A novel UAV path planning approach: Heuristic crossing search and rescue optimization algorithm
Unmanned aerial vehicle (UAV) path planning plays an important role in the flight process of an UAV, which needs an effective algorithm to deal with UAV path planning problem. The search and rescue optimization algorithm (SAR) is easy to implement and has the characteristics of flexible, but it has...
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 215; s. 119243 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.04.2023
|
| Témata: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Unmanned aerial vehicle (UAV) path planning plays an important role in the flight process of an UAV, which needs an effective algorithm to deal with UAV path planning problem. The search and rescue optimization algorithm (SAR) is easy to implement and has the characteristics of flexible, but it has slow convergence speed and has not been applied to UAV path planning. To address these problems, a heuristic crossing search and rescue optimization algorithm (HC-SAR) is proposed. HC-SAR combines a heuristic crossover strategy with the basic SAR to improve the convergence speed and maintain the population diversity in the optimization process. Furthermore, a real-time path adjustment strategy is proposed to straighten the UAV flight path. In addition, cubic B-spline interpolation is used to smooth the generated path. Comprehensive experiments including two-dimensional and three-dimensional environments for different threat zone are conducted to validate the performance of HC-SAR. The results show that HC-SAR has a high convergence speed and can successfully obtain a safe and efficient path, and it significantly outperforms SAR, differential evolution (DE), ant lion optimizer (ALO), squirrel search algorithm (SSA) and salp swarm algorithm (SSA) in all the cases. These results suggest that the proposed algorithm can effectively serve as an alternative for solving UAV path planning problem.
•A hybrid algorithm named HC-SAR is proposed for UAV path planning.•A heuristic crossover strategy is combined with SAR to greatly improve SAR.•A real-time path adjustment strategy is proposed to straighten the UAV flight path.•HC-SAR outperforms the competitors in convergence speed and solution quality. |
|---|---|
| AbstractList | Unmanned aerial vehicle (UAV) path planning plays an important role in the flight process of an UAV, which needs an effective algorithm to deal with UAV path planning problem. The search and rescue optimization algorithm (SAR) is easy to implement and has the characteristics of flexible, but it has slow convergence speed and has not been applied to UAV path planning. To address these problems, a heuristic crossing search and rescue optimization algorithm (HC-SAR) is proposed. HC-SAR combines a heuristic crossover strategy with the basic SAR to improve the convergence speed and maintain the population diversity in the optimization process. Furthermore, a real-time path adjustment strategy is proposed to straighten the UAV flight path. In addition, cubic B-spline interpolation is used to smooth the generated path. Comprehensive experiments including two-dimensional and three-dimensional environments for different threat zone are conducted to validate the performance of HC-SAR. The results show that HC-SAR has a high convergence speed and can successfully obtain a safe and efficient path, and it significantly outperforms SAR, differential evolution (DE), ant lion optimizer (ALO), squirrel search algorithm (SSA) and salp swarm algorithm (SSA) in all the cases. These results suggest that the proposed algorithm can effectively serve as an alternative for solving UAV path planning problem.
•A hybrid algorithm named HC-SAR is proposed for UAV path planning.•A heuristic crossover strategy is combined with SAR to greatly improve SAR.•A real-time path adjustment strategy is proposed to straighten the UAV flight path.•HC-SAR outperforms the competitors in convergence speed and solution quality. |
| ArticleNumber | 119243 |
| Author | Tang, Weidong Qin, Weidong Zhang, Chaoqun Zhou, Wenjuan |
| Author_xml | – sequence: 1 givenname: Chaoqun orcidid: 0000-0001-5635-4287 surname: Zhang fullname: Zhang, Chaoqun email: 25713893@qq.com organization: College of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, China – sequence: 2 givenname: Wenjuan orcidid: 0000-0001-7422-1218 surname: Zhou fullname: Zhou, Wenjuan email: wjz0923@foxmail.com organization: College of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, China – sequence: 3 givenname: Weidong surname: Qin fullname: Qin, Weidong email: 297295560@qq.com organization: College of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, China – sequence: 4 givenname: Weidong surname: Tang fullname: Tang, Weidong email: 898402726@qq.com organization: College of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, China |
| BookMark | eNp9kE1PAjEQQBuDiYD-AU_9A4tt96Nb44UQFRMTL-K1qe0sW7K0m7Zg9NfLgicPnOYweZM3b4JGzjtA6JaSGSW0utvMIH6pGSOMzSgVrMgv0JjWPM8qLvIRGhNR8qygvLhCkxg3hFBOCB8jOcfO76HDq_kH7lVqcd8p56xbY9X3wSvd3uMl7IKNyWqsg49xWEZQQbdYOYMDRL0D7Ptkt_ZHJesdVt3aB5va7TW6bFQX4eZvTtHq6fF9scxe355fFvPXTOeEpKzSqjZC54VhgjABpTHwCfwgrEyZMzBNbSgpCC14VeaNBqqFZhXVhaigqE0-RfXp7tEwQCO1TUeXFJTtJCVyCCU3cgglh1DyFOqAsn9oH-xWhe_z0MMJgsNTewtBRm3BaTA2gE7SeHsO_wU0soWc |
| CitedBy_id | crossref_primary_10_3390_drones8080393 crossref_primary_10_1016_j_eswa_2024_123852 crossref_primary_10_1017_aer_2025_10025 crossref_primary_10_1016_j_knosys_2025_113528 crossref_primary_10_1007_s00607_024_01309_7 crossref_primary_10_1007_s10586_025_05508_5 crossref_primary_10_1109_ACCESS_2024_3443157 crossref_primary_10_3390_machines13070566 crossref_primary_10_1016_j_aei_2024_102354 crossref_primary_10_1080_00207721_2025_2511205 crossref_primary_10_1016_j_oceaneng_2024_118623 crossref_primary_10_3390_su151713127 crossref_primary_10_1177_01423312241263637 crossref_primary_10_1016_j_cja_2024_08_053 crossref_primary_10_3390_drones9020108 crossref_primary_10_3390_app14114461 crossref_primary_10_1016_j_eswa_2024_123571 crossref_primary_10_1109_COMST_2024_3395358 crossref_primary_10_1016_j_aei_2024_102923 crossref_primary_10_1186_s40537_023_00864_8 crossref_primary_10_3390_math11122606 crossref_primary_10_3390_fi16070245 crossref_primary_10_1007_s10586_025_05358_1 crossref_primary_10_1016_j_engappai_2025_111042 crossref_primary_10_3390_drones8110644 crossref_primary_10_1016_j_jksuci_2024_102146 crossref_primary_10_3390_drones8100576 crossref_primary_10_1016_j_tifs_2025_105056 crossref_primary_10_1088_1361_6501_ad1977 crossref_primary_10_1007_s10586_025_05485_9 crossref_primary_10_32604_cmc_2024_050612 crossref_primary_10_1016_j_dt_2025_01_008 crossref_primary_10_3390_s23177472 crossref_primary_10_1016_j_heliyon_2024_e37819 crossref_primary_10_1016_j_jfranklin_2024_107060 crossref_primary_10_3390_biomimetics10030180 crossref_primary_10_1016_j_eswa_2023_121218 crossref_primary_10_1016_j_asoc_2023_110776 crossref_primary_10_3390_jmse13091735 crossref_primary_10_1038_s41598_025_15345_6 crossref_primary_10_1016_j_jksuci_2024_102255 crossref_primary_10_1109_TVT_2023_3297837 crossref_primary_10_1016_j_eswa_2025_127596 crossref_primary_10_1016_j_eswa_2024_126136 crossref_primary_10_1017_aer_2025_10037 crossref_primary_10_3390_drones9060423 crossref_primary_10_1007_s11227_025_07002_6 crossref_primary_10_1016_j_eswa_2024_124955 crossref_primary_10_1109_ACCESS_2025_3537697 crossref_primary_10_3390_app15073556 crossref_primary_10_1007_s11804_025_00646_z crossref_primary_10_1007_s13042_023_02087_y crossref_primary_10_1038_s41598_024_71485_1 crossref_primary_10_1088_1361_6501_ad66f5 crossref_primary_10_3390_s22249705 crossref_primary_10_1016_j_eswa_2023_121862 crossref_primary_10_1017_S0263574724001899 crossref_primary_10_1017_aer_2024_132 crossref_primary_10_1016_j_iot_2025_101712 crossref_primary_10_1177_09544100241288723 crossref_primary_10_1111_risa_17599 |
| Cites_doi | 10.1016/j.advengsoft.2015.01.010 10.1016/j.eswa.2020.113698 10.1016/j.asoc.2018.05.030 10.1016/j.automatica.2021.109708 10.1016/j.eswa.2020.114541 10.1016/j.ress.2021.107811 10.1016/j.swevo.2018.02.013 10.1016/j.knosys.2021.106752 10.1016/j.mechmachtheory.2021.104358 10.1016/j.procs.2021.01.026 10.1109/ICNN.1995.488968 10.1016/j.knosys.2011.07.001 10.1016/j.comcom.2020.03.019 10.1016/j.actaastro.2021.02.026 10.1016/j.ast.2021.107314 10.1016/j.eswa.2021.115091 10.1007/s00366-022-01609-6 10.1016/j.comnet.2017.05.021 10.1016/j.econlet.2021.109918 10.1016/0004-3702(89)90050-7 10.1016/j.swevo.2021.100956 10.1016/j.tre.2020.102128 10.1016/j.advengsoft.2013.12.007 10.1016/j.knosys.2020.106209 10.1016/j.pnucene.2017.05.024 10.1016/j.comnet.2020.107378 10.1016/j.asoc.2021.107796 10.1016/j.sysarc.2021.102152 10.1016/j.isatra.2020.12.055 10.1016/j.advengsoft.2017.07.002 10.1016/j.cie.2018.05.013 10.1016/j.knosys.2021.107150 10.1016/j.tre.2021.102325 10.1007/s00521-020-05507-0 10.1016/j.cja.2020.12.018 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2022.119243 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2022_119243 S0957417422022618 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c300t-6ca8d9c34d29029e5ddebe7417ad532edf8d1040147653fce1c9c261c496e48d3 |
| ISICitedReferencesCount | 82 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000895291200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sat Nov 29 07:10:40 EST 2025 Tue Nov 18 19:58:27 EST 2025 Fri Feb 23 02:38:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Path planning Search and rescue optimization algorithm Path adjustment Unmanned aerial vehicle Heuristic crossing search and rescue optimization algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-6ca8d9c34d29029e5ddebe7417ad532edf8d1040147653fce1c9c261c496e48d3 |
| ORCID | 0000-0001-7422-1218 0000-0001-5635-4287 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2022_119243 crossref_primary_10_1016_j_eswa_2022_119243 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_119243 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 2023-04-00 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Shen, Wang, Liu, Yang, Shi, Yang, Jing (b27) 2020; 144 Kyriakakis, Marinaki, Matsatsinis, Marinakis (b13) 2021; 66 Balasubramanian, Ananthamoorthy (b1) 2021; 33 Dong, Xu, Li, Yang, Zou (b5) 2021; 216 Mirjalili (b19) 2015; 83 Li, Zhang, Yue, Liu (b15) 2021; 114 Zhu, Zhu, Yan, Peng (b40) 2021; 215 (pp. 1942–1948). Chao, kuo Liu, Xia, li Xie, Ayodeji, Yang, Bai (b3) 2017; 100 Shabani, Asgarian, Salido, Asil Gharebaghi (b24) 2020; 161 Erdelj, Król, Natalizio (b7) 2017; 124 Slinko, Wu, Wu (b28) 2021; 204 Zeng, Zhang, Chen, Hong (b36) 2021; 226 Demiane, Sharafeddine, Farhat (b4) 2020; 179 Pan (b22) 2012; 26 Liu, Wei, Li, Wang (b16) 2021; 183 Martinez-Rios, Murillo-Suarez (b18) 2021; 179 Wright (b34) 1991 Mirjalili, Mirjalili, Lewis (b21) 2014; 69 Pehlivanoglu, Pehlivanoglu (b23) 2021; 112 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b20) 2017; 114 Liu, Yang, Wang, Huo, Song, Sun (b17) 2021; 162 Kyriakakis, Marinaki, Matsatsinis, Marinakis (b12) 2021 Shah Alam, Oluoch (b25) 2021; 179 Jain, Singh, Rani (b8) 2019; 44 Zhang, Lu, Jia, Li (b38) 2018; 70 Zhang, Liu, Ye, Heidari, Liang, Chen, Pan (b37) 2022 . Ejaz, Ahmed, Mushtaq, Ibnkahla (b6) 2020; 155 Jiang, Sheng, Zhao, Xing, Lu, Wang (b10) 2021 Lemardelé, Estrada, Pagès, Bachofner (b14) 2021; 149 Yu, Li, Zhou (b35) 2020; 204 Song, Park, Kim (b29) 2018; 120 Jiang, Lyu, Li, Guo, Zhang (b9) 2022; 121 Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Zhou, Su, Xie, Kong (b39) 2021; 34 Tayebi, Momani, Abu Arqub (b32) 2021 Sun, Zhu, Zuo, Basin (b31) 2021; 130 She, Ouyang (b26) 2021; 122 Booker, Goldberg, Holland (b2) 1989; 40 Srivastava, Narayan, Mittal (b30) 2021; 117 Wang, Li, Meng (b33) 2021; 170 Balasubramanian (10.1016/j.eswa.2022.119243_b1) 2021; 33 Jiang (10.1016/j.eswa.2022.119243_b10) 2021 Li (10.1016/j.eswa.2022.119243_b15) 2021; 114 Jain (10.1016/j.eswa.2022.119243_b8) 2019; 44 Mirjalili (10.1016/j.eswa.2022.119243_b21) 2014; 69 Zhang (10.1016/j.eswa.2022.119243_b38) 2018; 70 Zhang (10.1016/j.eswa.2022.119243_b37) 2022 Shah Alam (10.1016/j.eswa.2022.119243_b25) 2021; 179 Wright (10.1016/j.eswa.2022.119243_b34) 1991 Liu (10.1016/j.eswa.2022.119243_b16) 2021; 183 Yu (10.1016/j.eswa.2022.119243_b35) 2020; 204 Slinko (10.1016/j.eswa.2022.119243_b28) 2021; 204 Sun (10.1016/j.eswa.2022.119243_b31) 2021; 130 Song (10.1016/j.eswa.2022.119243_b29) 2018; 120 Mirjalili (10.1016/j.eswa.2022.119243_b20) 2017; 114 Pehlivanoglu (10.1016/j.eswa.2022.119243_b23) 2021; 112 Chao (10.1016/j.eswa.2022.119243_b3) 2017; 100 Kyriakakis (10.1016/j.eswa.2022.119243_b12) 2021 Wang (10.1016/j.eswa.2022.119243_b33) 2021; 170 Dong (10.1016/j.eswa.2022.119243_b5) 2021; 216 Ejaz (10.1016/j.eswa.2022.119243_b6) 2020; 155 Erdelj (10.1016/j.eswa.2022.119243_b7) 2017; 124 Zhu (10.1016/j.eswa.2022.119243_b40) 2021; 215 10.1016/j.eswa.2022.119243_b11 Mirjalili (10.1016/j.eswa.2022.119243_b19) 2015; 83 Zeng (10.1016/j.eswa.2022.119243_b36) 2021; 226 Jiang (10.1016/j.eswa.2022.119243_b9) 2022; 121 Booker (10.1016/j.eswa.2022.119243_b2) 1989; 40 Tayebi (10.1016/j.eswa.2022.119243_b32) 2021 Martinez-Rios (10.1016/j.eswa.2022.119243_b18) 2021; 179 She (10.1016/j.eswa.2022.119243_b26) 2021; 122 Liu (10.1016/j.eswa.2022.119243_b17) 2021; 162 Shen (10.1016/j.eswa.2022.119243_b27) 2020; 144 Kyriakakis (10.1016/j.eswa.2022.119243_b13) 2021; 66 Demiane (10.1016/j.eswa.2022.119243_b4) 2020; 179 Srivastava (10.1016/j.eswa.2022.119243_b30) 2021; 117 Pan (10.1016/j.eswa.2022.119243_b22) 2012; 26 Zhou (10.1016/j.eswa.2022.119243_b39) 2021; 34 Lemardelé (10.1016/j.eswa.2022.119243_b14) 2021; 149 Shabani (10.1016/j.eswa.2022.119243_b24) 2020; 161 |
| References_xml | – volume: 33 start-page: 7649 year: 2021 end-page: 7660 ident: b1 article-title: Improved adaptive neuro-fuzzy inference system based on modified glowworm swarm and differential evolution optimization algorithm for medical diagnosis publication-title: Neural Computing and Applications – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: b19 article-title: The ant lion optimizer publication-title: Advances in Engineering Software – volume: 121 year: 2022 ident: b9 article-title: UAV path planning and collision avoidance in 3D environments based on POMPD and improved grey wolf optimizer publication-title: Aerospace Science and Technology – volume: 179 start-page: 432 year: 2021 end-page: 439 ident: b18 article-title: Multi-threaded Spotted Hyena Optimizer with thread-crossing techniques publication-title: Procedia Computer Science – volume: 120 start-page: 418 year: 2018 end-page: 428 ident: b29 article-title: Persistent UAV delivery logistics: MILP formulation and efficient heuristic publication-title: Computers & Industrial Engineering – start-page: 1 year: 2022 end-page: 35 ident: b37 article-title: Differential evolution-assisted salp swarm algorithm with chaotic structure for real-world problems publication-title: Engineering with Computers – volume: 100 start-page: 22 year: 2017 end-page: 32 ident: b3 article-title: A sampling-based method with virtual reality technology to provide minimum dose path navigation for occupational workers in nuclear facilities publication-title: Progress in Nuclear Energy – reference: (pp. 1942–1948). – volume: 204 year: 2021 ident: b28 article-title: A characterization of preference domains that are single-crossing and maximal Condorcet publication-title: Economics Letters – volume: 170 year: 2021 ident: b33 article-title: Kinematic Constrained Bi-directional RRT with Efficient Branch Pruning for robot path planning publication-title: Expert Systems with Applications – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b21 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software – volume: 130 year: 2021 ident: b31 article-title: Vision-based finite-time uncooperative target tracking for UAV subject to actuator saturation publication-title: Automatica – volume: 216 year: 2021 ident: b5 article-title: An improved antlion optimizer with dynamic random walk and dynamic opposite learning publication-title: Knowledge-Based Systems – volume: 155 start-page: 150 year: 2020 end-page: 157 ident: b6 article-title: Energy-efficient task scheduling and physiological assessment in disaster management using UAV-assisted networks publication-title: Computer Communications – volume: 161 year: 2020 ident: b24 article-title: Search and rescue optimization algorithm: a new optimization method for solving constrained engineering optimization problems publication-title: Expert Systems with Applications – year: 2021 ident: b32 article-title: The cubic B-spline interpolation method for numerical point solutions of conformable boundary value problems publication-title: Alexandria Engineering Journal – volume: 26 start-page: 69 year: 2012 end-page: 74 ident: b22 article-title: A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example publication-title: Knowledge-Based Systems – volume: 215 year: 2021 ident: b40 article-title: Optimal routing, aborting and hitting strategies of UAVs executing hitting the targets considering the defense range of targets publication-title: Reliability Engineering & System Safety – volume: 44 start-page: 148 year: 2019 end-page: 175 ident: b8 article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm publication-title: Swarm and Evolutionary Computation – reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In – volume: 66 year: 2021 ident: b13 article-title: Moving peak drone search problem: An online multi-swarm intelligence approach for UAV search operations publication-title: Swarm and Evolutionary Computation – volume: 183 start-page: 11 year: 2021 end-page: 22 ident: b16 article-title: A star identification algorithm based on simplest general subgraph publication-title: Acta Astronautica – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b20 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software – volume: 117 year: 2021 ident: b30 article-title: A survey of deep learning techniques for vehicle detection from UAV images publication-title: Journal of Systems Architecture – volume: 34 start-page: 199 year: 2021 end-page: 209 ident: b39 article-title: A newly bio-inspired path planning algorithm for autonomous obstacle avoidance of UAV publication-title: Chinese Journal of Aeronautics – year: 2021 ident: b10 article-title: Green UAV communications for 6G: A survey publication-title: Chinese Journal of Aeronautics – volume: 179 year: 2021 ident: b25 article-title: A survey of safe landing zone detection techniques for autonomous unmanned aerial vehicles (UAVs) publication-title: Expert Systems with Applications – volume: 114 start-page: 230 year: 2021 end-page: 241 ident: b15 article-title: Cooperative search for dynamic targets by multiple UAVs with communication data losses publication-title: ISA Transactions – volume: 112 year: 2021 ident: b23 article-title: An enhanced genetic algorithm for path planning of autonomous UAV in target coverage problems publication-title: Applied Soft Computing – volume: 70 start-page: 371 year: 2018 end-page: 388 ident: b38 article-title: A novel phase angle-encoded fruit fly optimization algorithm with mutation adaptation mechanism applied to UAV path planning publication-title: Applied Soft Computing – start-page: 205 year: 1991 end-page: 218 ident: b34 publication-title: Genetic algorithms for real parameter optimization, vol. 1 – volume: 226 year: 2021 ident: b36 article-title: A new selection operator for differential evolution algorithm publication-title: Knowledge-Based Systems – volume: 149 year: 2021 ident: b14 article-title: Potentialities of drones and ground autonomous delivery devices for last-mile logistics publication-title: Transportation Research Part E: Logistics and Transportation Review – volume: 122 year: 2021 ident: b26 article-title: Efficiency of UAV-based last-mile delivery under congestion in low-altitude air publication-title: Transportation Research Part C (Emerging Technologies) – volume: 40 start-page: 235 year: 1989 end-page: 282 ident: b2 article-title: Classifier systems and genetic algorithms publication-title: Artificial Intelligence – volume: 204 year: 2020 ident: b35 article-title: A constrained differential evolution algorithm to solve UAV path planning in disaster scenarios publication-title: Knowledge-Based Systems – reference: . – volume: 144 year: 2020 ident: b27 article-title: Synergistic path planning of multi-UAVs for air pollution detection of ships in ports publication-title: Transportation Research Part E: Logistics and Transportation Review – year: 2021 ident: b12 article-title: A cumulative unmanned aerial vehicle routing problem approach for humanitarian coverage path planning publication-title: European Journal of Operational Research – volume: 162 year: 2021 ident: b17 article-title: Design modeling and analysis of a novel self-crossing mechanism publication-title: Mechanism and Machine Theory – volume: 179 year: 2020 ident: b4 article-title: An optimized UAV trajectory planning for localization in disaster scenarios publication-title: Computer Networks – volume: 124 start-page: 72 year: 2017 end-page: 86 ident: b7 article-title: Wireless Sensor Networks and Multi-UAV systems for natural disaster management publication-title: Computer Networks – volume: 83 start-page: 80 year: 2015 ident: 10.1016/j.eswa.2022.119243_b19 article-title: The ant lion optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2015.01.010 – volume: 161 year: 2020 ident: 10.1016/j.eswa.2022.119243_b24 article-title: Search and rescue optimization algorithm: a new optimization method for solving constrained engineering optimization problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113698 – year: 2021 ident: 10.1016/j.eswa.2022.119243_b12 article-title: A cumulative unmanned aerial vehicle routing problem approach for humanitarian coverage path planning publication-title: European Journal of Operational Research – volume: 70 start-page: 371 year: 2018 ident: 10.1016/j.eswa.2022.119243_b38 article-title: A novel phase angle-encoded fruit fly optimization algorithm with mutation adaptation mechanism applied to UAV path planning publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.05.030 – volume: 130 year: 2021 ident: 10.1016/j.eswa.2022.119243_b31 article-title: Vision-based finite-time uncooperative target tracking for UAV subject to actuator saturation publication-title: Automatica doi: 10.1016/j.automatica.2021.109708 – volume: 170 year: 2021 ident: 10.1016/j.eswa.2022.119243_b33 article-title: Kinematic Constrained Bi-directional RRT with Efficient Branch Pruning for robot path planning publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114541 – volume: 215 year: 2021 ident: 10.1016/j.eswa.2022.119243_b40 article-title: Optimal routing, aborting and hitting strategies of UAVs executing hitting the targets considering the defense range of targets publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2021.107811 – volume: 44 start-page: 148 year: 2019 ident: 10.1016/j.eswa.2022.119243_b8 article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2018.02.013 – volume: 216 year: 2021 ident: 10.1016/j.eswa.2022.119243_b5 article-title: An improved antlion optimizer with dynamic random walk and dynamic opposite learning publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.106752 – volume: 162 year: 2021 ident: 10.1016/j.eswa.2022.119243_b17 article-title: Design modeling and analysis of a novel self-crossing mechanism publication-title: Mechanism and Machine Theory doi: 10.1016/j.mechmachtheory.2021.104358 – volume: 179 start-page: 432 year: 2021 ident: 10.1016/j.eswa.2022.119243_b18 article-title: Multi-threaded Spotted Hyena Optimizer with thread-crossing techniques publication-title: Procedia Computer Science doi: 10.1016/j.procs.2021.01.026 – ident: 10.1016/j.eswa.2022.119243_b11 doi: 10.1109/ICNN.1995.488968 – volume: 26 start-page: 69 year: 2012 ident: 10.1016/j.eswa.2022.119243_b22 article-title: A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2011.07.001 – volume: 155 start-page: 150 year: 2020 ident: 10.1016/j.eswa.2022.119243_b6 article-title: Energy-efficient task scheduling and physiological assessment in disaster management using UAV-assisted networks publication-title: Computer Communications doi: 10.1016/j.comcom.2020.03.019 – year: 2021 ident: 10.1016/j.eswa.2022.119243_b10 article-title: Green UAV communications for 6G: A survey publication-title: Chinese Journal of Aeronautics – volume: 183 start-page: 11 year: 2021 ident: 10.1016/j.eswa.2022.119243_b16 article-title: A star identification algorithm based on simplest general subgraph publication-title: Acta Astronautica doi: 10.1016/j.actaastro.2021.02.026 – volume: 121 year: 2022 ident: 10.1016/j.eswa.2022.119243_b9 article-title: UAV path planning and collision avoidance in 3D environments based on POMPD and improved grey wolf optimizer publication-title: Aerospace Science and Technology doi: 10.1016/j.ast.2021.107314 – volume: 179 year: 2021 ident: 10.1016/j.eswa.2022.119243_b25 article-title: A survey of safe landing zone detection techniques for autonomous unmanned aerial vehicles (UAVs) publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115091 – start-page: 1 year: 2022 ident: 10.1016/j.eswa.2022.119243_b37 article-title: Differential evolution-assisted salp swarm algorithm with chaotic structure for real-world problems publication-title: Engineering with Computers doi: 10.1007/s00366-022-01609-6 – volume: 124 start-page: 72 year: 2017 ident: 10.1016/j.eswa.2022.119243_b7 article-title: Wireless Sensor Networks and Multi-UAV systems for natural disaster management publication-title: Computer Networks doi: 10.1016/j.comnet.2017.05.021 – start-page: 205 year: 1991 ident: 10.1016/j.eswa.2022.119243_b34 – volume: 204 year: 2021 ident: 10.1016/j.eswa.2022.119243_b28 article-title: A characterization of preference domains that are single-crossing and maximal Condorcet publication-title: Economics Letters doi: 10.1016/j.econlet.2021.109918 – volume: 40 start-page: 235 issue: 1 year: 1989 ident: 10.1016/j.eswa.2022.119243_b2 article-title: Classifier systems and genetic algorithms publication-title: Artificial Intelligence doi: 10.1016/0004-3702(89)90050-7 – volume: 66 year: 2021 ident: 10.1016/j.eswa.2022.119243_b13 article-title: Moving peak drone search problem: An online multi-swarm intelligence approach for UAV search operations publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2021.100956 – volume: 144 year: 2020 ident: 10.1016/j.eswa.2022.119243_b27 article-title: Synergistic path planning of multi-UAVs for air pollution detection of ships in ports publication-title: Transportation Research Part E: Logistics and Transportation Review doi: 10.1016/j.tre.2020.102128 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.eswa.2022.119243_b21 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 204 year: 2020 ident: 10.1016/j.eswa.2022.119243_b35 article-title: A constrained differential evolution algorithm to solve UAV path planning in disaster scenarios publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106209 – volume: 100 start-page: 22 year: 2017 ident: 10.1016/j.eswa.2022.119243_b3 article-title: A sampling-based method with virtual reality technology to provide minimum dose path navigation for occupational workers in nuclear facilities publication-title: Progress in Nuclear Energy doi: 10.1016/j.pnucene.2017.05.024 – volume: 179 year: 2020 ident: 10.1016/j.eswa.2022.119243_b4 article-title: An optimized UAV trajectory planning for localization in disaster scenarios publication-title: Computer Networks doi: 10.1016/j.comnet.2020.107378 – volume: 112 year: 2021 ident: 10.1016/j.eswa.2022.119243_b23 article-title: An enhanced genetic algorithm for path planning of autonomous UAV in target coverage problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.107796 – volume: 117 year: 2021 ident: 10.1016/j.eswa.2022.119243_b30 article-title: A survey of deep learning techniques for vehicle detection from UAV images publication-title: Journal of Systems Architecture doi: 10.1016/j.sysarc.2021.102152 – volume: 114 start-page: 230 year: 2021 ident: 10.1016/j.eswa.2022.119243_b15 article-title: Cooperative search for dynamic targets by multiple UAVs with communication data losses publication-title: ISA Transactions doi: 10.1016/j.isatra.2020.12.055 – volume: 122 year: 2021 ident: 10.1016/j.eswa.2022.119243_b26 article-title: Efficiency of UAV-based last-mile delivery under congestion in low-altitude air publication-title: Transportation Research Part C (Emerging Technologies) – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.eswa.2022.119243_b20 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.07.002 – volume: 120 start-page: 418 year: 2018 ident: 10.1016/j.eswa.2022.119243_b29 article-title: Persistent UAV delivery logistics: MILP formulation and efficient heuristic publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.05.013 – volume: 226 year: 2021 ident: 10.1016/j.eswa.2022.119243_b36 article-title: A new selection operator for differential evolution algorithm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107150 – volume: 149 year: 2021 ident: 10.1016/j.eswa.2022.119243_b14 article-title: Potentialities of drones and ground autonomous delivery devices for last-mile logistics publication-title: Transportation Research Part E: Logistics and Transportation Review doi: 10.1016/j.tre.2021.102325 – volume: 33 start-page: 7649 issue: 13 year: 2021 ident: 10.1016/j.eswa.2022.119243_b1 article-title: Improved adaptive neuro-fuzzy inference system based on modified glowworm swarm and differential evolution optimization algorithm for medical diagnosis publication-title: Neural Computing and Applications doi: 10.1007/s00521-020-05507-0 – year: 2021 ident: 10.1016/j.eswa.2022.119243_b32 article-title: The cubic B-spline interpolation method for numerical point solutions of conformable boundary value problems publication-title: Alexandria Engineering Journal – volume: 34 start-page: 199 issue: 9 year: 2021 ident: 10.1016/j.eswa.2022.119243_b39 article-title: A newly bio-inspired path planning algorithm for autonomous obstacle avoidance of UAV publication-title: Chinese Journal of Aeronautics doi: 10.1016/j.cja.2020.12.018 |
| SSID | ssj0017007 |
| Score | 2.6269622 |
| Snippet | Unmanned aerial vehicle (UAV) path planning plays an important role in the flight process of an UAV, which needs an effective algorithm to deal with UAV path... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 119243 |
| SubjectTerms | Heuristic crossing search and rescue optimization algorithm Path adjustment Path planning Search and rescue optimization algorithm Unmanned aerial vehicle |
| Title | A novel UAV path planning approach: Heuristic crossing search and rescue optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.eswa.2022.119243 |
| Volume | 215 |
| WOSCitedRecordID | wos000895291200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3ojykg_colSJ87DdW1QVFYQqEG3ZW5Q4NrurbVLtJksv_e-MYztZKKoAiUu0suI4mvl2xp7MfIPQ21SFjBUc_kiqiP1YBqVf0oL6gsUlUQCgsOfZPv9IT07YdMo_TSbXrhZms6R1za6u-OV_VTWMgbJ16exfqHt4KAzAb1A6XEHtcP0jxWde3Wzk0jvLzjVr6kw3iu77Eg384ToKcCw7w9Hs9X6yjyqYAEifcC7XopNeA_bkwhZqesXyW7Oat7OLn4L5mim5tXzQrlJu65v4jbj04awAV1SP403Xp_nJetGNQP1smA2-ynnVWNfaRxfMM7aHbcCCRFt5Ln0UzVXSjGlLJhxJ_Tg0HXv2pTHGjEZ-Sk0HRWetian-vGH5TRBisS_X3zWdFCHgDOBsGY1-bsg-_KIX02sRfV8asjtol9CEg1Hczd4fTT8Mn6FoYOrt3cvZqiuTIPjrSr_f2WztVk4fovv2mIEzA49HaCLrx-iBa-GBrUV_gvIM92jBgBas0YIdWrBDywEesIIdVrDBCgasYIMVvI0VPGDlKTp7d3R6eOzbnhu-iIKg9VNRsIqLKK4IDwiXCbi_UmppFVUSEVkpVsEJHg7WNE0iJWQouAAZipinMmZV9Azt1E0tnyMcBEqRUgVpAYd2LpIiLYM4VSpICl5GotxDoZNXLiwhve6Lssxd5uEi1zLOtYxzI-M95A1zLg0dy613J04Nud1Qmo1iDqi5Zd6Lf5z3Et0bAf8K7bSrTr5Gd8Wmna9Xbyy4fgClL52L |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+UAV+path+planning+approach%3A+Heuristic+crossing+search+and+rescue+optimization+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Zhang%2C+Chaoqun&rft.au=Zhou%2C+Wenjuan&rft.au=Qin%2C+Weidong&rft.au=Tang%2C+Weidong&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=215&rft_id=info:doi/10.1016%2Fj.eswa.2022.119243&rft.externalDocID=S0957417422022618 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |