Optimal scale selection approach for classification based on generalized multi-scale formal context

The classification of multi-scale data is an important research topic in granular computing. Its research goal is to determine the most appropriate scale and achieve better classification performance. However, determining the optimal scale is often a difficult problem due to lacking better metrics a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 152; s. 111277
Hlavní autoři: Wang, Fei, Li, Jinhai, Yu, Chongchong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.02.2024
Témata:
ISSN:1568-4946
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The classification of multi-scale data is an important research topic in granular computing. Its research goal is to determine the most appropriate scale and achieve better classification performance. However, determining the optimal scale is often a difficult problem due to lacking better metrics and optimization methods. In order to solve this problem, this paper proposes the optimal scale selection criteria for generalized multi-scale formal contexts. That is, the optimal scale uses the coarsest conditional attributes and finest decision attributes to optimize the combination of granularities of attributes. We combine these criteria with multi-objective optimization methods for developing an algorithm to fast compute the optimal scale. Experiments show that for the selected 14 data sets and 11 comparative classification methods, there are 9 classification methods with higher classification accuracies on more than 9 data sets. Therefore, the optimal scale selection method proposed in this paper is feasible and can effectively improve the performance of the classification method. •We propose a generalized multi-scale formal context with multi-scale conditional and decision attributes.•We define the optimal scale with the coarsest conditional attribute and finest decision attribute.•Criteria are given to the optimal scale selection in generalized multi-scale formal contexts.•We use optimization method to explore an algorithm for computing the optimal scale.•Datasets are chosen to show the effectiveness of the proposed methods.
AbstractList The classification of multi-scale data is an important research topic in granular computing. Its research goal is to determine the most appropriate scale and achieve better classification performance. However, determining the optimal scale is often a difficult problem due to lacking better metrics and optimization methods. In order to solve this problem, this paper proposes the optimal scale selection criteria for generalized multi-scale formal contexts. That is, the optimal scale uses the coarsest conditional attributes and finest decision attributes to optimize the combination of granularities of attributes. We combine these criteria with multi-objective optimization methods for developing an algorithm to fast compute the optimal scale. Experiments show that for the selected 14 data sets and 11 comparative classification methods, there are 9 classification methods with higher classification accuracies on more than 9 data sets. Therefore, the optimal scale selection method proposed in this paper is feasible and can effectively improve the performance of the classification method. •We propose a generalized multi-scale formal context with multi-scale conditional and decision attributes.•We define the optimal scale with the coarsest conditional attribute and finest decision attribute.•Criteria are given to the optimal scale selection in generalized multi-scale formal contexts.•We use optimization method to explore an algorithm for computing the optimal scale.•Datasets are chosen to show the effectiveness of the proposed methods.
ArticleNumber 111277
Author Yu, Chongchong
Li, Jinhai
Wang, Fei
Author_xml – sequence: 1
