiat (b9) 1999; 27 Schweikert, Zien, Zeller, Behr, Dieterich, Ong, Philips, De Bona, Hartmann, Bohlen (b33) 2009; 19 Zou (b44) 2006; 101 Chen, Khalili (b8) 2009; 104 Leroux, Puterman (b22) 1992 MacKAY (b26) 2002; 30 Risacher, Kim, Shen, Nho, Foroud, Green, Petersen, Jack, Aisen, Koeppe (b31) 2013; 5 Hung, Wang, Zarnitsyna, Zhu, Wu (b15) 2013; 108 Agresti (b1) 2003 Ip, Zhang, Rejeski, Harris, Kritchevsky (b16) 2013; 108 Chen (b7) 1995 Dickerson, Wolk (b10) 2013; 5 Frühwirth-Schnatter, Frühwirth (b13) 2007; 51 Goedert (b14) 1998; 117 Zou, Li (b45) 2008; 36 Jelinek (b18) 1997 Baum, Petrie, Soules, Weiss (b4) 1970; 41 Liu, Song (b23) 2020 Kang, Cai, Song, Zhu (b20) 2019; 28 Schwarz (b32) 1978; 6 Serfling (b34) 2009 Durbin, Eddy, Krogh, Mitchison (b11) 1998 Wang, Li, Leng (b39) 2009; 71 Jessen, Wolfsgruber, Wiese, Bickel, Mösch, Kaduszkiewicz, Pentzek, Riedel-Heller, Luck, Fuchs (b19) 2014; 10 MacDonald, Zucchini (b25) 1997 Risacher, Kim, Nho, Foroud, Shen, Petersen, Jack, Beckett, Aisen, Koeppe (b30) 2015; 11 Jack, Knopman, Jagust, Petersen, Weiner, Aisen, Shaw, Vemuri, Wiste, Weigand (b17) 2013; 12 Zhou, Song, Sun (b43) 2020 Beal (b5) 2003 Llano, Laforet, Devanarayan (b24) 2011; 25 Xu, Chen (b40) 2015; 44 Altman (b3) 2007; 102 Podcasy, Epperson (b29) 2016; 18 Song, Xia, Zhu (b36) 2017; 73 Durbin (10.1016/j.jmva.2022.105061_b11) 1998 Altman (10.1016/j.jmva.2022.105061_b3) 2007; 102 Llano (10.1016/j.jmva.2022.105061_b24) 2011; 25 Zhou (10.1016/j.jmva.2022.105061_b43) 2020 Wang (10.1016/j.jmva.2022.105061_b39) 2009; 71 Agresti (10.1016/j.jmva.2022.105061_b1) 2003 Goedert (10.1016/j.jmva.2022.105061_b14) 1998; 117 Jack (10.1016/j.jmva.2022.105061_b17) 2013; 12 Chen (10.1016/j.jmva.2022.105061_b8) 2009; 104 Yu (10.1016/j.jmva.2022.105061_b41) 2016 Akaike (10.1016/j.jmva.2022.105061_b2) 1974; 19 Hung (10.1016/j.jmva.2022.105061_b15) 2013; 108 Zou (10.1016/j.jmva.2022.105061_b44) 2006; 101 Zucchini (10.1016/j.jmva.2022.105061_b46) 2009 Serfling (10.1016/j.jmva.2022.105061_b34) 2009 Kantarci (10.1016/j.jmva.2022.105061_b21) 2013; 9 Leroux (10.1016/j.jmva.2022.105061_b22) 1992 Xu (10.1016/j.jmva.2022.105061_b40) 2015; 44 Liu (10.1016/j.jmva.2022.105061_b23) 2020 Zhang (10.1016/j.jmva.2022.105061_b42) 2010; 38 Dickerson (10.1016/j.jmva.2022.105061_b10) 2013; 5 Fan (10.1016/j.jmva.2022.105061_b12) 2001; 96 Manole (10.1016/j.jmva.2022.105061_b27) 2021; 49 Beal (10.1016/j.jmva.2022.105061_b5) 2003 Tibshirani (10.1016/j.jmva.2022.105061_b37) 1996; 58 Risacher (10.1016/j.jmva.2022.105061_b30) 2015; 11 Baum (10.1016/j.jmva.2022.105061_b4) 1970; 41 Dacunha-Castelle (10.1016/j.jmva.2022.105061_b9) 1999; 27 Chen (10.1016/j.jmva.2022.105061_b7) 1995 Trabelsi (10.1016/j.jmva.2022.105061_b38) 2013; 10 Frühwirth-Schnatter (10.1016/j.jmva.2022.105061_b13) 2007; 51 Risacher (10.1016/j.jmva.2022.105061_b31) 2013; 5 MacDonald (10.1016/j.jmva.2022.105061_b25) 1997 Schweikert (10.1016/j.jmva.2022.105061_b33) 2009; 19 Jelinek (10.1016/j.jmva.2022.105061_b18) 1997 Jessen (10.1016/j.jmva.2022.105061_b19) 2014; 10 Song (10.1016/j.jmva.2022.105061_b36) 2017; 73 Bickel (10.1016/j.jmva.2022.105061_b6) 1998; 26 Ip (10.1016/j.jmva.2022.105061_b16) 2013; 108 Mohs (10.1016/j.jmva.2022.105061_b28) 1997 Kang (10.1016/j.jmva.2022.105061_b20) 2019; 28 Podcasy (10.1016/j.jmva.2022.105061_b29) 2016; 18 She (10.1016/j.jmva.2022.105061_b35) 2012; 56 Zou (10.1016/j.jmva.2022.105061_b45) 2008; 36 MacKAY (10.1016/j.jmva.2022.105061_b26) 2002; 30 Schwarz (10.1016/j.jmva.2022.105061_b32) 1978; 6 |
| References_xml | – volume: 5 start-page: 11 year: 2013 ident: b31 article-title: The role of apolipoprotein E (APOE) genotype in early mild cognitive impairment (E-MCI) publication-title: Front. Aging Neurosci. – volume: 56 start-page: 2976 year: 2012 end-page: 2990 ident: b35 article-title: An iterative algorithm for fitting nonconvex penalized generalized linear models with grouped predictors publication-title: Comput. Stat. Data Anal. – volume: 26 start-page: 1614 year: 1998 end-page: 1635 ident: b6 article-title: Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models publication-title: Ann. Statist. – volume: 30 start-page: 573 year: 2002 end-page: 589 ident: b26 article-title: Estimating the order of a hidden Markov model publication-title: Canad. J. Statist. – volume: 12 start-page: 207 year: 2013 end-page: 216 ident: b17 article-title: Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers publication-title: Lancet Neurol. – volume: 19 start-page: 2133 year: 2009 end-page: 2143 ident: b33 article-title: mGene: Accurate SVM-based gene finding with an application to nematode genomes publication-title: Genome Res. – volume: 27 start-page: 1178 year: 1999 end-page: 1209 ident: b9 article-title: Testing the order of a model using locally conic parametrization: Population mixtures and stationary ARMA processes publication-title: Ann. Statist. – year: 1997 ident: b28 article-title: Development of cognitive instruments for use in clinical trials of antidementia drugs: Additions to the Alzheimer’s disease assessment scale that broaden its scope publication-title: Alzheimer Dis. Assoc. Disord. – volume: 19 start-page: 716 year: 1974 end-page: 723 ident: b2 article-title: A new look at the statistical model identification publication-title: IEEE Trans. Automat. Control – volume: 18 start-page: 437 year: 2016 ident: b29 article-title: Considering sex and gender in Alzheimer disease and other dementias publication-title: Dialogues Clin. Neurosci. – volume: 101 start-page: 1418 year: 2006 end-page: 1429 ident: b44 article-title: The adaptive lasso and its oracle properties publication-title: J. Am. Stat. Assoc. – volume: 104 start-page: 187 year: 2009 end-page: 196 ident: b8 article-title: Order selection in finite mixture models with a nonsmooth penalty publication-title: J. Am. Stat. Assoc. – volume: 6 start-page: 461 year: 1978 end-page: 464 ident: b32 article-title: Estimating the dimension of a model publication-title: Ann. Statist. – year: 2020 ident: b23 article-title: Bayesian analysis of hidden Markov structural equation models with an unknown number of hidden states publication-title: Econom. Stat. – volume: 25 start-page: 73 year: 2011 end-page: 84 ident: b24 article-title: Derivation of a new ADAS-cog composite using tree-based multivariate analysis: Prediction of conversion from mild cognitive impairment to Alzheimer disease publication-title: Alzheimer Dis. Assoc. Disord. – volume: 44 start-page: 433 year: 2015 end-page: 453 ident: b40 article-title: A thresholding algorithm for order selection in finite mixture models publication-title: Comm. Statist. Simulation Comput. – volume: 10 start-page: 76 year: 2014 end-page: 83 ident: b19 article-title: AD dementia risk in late MCI, in early MCI, and in subjective memory impairment publication-title: Alzheimer Demen. – volume: 28 start-page: 2112 year: 2019 end-page: 2124 ident: b20 article-title: Bayesian hidden Markov models for delineating the pathology of Alzheimer’s disease publication-title: Stat. Methods Med. Res. – year: 2003 ident: b5 article-title: Variational Algorithms for Approximate Bayesian Inference – year: 2016 ident: b41 article-title: Automatic Speech Recognition – volume: 38 start-page: 894 year: 2010 end-page: 942 ident: b42 article-title: Nearly unbiased variable selection under minimax concave penalty publication-title: Ann. Statist. – volume: 108 start-page: 1469 year: 2013 end-page: 1479 ident: b15 article-title: Hidden Markov models with applications in cell adhesion experiments publication-title: J. Am. Stat. Assoc. – year: 1997 ident: b25 article-title: Hidden Markov and Other Models for Discrete-Valued Time Series, Vol. 110 – year: 2020 ident: b43 article-title: Continuous time hidden Markov model for longitudinal data publication-title: J. Multivariate Anal. – volume: 11 start-page: 1417 year: 2015 end-page: 1429 ident: b30 article-title: APOE effect on Alzheimer’s disease biomarkers in older adults with significant memory concern publication-title: Alzheimer Demen. – volume: 49 start-page: 3043 year: 2021 end-page: 3069 ident: b27 article-title: Estimating the number of components in finite mixture models via the group-sort-fuse procedure publication-title: Ann. Statist. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: b37 article-title: Regression shrinkage and selection via the LASSO publication-title: J. R. Statist. Soc. Ser. B – year: 1998 ident: b11 article-title: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids – volume: 10 start-page: 829 year: 2013 end-page: 835 ident: b38 article-title: An unsupervised approach for automatic activity recognition based on hidden Markov model regression publication-title: IEEE Trans. Autom. Sci. Eng. – year: 2009 ident: b46 article-title: Hidden Markov Models for Time Series: An Introduction using R – volume: 117 start-page: 287 year: 1998 end-page: 306 ident: b14 article-title: Neurofibrillary pathology of Alzheimer’s disease and other tauopathies publication-title: Prog. Brain Res. – start-page: 545 year: 1992 end-page: 558 ident: b22 article-title: Maximum-penalized-likelihood estimation for independent and Markov-dependent mixture models publication-title: Biometrics – volume: 108 start-page: 370 year: 2013 end-page: 384 ident: b16 article-title: Partially ordered mixed hidden Markov model for the disablement process of older adults publication-title: J. Am. Stat. Assoc. – volume: 51 start-page: 3509 year: 2007 end-page: 3528 ident: b13 article-title: Auxiliary mixture sampling with applications to logistic models publication-title: Comput. Statist. Data Anal. – volume: 36 start-page: 1509 year: 2008 ident: b45 article-title: One-step sparse estimates in nonconcave penalized likelihood models publication-title: Ann. Statist. – year: 2003 ident: b1 article-title: Categorical Data Analysis, Vol. 482 – start-page: 221 year: 1995 end-page: 233 ident: b7 article-title: Optimal rate of convergence for finite mixture models publication-title: Ann. Statist. – volume: 5 start-page: 55 year: 2013 ident: b10 article-title: Biomarker-based prediction of progression in MCI: Comparison of AD-signature and hippocampal volume with spinal fluid amyloid- publication-title: Front. Aging Neurosci. – year: 1997 ident: b18 article-title: Statistical Methods for Speech Recognition – volume: 41 start-page: 164 year: 1970 end-page: 171 ident: b4 article-title: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains publication-title: Ann. Math. Stat. – volume: 73 start-page: 313 year: 2017 end-page: 323 ident: b36 article-title: Hidden Markov latent variable models with multivariate longitudinal data publication-title: Biometrics – volume: 9 start-page: S116 year: 2013 end-page: S123 ident: b21 article-title: Focal hemosiderin deposits and publication-title: Alzheimer Demen. – volume: 102 start-page: 201 year: 2007 end-page: 210 ident: b3 article-title: Mixed hidden Markov models: An extension of the hidden Markov model to the longitudinal data setting publication-title: J. Am. Stat. Assoc. – volume: 96 start-page: 1348 year: 2001 end-page: 1360 ident: b12 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J. Am. Stat. Assoc. – year: 2009 ident: b34 article-title: Approximation Theorems of Mathematical Statistics, Vol. 162 – volume: 71 start-page: 671 year: 2009 end-page: 683 ident: b39 article-title: Shrinkage tuning parameter selection with a diverging number of parameters publication-title: J. R. Statist. Soc. Ser. B – volume: 26 start-page: 1614 issue: 4 year: 1998 ident: 10.1016/j.jmva.2022.105061_b6 article-title: Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models publication-title: Ann. Statist. doi: 10.1214/aos/1024691255 – volume: 6 start-page: 461 issue: 2 year: 1978 ident: 10.1016/j.jmva.2022.105061_b32 article-title: Estimating the dimension of a model publication-title: Ann. Statist. doi: 10.1214/aos/1176344136 – year: 2020 ident: 10.1016/j.jmva.2022.105061_b23 article-title: Bayesian analysis of hidden Markov structural equation models with an unknown number of hidden states publication-title: Econom. Stat. – volume: 56 start-page: 2976 issue: 10 year: 2012 ident: 10.1016/j.jmva.2022.105061_b35 article-title: An iterative algorithm for fitting nonconvex penalized generalized linear models with grouped predictors publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2011.11.013 – volume: 104 start-page: 187 issue: 485 year: 2009 ident: 10.1016/j.jmva.2022.105061_b8 article-title: Order selection in finite mixture models with a nonsmooth penalty publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2009.0103 – volume: 5 start-page: 11 year: 2013 ident: 10.1016/j.jmva.2022.105061_b31 article-title: The role of apolipoprotein E (APOE) genotype in early mild cognitive impairment (E-MCI) publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2013.00011 – volume: 44 start-page: 433 issue: 2 year: 2015 ident: 10.1016/j.jmva.2022.105061_b40 article-title: A thresholding algorithm for order selection in finite mixture models publication-title: Comm. Statist. Simulation Comput. doi: 10.1080/03610918.2013.781628 – volume: 38 start-page: 894 issue: 2 year: 2010 ident: 10.1016/j.jmva.2022.105061_b42 article-title: Nearly unbiased variable selection under minimax concave penalty publication-title: Ann. Statist. doi: 10.1214/09-AOS729 – year: 1997 ident: 10.1016/j.jmva.2022.105061_b18 – year: 1997 ident: 10.1016/j.jmva.2022.105061_b25 – volume: 10 start-page: 829 issue: 3 year: 2013 ident: 10.1016/j.jmva.2022.105061_b38 article-title: An unsupervised approach for automatic activity recognition based on hidden Markov model regression publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2013.2256349 – year: 1998 ident: 10.1016/j.jmva.2022.105061_b11 – volume: 12 start-page: 207 issue: 2 year: 2013 ident: 10.1016/j.jmva.2022.105061_b17 article-title: Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(12)70291-0 – volume: 36 start-page: 1509 issue: 4 year: 2008 ident: 10.1016/j.jmva.2022.105061_b45 article-title: One-step sparse estimates in nonconcave penalized likelihood models publication-title: Ann. Statist. – volume: 27 start-page: 1178 issue: 4 year: 1999 ident: 10.1016/j.jmva.2022.105061_b9 article-title: Testing the order of a model using locally conic parametrization: Population mixtures and stationary ARMA processes publication-title: Ann. Statist. doi: 10.1214/aos/1017938921 – year: 1997 ident: 10.1016/j.jmva.2022.105061_b28 article-title: Development of cognitive instruments for use in clinical trials of antidementia drugs: Additions to the Alzheimer’s disease assessment scale that broaden its scope publication-title: Alzheimer Dis. Assoc. Disord. doi: 10.1097/00002093-199700112-00003 – volume: 102 start-page: 201 issue: 477 year: 2007 ident: 10.1016/j.jmva.2022.105061_b3 article-title: Mixed hidden Markov models: An extension of the hidden Markov model to the longitudinal data setting publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214506000001086 – start-page: 221 year: 1995 ident: 10.1016/j.jmva.2022.105061_b7 article-title: Optimal rate of convergence for finite mixture models publication-title: Ann. Statist. – year: 2020 ident: 10.1016/j.jmva.2022.105061_b43 article-title: Continuous time hidden Markov model for longitudinal data publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2020.104646 – volume: 108 start-page: 1469 issue: 504 year: 2013 ident: 10.1016/j.jmva.2022.105061_b15 article-title: Hidden Markov models with applications in cell adhesion experiments publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2013.836973 – start-page: 545 year: 1992 ident: 10.1016/j.jmva.2022.105061_b22 article-title: Maximum-penalized-likelihood estimation for independent and Markov-dependent mixture models publication-title: Biometrics doi: 10.2307/2532308 – volume: 19 start-page: 2133 issue: 11 year: 2009 ident: 10.1016/j.jmva.2022.105061_b33 article-title: mGene: Accurate SVM-based gene finding with an application to nematode genomes publication-title: Genome Res. doi: 10.1101/gr.090597.108 – volume: 71 start-page: 671 issue: 3 year: 2009 ident: 10.1016/j.jmva.2022.105061_b39 article-title: Shrinkage tuning parameter selection with a diverging number of parameters publication-title: J. R. Statist. Soc. Ser. B doi: 10.1111/j.1467-9868.2008.00693.x – volume: 73 start-page: 313 issue: 1 year: 2017 ident: 10.1016/j.jmva.2022.105061_b36 article-title: Hidden Markov latent variable models with multivariate longitudinal data publication-title: Biometrics doi: 10.1111/biom.12536 – volume: 11 start-page: 1417 issue: 12 year: 2015 ident: 10.1016/j.jmva.2022.105061_b30 article-title: APOE effect on Alzheimer’s disease biomarkers in older adults with significant memory concern publication-title: Alzheimer Demen. doi: 10.1016/j.jalz.2015.03.003 – volume: 30 start-page: 573 issue: 4 year: 2002 ident: 10.1016/j.jmva.2022.105061_b26 article-title: Estimating the order of a hidden Markov model publication-title: Canad. J. Statist. doi: 10.2307/3316097 – volume: 28 start-page: 2112 issue: 7 year: 2019 ident: 10.1016/j.jmva.2022.105061_b20 article-title: Bayesian hidden Markov models for delineating the pathology of Alzheimer’s disease publication-title: Stat. Methods Med. Res. doi: 10.1177/0962280217748675 – year: 2003 ident: 10.1016/j.jmva.2022.105061_b1 – volume: 25 start-page: 73 issue: 1 year: 2011 ident: 10.1016/j.jmva.2022.105061_b24 article-title: Derivation of a new ADAS-cog composite using tree-based multivariate analysis: Prediction of conversion from mild cognitive impairment to Alzheimer disease publication-title: Alzheimer Dis. Assoc. Disord. doi: 10.1097/WAD.0b013e3181f5b8d8 – volume: 101 start-page: 1418 issue: 476 year: 2006 ident: 10.1016/j.jmva.2022.105061_b44 article-title: The adaptive lasso and its oracle properties publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214506000000735 – volume: 96 start-page: 1348 issue: 456 year: 2001 ident: 10.1016/j.jmva.2022.105061_b12 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753382273 – year: 2003 ident: 10.1016/j.jmva.2022.105061_b5 – volume: 117 start-page: 287 year: 1998 ident: 10.1016/j.jmva.2022.105061_b14 article-title: Neurofibrillary pathology of Alzheimer’s disease and other tauopathies publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(08)64022-4 – volume: 41 start-page: 164 issue: 1 year: 1970 ident: 10.1016/j.jmva.2022.105061_b4 article-title: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177697196 – volume: 49 start-page: 3043 issue: 6 year: 2021 ident: 10.1016/j.jmva.2022.105061_b27 article-title: Estimating the number of components in finite mixture models via the group-sort-fuse procedure publication-title: Ann. Statist. doi: 10.1214/21-AOS2072 – volume: 9 start-page: S116 issue: 5 year: 2013 ident: 10.1016/j.jmva.2022.105061_b21 article-title: Focal hemosiderin deposits and β-amyloid load in the ADNI cohort publication-title: Alzheimer Demen. – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.jmva.2022.105061_b37 article-title: Regression shrinkage and selection via the LASSO publication-title: J. R. Statist. Soc. Ser. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 19 start-page: 716 issue: 6 year: 1974 ident: 10.1016/j.jmva.2022.105061_b2 article-title: A new look at the statistical model identification publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.1974.1100705 – volume: 108 start-page: 370 issue: 502 year: 2013 ident: 10.1016/j.jmva.2022.105061_b16 article-title: Partially ordered mixed hidden Markov model for the disablement process of older adults publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2013.770307 – year: 2009 ident: 10.1016/j.jmva.2022.105061_b46 – volume: 10 start-page: 76 issue: 1 year: 2014 ident: 10.1016/j.jmva.2022.105061_b19 article-title: AD dementia risk in late MCI, in early MCI, and in subjective memory impairment publication-title: Alzheimer Demen. doi: 10.1016/j.jalz.2012.09.017 – year: 2016 ident: 10.1016/j.jmva.2022.105061_b41 – volume: 5 start-page: 55 year: 2013 ident: 10.1016/j.jmva.2022.105061_b10 article-title: Biomarker-based prediction of progression in MCI: Comparison of AD-signature and hippocampal volume with spinal fluid amyloid-β and tau publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2013.00055 – volume: 51 start-page: 3509 issue: 7 year: 2007 ident: 10.1016/j.jmva.2022.105061_b13 article-title: Auxiliary mixture sampling with applications to logistic models publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2006.10.006 – volume: 18 start-page: 437 issue: 4 year: 2016 ident: 10.1016/j.jmva.2022.105061_b29 article-title: Considering sex and gender in Alzheimer disease and other dementias publication-title: Dialogues Clin. Neurosci. doi: 10.31887/DCNS.2016.18.4/cepperson – year: 2009 ident: 10.1016/j.jmva.2022.105061_b34 |
| SSID | ssj0011574 |
| Score | 2.3743608 |
| Snippet | Hidden Markov models (HMMs) describe the relationship between two stochastic processes: an observed process and an unobservable finite-state transition... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105061 |
| SubjectTerms | ECM–ITD algorithm Group-Sort-Fuse procedure Hidden Markov model Longitudinal data Order selection |
| Title | Order selection for regression-based hidden Markov model |
| URI | https://dx.doi.org/10.1016/j.jmva.2022.105061 |
| Volume | 192 |
| WOSCitedRecordID | wos000833526500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0047-259X databaseCode: AIEXJ dateStart: 20211211 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0011574 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT8IwGG4UPOjB-BnxKzt4IyPrxj56JAajJqIHTPC0rF2rEB3IV_Df-3YtRVGIHLwsy7J2S5_m3fN2b58HoYsqwRGhVNgsSCgkKGloE0GoTZ0wFYThRHjKbCJsNKJWizxoo-1BbicQZlk0mZDev0IN1wBsuXV2BbhNp3ABzgF0OALscPwT8PdSTLM8yP1tpnWEff6s6l0zW3620vKLVA7J8p063bGyw1lAU_OKwzFk1EBKy4mWMDFlPEqB4Kn93jZLNbrGt9XOPkZ66ulVBUhIsVlV0JEyV3DIbW5nkVLZ1ulYB8zMUULqP8KwWhHoVDpvY6nt5LqV2c3fNa_nvkWmQnBafNaJZR-x7CNWfayjohv6JCqgYu2m3ro1_4ywrzW39ZvrLVKqmm_-TX6nIV-oRXMHbevBtmoKy120xrM9tHVnBHUH-yjKUbUMqhagas2jailULYWqlaN6gB6v6s3La1ubXtjMc5yhHXAiuAc8TgQ8DEjEcUIjh3sJS3HqO6zqpyzkrAqBmWPi-4EIhMsxpWlI3EB43iEqZN2MHyELWjNgfExu55cydJBqU6_KSeJB2oqxKCE8HYOYaUV4aUzyGi8e_RIqmzY9pYey9G5_OrSxZnSKqcUwU5a0O17pKSdoczaFT1Fh2B_xM7TBxsP2oH-up8knXN9q2Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Order+selection+for+regression-based+hidden+Markov+model&rft.jtitle=Journal+of+multivariate+analysis&rft.au=Lin%2C+Yiqi&rft.au=Song%2C+Xinyuan&rft.date=2022-11-01&rft.issn=0047-259X&rft.volume=192&rft.spage=105061&rft_id=info:doi/10.1016%2Fj.jmva.2022.105061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmva_2022_105061 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-259X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-259X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-259X&client=summon |