  givenname: Fei
  surname: Wang
  fullname: Wang, Fei
  email: wangfei971023@163.com
  organization: Faculty of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, PR China
– sequence: 2
  givenname: Jinhai
  orcidid: 0000-0002-5206-9304
  surname: Li
  fullname: Li, Jinhai
  email: jhlixjtu@163.com
  organization: Faculty of Science, Kunming University of Science and Technology, Yunnan 650500, PR China
– sequence: 3
  givenname: Chongchong
  surname: Yu
  fullname: Yu, Chongchong
  email: chongzhy@vip.sina.com
  organization: Faculty of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, PR China
BookMark eNp9kMtOwzAQRb0oEm3hB1jlBxLsxHlJbFDFS6rUTffWZGyDKzeObIOAr8clrFh0NR6Nz5XuWZHF6EZFyA2jBaOsuT0UEBwWJS15wRgr23ZBlqxuupz3vLkkqxAONH3sy25JcDdFcwSbBQSrsqCswmjcmME0eQf4lmnnM7QQgtEG4fc2QFAyS49XNSoP1nyn9fhuo8nnmMScMtGNUX3GK3KhwQZ1_TfXZP_4sN8859vd08vmfptjRWnMG-wV58BkLQeu604j6q7DSg8D5TVt2gq4hpZWrJeo-r7jKKFFpBqglLxak3KORe9C8EqLyadq_kswKk5mxEGczIiTGTGbSVD3D0ITf1tGD8aeR-9mVKVOH0Z5EdCoEZU0PkkU0plz-A9ZdoZ6
CitedBy_id crossref_primary_10_1016_j_knosys_2025_113552
crossref_primary_10_1016_j_ijar_2025_109429
crossref_primary_10_1016_j_asoc_2025_112712
crossref_primary_10_1016_j_inffus_2024_102775
Cites_doi 10.1016/j.ijar.2022.12.004
10.1016/j.ins.2021.10.065
10.1109/TFUZZ.2021.3128061
10.1016/j.ins.2020.05.109
10.1016/j.ijar.2023.108983
10.1016/j.knosys.2015.08.006
10.1016/j.ins.2015.12.028
10.1016/j.ins.2014.12.010
10.1007/s13042-020-01243-y
10.1016/j.ins.2012.10.030
10.1109/TKDE.2008.223
10.1016/S0020-0255(03)00061-6
10.1109/TNNLS.2021.3054063
10.1016/j.ijar.2019.11.002
10.1016/j.ins.2016.01.091
10.1016/j.inffus.2023.101962
10.1016/j.ins.2016.03.041
10.1016/j.knosys.2016.04.011
10.1007/s13042-020-01173-9
10.1016/j.ijar.2018.09.005
10.1016/j.ins.2023.118998
10.1016/j.ijar.2012.07.005
10.1016/j.ins.2013.10.021
10.1109/TSMCB.2009.2013334
10.1016/j.ins.2011.04.047
10.1016/j.ins.2016.04.051
10.1007/s13042-012-0128-2
10.1016/j.ins.2009.11.023
10.1007/s13042-018-0803-z
10.1109/TFUZZ.2022.3216110
10.1016/j.ins.2019.05.009
10.1016/j.fss.2017.05.002
10.1007/s12652-020-01867-6
10.1016/j.ijar.2019.09.010
10.1007/s13042-019-00954-1
10.1007/s13042-016-0553-8
10.1016/j.ins.2013.12.014
10.1007/s12652-018-0831-2
10.1002/1098-111X(200101)16:1<87::AID-INT7>3.0.CO;2-S
10.1007/s13042-020-01101-x
10.1007/s13042-019-01015-3
10.1093/logcom/10.6.823
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2024.111277
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2024_111277
S1568494624000516
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-6c9e44a1d5db4f58fccf88c3fbb0450673a4fa70319dce9984cda7cc0faa2d43
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001166171700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 21:57:21 EST 2025
Sat Nov 29 08:10:27 EST 2025
Sat Feb 08 15:52:15 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Generalized multi-scale formal context
Multi-objective optimization methods
Optimal scale selection criteria
Classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-6c9e44a1d5db4f58fccf88c3fbb0450673a4fa70319dce9984cda7cc0faa2d43
ORCID 0000-0002-5206-9304
ParticipantIDs crossref_primary_10_1016_j_asoc_2024_111277
crossref_citationtrail_10_1016_j_asoc_2024_111277
elsevier_sciencedirect_doi_10_1016_j_asoc_2024_111277
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang (b19) 2018; 333
Li, Huang, Qi, Qian, Liu (b22) 2017; 378
Yao (b36) 2018; 103
Wu, Leung (b40) 2020; 11
Shao, Li, Wang (b29) 2018; 9
Niu, Chen, Li, Wang (b50) 2021; 30
Chen, Xu, Li, Hu (b9) 2019
Qian, Li, Liang, Shi, Wang (b42) 2014; 264
Belohlávek (b2) 2000; 10
Yang, Qin, Hu, Yang (b7) 2023; 53
Bao, Wu, Zheng, Li (b41) 2021; 12
Zhang, Huang (b47) 2023; 161
Lin (b34) 1998; 1
Guo, Xu (b53) 2023; 639
Xie, Liu (b14) 2002; 25
Zhao, Li, Liu, Xu (b27) 2017; 8
Medina (b6) 2013; 225
Yao (b37) 2020; 116
Zhang, Cheng, Zhao, Wang, Xia (b46) 2021; 33
Xu, Guo, Qian, Ding (b55) 2023; 31
Zhi, Li (b23) 2016; 104
Yao (b24) 2016; 346/347
Shi, Mi, Li, Liu (b49) 2019; 496
Qian, Liang, Yao, Dang (b38) 2010; 180
Chen, Li, Lin (b32) 2020; 11
Cheng, Zhang, Wang (b44) 2021; 12
Zhai, Wang, Li (b8) 2023
Cheng, Zhang, Wang, Hu (b45) 2020; 541
Huang, Li, Dai, Lin (b11) 2019; 115
Shao, Yang (b30) 2013; 4
Wu, Leung (b15) 2011; 181
Yao (b25) 2009; 39
She, He, Qian, Wang, Zeng (b31) 2019; 10
Niu, Chen, Li, Wang (b51) 2022; 584
Zadeh (b33) 1979
Qi, Wei, Yao (b21) 2014; vol. 8818
Guo, Xu, Qian, Ding (b54) 2023
Pedrycz (b10) 2001
Zhang, Zhang, Cheng, Wang (b43) 2020; 11
Wu, Qian, Li, Gu (b13) 2017; 378
Wu, Niu, Li, Li (b12) 2023; 154
Li, Mei, Lv (b16) 2013; 54
Guo, Xu, Qian, Ding (b52) 2023; 100
Wu, Leung, Mi (b39) 2009; 21
Düntsch, Gediga (b17) 2000
Ganter, Wille (b1) 1999
Xu, Li, Wei, Zhang (b18) 2016
Qi, Qian, Wei (b4) 2016; 91
Yao, Han, Wang (b5) 2016; 339
Yao (b35) 2001; 16
Sumangali, Kumar (b3) 2019; 10
Shao, Zhang (b20) 1979
Belohlávek, Baets, Konecny (b28) 2014; 260
Li, Mei, Xu, Qian (b26) 2015; 298
Leung, Li (b48) 2003; 153
Li (10.1016/j.asoc.2024.111277_b16) 2013; 54
Yao (10.1016/j.asoc.2024.111277_b24) 2016; 346/347
Chen (10.1016/j.asoc.2024.111277_b9) 2019
Qian (10.1016/j.asoc.2024.111277_b42) 2014; 264
She (10.1016/j.asoc.2024.111277_b31) 2019; 10
Lin (10.1016/j.asoc.2024.111277_b34) 1998; 1
Pedrycz (10.1016/j.asoc.2024.111277_b10) 2001
Yao (10.1016/j.asoc.2024.111277_b36) 2018; 103
Belohlávek (10.1016/j.asoc.2024.111277_b28) 2014; 260
Li (10.1016/j.asoc.2024.111277_b22) 2017; 378
Zhao (10.1016/j.asoc.2024.111277_b27) 2017; 8
Zhai (10.1016/j.asoc.2024.111277_b8) 2023
Wu (10.1016/j.asoc.2024.111277_b15) 2011; 181
Yao (10.1016/j.asoc.2024.111277_b35) 2001; 16
Chen (10.1016/j.asoc.2024.111277_b32) 2020; 11
Niu (10.1016/j.asoc.2024.111277_b50) 2021; 30
Yang (10.1016/j.asoc.2024.111277_b7) 2023; 53
Xie (10.1016/j.asoc.2024.111277_b14) 2002; 25
Zhang (10.1016/j.asoc.2024.111277_b19) 2018; 333
Belohlávek (10.1016/j.asoc.2024.111277_b2) 2000; 10
Zhang (10.1016/j.asoc.2024.111277_b43) 2020; 11
Cheng (10.1016/j.asoc.2024.111277_b44) 2021; 12
Ganter (10.1016/j.asoc.2024.111277_b1) 1999
Niu (10.1016/j.asoc.2024.111277_b51) 2022; 584
Yao (10.1016/j.asoc.2024.111277_b37) 2020; 116
Shao (10.1016/j.asoc.2024.111277_b30) 2013; 4
Qi (10.1016/j.asoc.2024.111277_b4) 2016; 91
Cheng (10.1016/j.asoc.2024.111277_b45) 2020; 541
Qian (10.1016/j.asoc.2024.111277_b38) 2010; 180
Qi (10.1016/j.asoc.2024.111277_b21) 2014; vol. 8818
Bao (10.1016/j.asoc.2024.111277_b41) 2021; 12
Wu (10.1016/j.asoc.2024.111277_b39) 2009; 21
Guo (10.1016/j.asoc.2024.111277_b52) 2023; 100
Sumangali (10.1016/j.asoc.2024.111277_b3) 2019; 10
Yao (10.1016/j.asoc.2024.111277_b25) 2009; 39
Yao (10.1016/j.asoc.2024.111277_b5) 2016; 339
Düntsch (10.1016/j.asoc.2024.111277_b17) 2000
Guo (10.1016/j.asoc.2024.111277_b54) 2023
Xu (10.1016/j.asoc.2024.111277_b18) 2016
Zhi (10.1016/j.asoc.2024.111277_b23) 2016; 104
Shao (10.1016/j.asoc.2024.111277_b29) 2018; 9
Medina (10.1016/j.asoc.2024.111277_b6) 2013; 225
Huang (10.1016/j.asoc.2024.111277_b11) 2019; 115
Zadeh (10.1016/j.asoc.2024.111277_b33) 1979
Wu (10.1016/j.asoc.2024.111277_b13) 2017; 378
Zhang (10.1016/j.asoc.2024.111277_b47) 2023; 161
Xu (10.1016/j.asoc.2024.111277_b55) 2023; 31
Guo (10.1016/j.asoc.2024.111277_b53) 2023; 639
Wu (10.1016/j.asoc.2024.111277_b12) 2023; 154
Wu (10.1016/j.asoc.2024.111277_b40) 2020; 11
Leung (10.1016/j.asoc.2024.111277_b48) 2003; 153
Li (10.1016/j.asoc.2024.111277_b26) 2015; 298
Shao (10.1016/j.asoc.2024.111277_b20) 1979
Zhang (10.1016/j.asoc.2024.111277_b46) 2021; 33
Shi (10.1016/j.asoc.2024.111277_b49) 2019; 496
References_xml – volume: 298
  start-page: 447
  year: 2015
  end-page: 467
  ident: b26
  article-title: Concept learning via granular computing: A cognitive viewpoint
  publication-title: Inform. Sci.
– volume: 180
  start-page: 949
  year: 2010
  end-page: 970
  ident: b38
  article-title: MGRS: A multi-granulation rough set
  publication-title: Inform. Sci.
– start-page: 1349
  year: 2001
  end-page: 1354
  ident: b10
  article-title: Granular computing: [a]n introduction
  publication-title: Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference, Vancouver, Canada, Vol. 3
– volume: 154
  start-page: 56
  year: 2023
  end-page: 71
  ident: b12
  article-title: Rule acquisition in generalized multi-scale information systems with multi-scale decisions
  publication-title: Internat. J. Approx. Reason.
– volume: 11
  start-page: 961
  year: 2020
  end-page: 972
  ident: b40
  article-title: A comparison study of optimal scale combination selection in generalized multi-scale decision tables
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 378
  start-page: 244
  year: 2017
  end-page: 263
  ident: b22
  article-title: Three-way cognitive concept learning via multi-granularity
  publication-title: Inform. Sci.
– volume: 16
  start-page: 87
  year: 2001
  end-page: 104
  ident: b35
  article-title: Information granulation and rough set approximation
  publication-title: Int. J. Intell. Syst.
– volume: 115
  start-page: 194
  year: 2019
  end-page: 208
  ident: b11
  article-title: Generalized multi-scale decision tables with multi-scale decision attributes
  publication-title: Internat. J. Approx. Reason.
– volume: 264
  start-page: 196
  year: 2014
  end-page: 210
  ident: b42
  article-title: Pessimistic rough set based decisions: A multi-granulation fusion strategy
  publication-title: Inform. Sci.
– volume: 11
  start-page: 1095
  year: 2020
  end-page: 1114
  ident: b43
  article-title: Optimal scale selection by integrating uncertainty and cost-sensitive learning in multi-scale decision tables
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 25
  start-page: 490
  year: 2002
  end-page: 496
  ident: b14
  article-title: Fast asymptotic construction algorithm for concept lattice
  publication-title: J. Comput. Sci.
– year: 2023
  ident: b54
  article-title: Fuzzy-granular concept-cognitive learning via three-way decision: Performance evaluation on dynamic knowledge discovery
  publication-title: IEEE Trans. Fuzzy Syst.
– start-page: 281
  year: 2000
  end-page: 301
  ident: b17
  article-title: Rough set data analysis
  publication-title: Encyclopedia of Computer Science and Technology, Vol. 43, no. 28
– volume: vol. 8818
  start-page: 732
  year: 2014
  end-page: 741
  ident: b21
  article-title: Three-way formal concept analysis
  publication-title: Lecture Notes in Artificial Intelligence
– volume: 260
  start-page: 149
  year: 2014
  end-page: 170
  ident: b28
  article-title: Granularity of attributes in formal concept analysis
  publication-title: Inform. Sci.
– year: 1999
  ident: b1
  article-title: Formal concept analysis
  publication-title: Mathematical Foundations
– volume: 53
  start-page: 6025
  year: 2023
  end-page: 6040
  ident: b7
  article-title: Neighborhood based concept lattice
  publication-title: Appl. Intell.
– volume: 54
  start-page: 149
  year: 2013
  end-page: 165
  ident: b16
  article-title: Incomplete decision contexts: Approximate concept construction, rule acquisition and knowledge reduction
  publication-title: Int. J. Approx. Reason.
– volume: 339
  start-page: 1
  year: 2016
  end-page: 18
  ident: b5
  article-title: Lattice-theoretic contexts and their concept lattices via Galois ideals
  publication-title: Inform. Sci.
– volume: 21
  start-page: 1461
  year: 2009
  end-page: 1474
  ident: b39
  article-title: Granular computing and knowledge reduction in formal contexts
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 11
  start-page: 5315
  year: 2020
  end-page: 5327
  ident: b32
  article-title: Formal concept analysis of multi-scale formal context
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 1
  start-page: 107
  year: 1998
  end-page: 121
  ident: b34
  article-title: Granular computing on binary relations I: Data mining and neighborhood systems
  publication-title: Rough Sets Konwl. Discov.
– volume: 639
  year: 2023
  ident: b53
  article-title: Fuzzy-based concept-cognitive learning: An investigation of novel approach to tumor diagnosis analysis
  publication-title: Inform. Sci.
– volume: 10
  start-page: 2327
  year: 2019
  end-page: 2343
  ident: b3
  article-title: Concept lattice simplification in formal concept analysis using attribute clustering
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 181
  start-page: 3878
  year: 2011
  end-page: 3897
  ident: b15
  article-title: Theory and applications of granular labelled partitions in multi-scale decision tables
  publication-title: Inform. Sci.
– volume: 10
  start-page: 823
  year: 2000
  end-page: 845
  ident: b2
  article-title: Similarity relations in concept lattices
  publication-title: J. Logic Comput.
– volume: 378
  start-page: 282
  year: 2017
  end-page: 302
  ident: b13
  article-title: On rule acquisition in incomplete multi-scale decision tables
  publication-title: Inform. Sci.
– volume: 30
  start-page: 3748
  year: 2021
  end-page: 3761
  ident: b50
  article-title: Fuzzy rule-based classification method for incremental rule learning
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 9
  start-page: 1869
  year: 2018
  end-page: 1877
  ident: b29
  article-title: Connections between two-universe rough sets and formal concepts
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 225
  start-page: 47
  year: 2013
  end-page: 54
  ident: b6
  article-title: Dual multi-adjoint concept lattices
  publication-title: Inform. Sci.
– volume: 39
  start-page: 855
  year: 2009
  end-page: 866
  ident: b25
  article-title: Interpreting concept learning in cognitive informatics and granular computing
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 10
  start-page: 3263
  year: 2019
  end-page: 3271
  ident: b31
  article-title: A theoretical study on object-oriented and property-oriented multi-scale formal concept analysis
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 153
  start-page: 85
  year: 2003
  end-page: 106
  ident: b48
  article-title: Maximal consistent block technique for rule acquisition in incomplete information systems
  publication-title: Inform. Sci.
– volume: 91
  start-page: 143
  year: 2016
  end-page: 151
  ident: b4
  article-title: The connections between three-way and classical concept lattices
  publication-title: Knowl.-Based Syst.
– volume: 333
  start-page: 71
  year: 2018
  end-page: 86
  ident: b19
  article-title: Constructing L-fuzzy concept lattices without fuzzy Galois closure operation
  publication-title: Fuzzy Sets and Systems
– volume: 104
  start-page: 62
  year: 2016
  end-page: 73
  ident: b23
  article-title: Granule description based on formal concept analysis
  publication-title: Knowl.-Based Syst.
– volume: 161
  year: 2023
  ident: b47
  article-title: Optimal scale selection and knowledge discovery in generalized multi-scale decision tables
  publication-title: Internat. J. Approx. Reason.
– volume: 12
  start-page: 1427
  year: 2021
  end-page: 1437
  ident: b41
  article-title: Entropy based optimal scale combination selection for generalized multi-scale information tables
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 33
  start-page: 3675
  year: 2021
  end-page: 3689
  ident: b46
  article-title: Optimal scale combination selection integrating three-way decision with hasse diagram
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2016
  ident: b18
  article-title: Formal Concept Analysis: Theory and Application
– volume: 8
  start-page: 159
  year: 2017
  end-page: 170
  ident: b27
  article-title: Cognitive concept learning from incomplete information
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 4
  start-page: 621
  year: 2013
  end-page: 630
  ident: b30
  article-title: Two kinds of multi-level formal concepts and its application for sets approximations
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 584
  start-page: 325
  year: 2022
  end-page: 341
  ident: b51
  article-title: A dynamic rule-based classification model via granular computing
  publication-title: Inform. Sci.
– year: 2023
  ident: b8
  article-title: Robust variable threshold fuzzy concept lattice with application to medical diagnosis
  publication-title: Int. J. Fuzzy Syst.
– start-page: 43
  year: 1979
  end-page: 53
  ident: b20
  article-title: Approximation in formal concept analysis
  publication-title: Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing: 10th International Conference, Vol. 3641
– volume: 496
  start-page: 65
  year: 2019
  end-page: 81
  ident: b49
  article-title: Concurrent concept-cognitive learning model for classification
  publication-title: Inform. Sci.
– volume: 541
  start-page: 36
  year: 2020
  end-page: 59
  ident: b45
  article-title: Optimal scale selection and attribute reduction in multi-scale decision tables based on three-way decision
  publication-title: Inform. Sci.
– volume: 31
  start-page: 1885
  year: 2023
  end-page: 1899
  ident: b55
  article-title: Two-way concept-cognitive learning method: A fuzzy-based progressive learning
  publication-title: IEEE Trans. Fuzzy Syst.
– year: 2019
  ident: b9
  article-title: Basic Grain Computing Tutorial
– volume: 346/347
  start-page: 442
  year: 2016
  end-page: 462
  ident: b24
  article-title: Rough-set concept analysis: Interpreting RS-definable concepts based on ideas from formal concept analysis
  publication-title: Inform. Sci.
– volume: 12
  start-page: 281
  year: 2021
  end-page: 301
  ident: b44
  article-title: Optimal scale combination selection for multi-scale decision tables based on three-way decision
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 103
  start-page: 107
  year: 2018
  end-page: 123
  ident: b36
  article-title: Three-way decision and granular computing
  publication-title: Internat. J. Approx. Reason.
– volume: 100
  year: 2023
  ident: b52
  article-title: M-FCCL: Memory-based concept-cognitive learning for dynamic fuzzy data classification and knowledge fusion
  publication-title: Inf. Fusion
– year: 1979
  ident: b33
  article-title: Fuzzy sets and information granularity
  publication-title: Advances in Fuzzy Set Theory and Applications
– volume: 116
  start-page: 106
  year: 2020
  end-page: 125
  ident: b37
  article-title: Three-way granular computing, rough sets, and formal concept analysis
  publication-title: Int. J. Approx. Reason.
– year: 1999
  ident: 10.1016/j.asoc.2024.111277_b1
  article-title: Formal concept analysis
– volume: 154
  start-page: 56
  year: 2023
  ident: 10.1016/j.asoc.2024.111277_b12
  article-title: Rule acquisition in generalized multi-scale information systems with multi-scale decisions
  publication-title: Internat. J. Approx. Reason.
  doi: 10.1016/j.ijar.2022.12.004
– start-page: 281
  year: 2000
  ident: 10.1016/j.asoc.2024.111277_b17
  article-title: Rough set data analysis
– volume: 53
  start-page: 6025
  issue: 5
  year: 2023
  ident: 10.1016/j.asoc.2024.111277_b7
  article-title: Neighborhood based concept lattice
  publication-title: Appl. Intell.
– volume: 584
  start-page: 325
  year: 2022
  ident: 10.1016/j.asoc.2024.111277_b51
  article-title: A dynamic rule-based classification model via granular computing
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.10.065
– volume: 30
  start-page: 3748
  issue: 9
  year: 2021
  ident: 10.1016/j.asoc.2024.111277_b50
  article-title: Fuzzy rule-based classification method for incremental rule learning
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2021.3128061
– volume: 1
  start-page: 107
  issue: 1
  year: 1998
  ident: 10.1016/j.asoc.2024.111277_b34
  article-title: Granular computing on binary relations I: Data mining and neighborhood systems
  publication-title: Rough Sets Konwl. Discov.
– volume: 541
  start-page: 36
  year: 2020
  ident: 10.1016/j.asoc.2024.111277_b45
  article-title: Optimal scale selection and attribute reduction in multi-scale decision tables based on three-way decision
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.05.109
– volume: 161
  year: 2023
  ident: 10.1016/j.asoc.2024.111277_b47
  article-title: Optimal scale selection and knowledge discovery in generalized multi-scale decision tables
  publication-title: Internat. J. Approx. Reason.
  doi: 10.1016/j.ijar.2023.108983
– volume: 91
  start-page: 143
  year: 2016
  ident: 10.1016/j.asoc.2024.111277_b4
  article-title: The connections between three-way and classical concept lattices
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.08.006
– volume: 339
  start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2024.111277_b5
  article-title: Lattice-theoretic contexts and their concept lattices via Galois ideals
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2015.12.028
– volume: 298
  start-page: 447
  year: 2015
  ident: 10.1016/j.asoc.2024.111277_b26
  article-title: Concept learning via granular computing: A cognitive viewpoint
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.12.010
– volume: 12
  start-page: 1427
  year: 2021
  ident: 10.1016/j.asoc.2024.111277_b41
  article-title: Entropy based optimal scale combination selection for generalized multi-scale information tables
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-020-01243-y
– volume: 225
  start-page: 47
  year: 2013
  ident: 10.1016/j.asoc.2024.111277_b6
  article-title: Dual multi-adjoint concept lattices
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2012.10.030
– volume: 21
  start-page: 1461
  issue: 10
  year: 2009
  ident: 10.1016/j.asoc.2024.111277_b39
  article-title: Granular computing and knowledge reduction in formal contexts
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.223
– volume: 153
  start-page: 85
  year: 2003
  ident: 10.1016/j.asoc.2024.111277_b48
  article-title: Maximal consistent block technique for rule acquisition in incomplete information systems
  publication-title: Inform. Sci.
  doi: 10.1016/S0020-0255(03)00061-6
– volume: 33
  start-page: 3675
  issue: 8
  year: 2021
  ident: 10.1016/j.asoc.2024.111277_b46
  article-title: Optimal scale combination selection integrating three-way decision with hasse diagram
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3054063
– start-page: 43
  year: 1979
  ident: 10.1016/j.asoc.2024.111277_b20
  article-title: Approximation in formal concept analysis
– year: 1979
  ident: 10.1016/j.asoc.2024.111277_b33
  article-title: Fuzzy sets and information granularity
– volume: 116
  start-page: 106
  year: 2020
  ident: 10.1016/j.asoc.2024.111277_b37
  article-title: Three-way granular computing, rough sets, and formal concept analysis
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2019.11.002
– volume: 346/347
  start-page: 442
  year: 2016
  ident: 10.1016/j.asoc.2024.111277_b24
  article-title: Rough-set concept analysis: Interpreting RS-definable concepts based on ideas from formal concept analysis
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.01.091
– volume: 100
  year: 2023
  ident: 10.1016/j.asoc.2024.111277_b52
  article-title: M-FCCL: Memory-based concept-cognitive learning for dynamic fuzzy data classification and knowledge fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.101962
– volume: 25
  start-page: 490
  issue: 5
  year: 2002
  ident: 10.1016/j.asoc.2024.111277_b14
  article-title: Fast asymptotic construction algorithm for concept lattice
  publication-title: J. Comput. Sci.
– year: 2019
  ident: 10.1016/j.asoc.2024.111277_b9
– volume: 378
  start-page: 282
  year: 2017
  ident: 10.1016/j.asoc.2024.111277_b13
  article-title: On rule acquisition in incomplete multi-scale decision tables
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.03.041
– volume: 104
  start-page: 62
  year: 2016
  ident: 10.1016/j.asoc.2024.111277_b23
  article-title: Granule description based on formal concept analysis
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.04.011
– volume: vol. 8818
  start-page: 732
  year: 2014
  ident: 10.1016/j.asoc.2024.111277_b21
  article-title: Three-way formal concept analysis
– volume: 12
  start-page: 281
  year: 2021
  ident: 10.1016/j.asoc.2024.111277_b44
  article-title: Optimal scale combination selection for multi-scale decision tables based on three-way decision
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-020-01173-9
– volume: 103
  start-page: 107
  year: 2018
  ident: 10.1016/j.asoc.2024.111277_b36
  article-title: Three-way decision and granular computing
  publication-title: Internat. J. Approx. Reason.
  doi: 10.1016/j.ijar.2018.09.005
– volume: 639
  year: 2023
  ident: 10.1016/j.asoc.2024.111277_b53
  article-title: Fuzzy-based concept-cognitive learning: An investigation of novel approach to tumor diagnosis analysis
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2023.118998
– volume: 54
  start-page: 149
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2024.111277_b16
  article-title: Incomplete decision contexts: Approximate concept construction, rule acquisition and knowledge reduction
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2012.07.005
– start-page: 1349
  year: 2001
  ident: 10.1016/j.asoc.2024.111277_b10
  article-title: Granular computing: [a]n introduction
– volume: 260
  start-page: 149
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2024.111277_b28
  article-title: Granularity of attributes in formal concept analysis
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2013.10.021
– volume: 39
  start-page: 855
  issue: 4
  year: 2009
  ident: 10.1016/j.asoc.2024.111277_b25
  article-title: Interpreting concept learning in cognitive informatics and granular computing
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2009.2013334
– volume: 181
  start-page: 3878
  issue: 18
  year: 2011
  ident: 10.1016/j.asoc.2024.111277_b15
  article-title: Theory and applications of granular labelled partitions in multi-scale decision tables
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2011.04.047
– volume: 378
  start-page: 244
  year: 2017
  ident: 10.1016/j.asoc.2024.111277_b22
  article-title: Three-way cognitive concept learning via multi-granularity
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.04.051
– year: 2016
  ident: 10.1016/j.asoc.2024.111277_b18
– volume: 4
  start-page: 621
  year: 2013
  ident: 10.1016/j.asoc.2024.111277_b30
  article-title: Two kinds of multi-level formal concepts and its application for sets approximations
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-012-0128-2
– volume: 180
  start-page: 949
  issue: 6
  year: 2010
  ident: 10.1016/j.asoc.2024.111277_b38
  article-title: MGRS: A multi-granulation rough set
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2009.11.023
– volume: 9
  start-page: 1869
  year: 2018
  ident: 10.1016/j.asoc.2024.111277_b29
  article-title: Connections between two-universe rough sets and formal concepts
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-018-0803-z
– volume: 31
  start-page: 1885
  issue: 6
  year: 2023
  ident: 10.1016/j.asoc.2024.111277_b55
  article-title: Two-way concept-cognitive learning method: A fuzzy-based progressive learning
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2022.3216110
– volume: 496
  start-page: 65
  year: 2019
  ident: 10.1016/j.asoc.2024.111277_b49
  article-title: Concurrent concept-cognitive learning model for classification
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.05.009
– volume: 333
  start-page: 71
  year: 2018
  ident: 10.1016/j.asoc.2024.111277_b19
  article-title: Constructing L-fuzzy concept lattices without fuzzy Galois closure operation
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2017.05.002
– volume: 11
  start-page: 5315
  year: 2020
  ident: 10.1016/j.asoc.2024.111277_b32
  article-title: Formal concept analysis of multi-scale formal context
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-01867-6
– year: 2023
  ident: 10.1016/j.asoc.2024.111277_b8
  article-title: Robust variable threshold fuzzy concept lattice with application to medical diagnosis
  publication-title: Int. J. Fuzzy Syst.
– volume: 115
  start-page: 194
  year: 2019
  ident: 10.1016/j.asoc.2024.111277_b11
  article-title: Generalized multi-scale decision tables with multi-scale decision attributes
  publication-title: Internat. J. Approx. Reason.
  doi: 10.1016/j.ijar.2019.09.010
– volume: 11
  start-page: 961
  year: 2020
  ident: 10.1016/j.asoc.2024.111277_b40
  article-title: A comparison study of optimal scale combination selection in generalized multi-scale decision tables
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-019-00954-1
– year: 2023
  ident: 10.1016/j.asoc.2024.111277_b54
  article-title: Fuzzy-granular concept-cognitive learning via three-way decision: Performance evaluation on dynamic knowledge discovery
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 8
  start-page: 159
  year: 2017
  ident: 10.1016/j.asoc.2024.111277_b27
  article-title: Cognitive concept learning from incomplete information
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-016-0553-8
– volume: 264
  start-page: 196
  year: 2014
  ident: 10.1016/j.asoc.2024.111277_b42
  article-title: Pessimistic rough set based decisions: A multi-granulation fusion strategy
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2013.12.014
– volume: 10
  start-page: 2327
  year: 2019
  ident: 10.1016/j.asoc.2024.111277_b3
  article-title: Concept lattice simplification in formal concept analysis using attribute clustering
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-018-0831-2
– volume: 16
  start-page: 87
  issue: 1
  year: 2001
  ident: 10.1016/j.asoc.2024.111277_b35
  article-title: Information granulation and rough set approximation
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/1098-111X(200101)16:1<87::AID-INT7>3.0.CO;2-S
– volume: 11
  start-page: 1095
  year: 2020
  ident: 10.1016/j.asoc.2024.111277_b43
  article-title: Optimal scale selection by integrating uncertainty and cost-sensitive learning in multi-scale decision tables
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-020-01101-x
– volume: 10
  start-page: 3263
  year: 2019
  ident: 10.1016/j.asoc.2024.111277_b31
  article-title: A theoretical study on object-oriented and property-oriented multi-scale formal concept analysis
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-019-01015-3
– volume: 10
  start-page: 823
  issue: 6
  year: 2000
  ident: 10.1016/j.asoc.2024.111277_b2
  article-title: Similarity relations in concept lattices
  publication-title: J. Logic Comput.
  doi: 10.1093/logcom/10.6.823
SSID ssj0016928
Score 2.4283736
Snippet The classification of multi-scale data is an important research topic in granular computing. Its research goal is to determine the most appropriate scale and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111277
SubjectTerms Classification
Generalized multi-scale formal context
Multi-objective optimization methods
Optimal scale selection criteria
Title Optimal scale selection approach for classification based on generalized multi-scale formal context
URI https://dx.doi.org/10.1016/j.asoc.2024.111277
Volume 152
WOSCitedRecordID wos001166171700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016928
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELXKcuDCjtjlAzeUKm2cxUeEQIAQcOihnIIzTqCopIi2CPH1jLc0rIIDFyu1kknUeXoe288zhOxB4kc4Pc48yJLAY1nEPS5w4iplLDIIolhmOs_seXxxkXS7_KrRuHFnYZ77cVkmLy_88V9djX3obHV09g_uroxiB16j07FFt2P7K8dfIgk86KOOyP37Q13nRmuObfZwLSwEFTQrlZDxvxrLpNo3uDVZqHuv-FNrDT1jRoe2fS1sRzavR7QujB0in2uB-njkRkO9Tm-45DjvVdIfrR8465V3ouq7Hput_0F5C6qpr0W0mZMvT-gzSjzG7aKi41eTotYyJHJr2xRu-UTeZh3hvikQl01lvjm5-X2m7A8jWKUrdJK1-1TZSJWN1NiYIjPtOORI3TMHp0fds2qnKeK6_m715fZgldEAfvySr4OXWkDSWSTzdiZBDwwClkgjL5fJgqvSQS1prxCwgKDak7QCBHWAoOhc-h4QVAOC4kUNELQGCGoAQS0gVknn-KhzeOLZ0hoeBL4_8iLgOWOiJUOZsSJMCoAiSSAosgxjfFW8SLBCqNoGXEKOU3IGUsQAfiFEW7JgjUyXgzJfJ1Rif8wiERY-YypdYA44cEEYSdkSMuYbpOX-shRs2nlV_aSffu-sDbJfPfNokq78eHfoPJHasNGEgykC64fnNv_0li0yN0H8NpkePY3zHTILz6Pe8GnXouoN-sSSBw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+scale+selection+approach+for+classification+based+on+generalized+multi-scale+formal+context&rft.jtitle=Applied+soft+computing&rft.au=Wang%2C+Fei&rft.au=Li%2C+Jinhai&rft.au=Yu%2C+Chongchong&rft.date=2024-02-01&rft.issn=1568-4946&rft.volume=152&rft.spage=111277&rft_id=info:doi/10.1016%2Fj.asoc.2024.111277&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2024_111277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon