GSC-DVIT: A vision transformer based deep learning model for lung cancer classification in CT images

•To remove the noise present in the input images, the Gaussian enclosed Bilateral Filtering (GaBF) method is used.•For extracting deep features with low dimensionality parameters, Conditional Variational Autoencoder (CVA) model is used.•To detect lung cancer, a GroupWise Separable Convolutional base...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical signal processing and control Vol. 103; p. 107371
Main Authors: Mannepalli, Durgaprasad, Kuan Tak, Tan, Bala Krishnan, Sivaneasan, Sreenivas, Velagapudi
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.05.2025
Subjects:
ISSN:1746-8094
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •To remove the noise present in the input images, the Gaussian enclosed Bilateral Filtering (GaBF) method is used.•For extracting deep features with low dimensionality parameters, Conditional Variational Autoencoder (CVA) model is used.•To detect lung cancer, a GroupWise Separable Convolutional based dual attention assisted ViT (gSC-DViT) is implemented. Vision transformer (ViT)-based techniques are advancing in the area of medical artificial intelligence (AI) and cancer imaging, comprising lung cancer applications. In recent days, numerous works have used AI techniques using computed tomography (CT) images for lung cancer diagnosis and prognosis based on visual transformers. However, the existing methods often suffer from large parameter counts and high computational complexity, particularly with limited training data. Thereby, this paper proposes an innovative approach based on lightweight vision transformer (LwViT)-based deep learning (DL) for effective classification of lung cancer using CT images. Initially, the proposed model performs pre-processing using Gaussian enclosed Bilateral Filtering (GaBF) to remove the noise. Then, the features are extracted using a conditional variational auto-encoder (CVA). Further, based on the extracted features, a GroupWise Separable Convolutional based dual attention-assisted Vision Transformer (gSC-DViT) is employed for classification. The hyperparameters of the gSC-DViT model are tuned using a puma optimizer to minimize the error and maximize the classification rate. The proposed LwViT-DL model is implemented in the Python platform using the Chest CT Scan image dataset and the Lung Cancer dataset. Moreover, the performance of the LwViT-DL model is compared with existing classifiers in terms of different evaluation measures. The maximum classification accuracy obtained by the LwViT-DL model is 99.52% in the Chest CT Scan image dataset and 99.69% in the Lung Cancer Dataset, superior to the existing classifiers for lung cancer classification.
AbstractList •To remove the noise present in the input images, the Gaussian enclosed Bilateral Filtering (GaBF) method is used.•For extracting deep features with low dimensionality parameters, Conditional Variational Autoencoder (CVA) model is used.•To detect lung cancer, a GroupWise Separable Convolutional based dual attention assisted ViT (gSC-DViT) is implemented. Vision transformer (ViT)-based techniques are advancing in the area of medical artificial intelligence (AI) and cancer imaging, comprising lung cancer applications. In recent days, numerous works have used AI techniques using computed tomography (CT) images for lung cancer diagnosis and prognosis based on visual transformers. However, the existing methods often suffer from large parameter counts and high computational complexity, particularly with limited training data. Thereby, this paper proposes an innovative approach based on lightweight vision transformer (LwViT)-based deep learning (DL) for effective classification of lung cancer using CT images. Initially, the proposed model performs pre-processing using Gaussian enclosed Bilateral Filtering (GaBF) to remove the noise. Then, the features are extracted using a conditional variational auto-encoder (CVA). Further, based on the extracted features, a GroupWise Separable Convolutional based dual attention-assisted Vision Transformer (gSC-DViT) is employed for classification. The hyperparameters of the gSC-DViT model are tuned using a puma optimizer to minimize the error and maximize the classification rate. The proposed LwViT-DL model is implemented in the Python platform using the Chest CT Scan image dataset and the Lung Cancer dataset. Moreover, the performance of the LwViT-DL model is compared with existing classifiers in terms of different evaluation measures. The maximum classification accuracy obtained by the LwViT-DL model is 99.52% in the Chest CT Scan image dataset and 99.69% in the Lung Cancer Dataset, superior to the existing classifiers for lung cancer classification.
ArticleNumber 107371
Author Kuan Tak, Tan
Bala Krishnan, Sivaneasan
Sreenivas, Velagapudi
Mannepalli, Durgaprasad
Author_xml – sequence: 1
  givenname: Durgaprasad
  surname: Mannepalli
  fullname: Mannepalli, Durgaprasad
  email: dp.mannepalli@gmail.com
  organization: Singapore Institute of Technology, 138683, Singapore
– sequence: 2
  givenname: Tan
  surname: Kuan Tak
  fullname: Kuan Tak, Tan
  organization: Engineering Cluster, Singapore Institute of Technology 138683, Singapore
– sequence: 3
  givenname: Sivaneasan
  surname: Bala Krishnan
  fullname: Bala Krishnan, Sivaneasan
  organization: Engineering Cluster, Singapore Institute of Technology 138683, Singapore
– sequence: 4
  givenname: Velagapudi
  surname: Sreenivas
  fullname: Sreenivas, Velagapudi
  organization: Department of CSE, SRK Institute of Technology, Vijayawada, Andhra Pradesh 521108, India
BookMark eNp9kM9OAjEQh3vAREBfwFNfYLHd7T-MF4KKJCQeRK9Nt50lJUuXtCuJb29XPHngNJnJfJP5fRM0Cl0AhO4omVFCxf1-VqejnZWkZHkgK0lHaEwlE4Uic3aNJintCWFKUjZGbvW-LJ4-19sHvMAnn3wXcB9NSE0XDxBxbRI47ACOuAUTgw87fOgctDgv4PYrt9YEmzdta1LyjbemH474gJdb7A9mB-kGXTWmTXD7V6fo4-V5u3wtNm-r9XKxKWxFSF8IqRgHoQwI7sA5CpUVzpC54sDBcsuMEhLIvARSCiq45HXdMGU4k7asTDVF6nzXxi6lCI22vv99J0fyraZED4b0Xg-G9GBInw1ltPyHHmN-Pn5fhh7PEORQJw9RJ-sh23A-gu216_wl_AfARIPR
CitedBy_id crossref_primary_10_1016_j_imu_2025_101669
crossref_primary_10_1007_s41237_025_00270_9
crossref_primary_10_4236_ojmi_2025_152005
crossref_primary_10_1016_j_bspc_2025_108529
crossref_primary_10_1007_s12652_025_04996_y
crossref_primary_10_1016_j_eswa_2025_128882
Cites_doi 10.1016/j.bspc.2024.106389
10.1007/s42979-024-03120-9
10.1016/j.knosys.2018.09.005
10.1007/s13246-022-01139-x
10.1007/s00521-020-05362-z
10.1007/s00259-020-04771-5
10.1007/s11548-020-02283-z
10.1016/j.jksuci.2020.03.013
10.1201/9781003272694-7
10.1109/TGRS.2024.3475635
10.1016/j.bspc.2024.106330
10.1109/TEM.2021.3103334
10.1109/JBHI.2024.3425434
10.1109/ACCESS.2019.2933670
10.1109/ACCESS.2022.3158977
10.1016/j.bspc.2024.106106
10.3390/e24091264
10.1007/s00521-020-04870-2
10.1016/j.compbiomed.2021.104348
10.1007/s11277-020-07732-1
10.1609/aaai.v31i1.10983
10.1016/j.neucom.2020.06.144
10.1080/01621459.2017.1285773
10.3390/electronics11101614
10.1016/j.jtho.2022.02.005
10.1002/ima.23193
10.1109/ICPR48806.2021.9413020
10.1109/ACCESS.2020.2973468
10.3390/cancers14215457
10.1186/s12880-023-01098-z
10.1007/s12553-022-00700-8
10.1016/j.bbe.2021.08.006
10.1016/j.compbiomed.2021.104961
10.26555/ijain.v7i2.317
10.18280/ts.370202
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2024.107371
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2024_107371
S1746809424014290
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-67845e68ae65dedd1e3c6da0985e5ec5c4a867e092e02616575bbf48a547c23a3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001412091200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Tue Nov 18 22:23:33 EST 2025
Sat Nov 29 07:58:44 EST 2025
Sat Jun 07 17:01:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Conditional Variational Auto-encoder
Lung cancer detection
Lightweight Vision Transformer
Pre-processing
Groupwise Separable Convolutional
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-67845e68ae65dedd1e3c6da0985e5ec5c4a867e092e02616575bbf48a547c23a3
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2024_107371
crossref_primary_10_1016_j_bspc_2024_107371
elsevier_sciencedirect_doi_10_1016_j_bspc_2024_107371
PublicationCentury 2000
PublicationDate May 2025
2025-05-00
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References N. Baranwal, P. Doravari & R. Kachhoria, Classification of histopathology images of lung cancer using convolutional neural network (CNN) In
Yadav, Menon, Ravi, Vishvanathan (b0120) 2021; 70
Qin, Wang, Jiang, Qiao, Hai, Chen, Xu, Shi, Yan (b0245) 2020; 2020
Faruqui, Yousuf, Whaiduzzaman, Azad, Barros, Moni (b0140) 2021; 139
Mohandass, Krishnan, Selvaraj, Sridhathan (b0085) 2024; 95
Sharma, Singh, Chandra (b0230) 2022; 10
Rane (b0090) 2023 (2023).
Cui, Li, Luo, Zhang, Du (b0105) 2024; 95
Han, Ma, Wu, Zhang, Zheng, Liu, Guo (b0005) 2021; 48
Fujikawa, Muraoka, Kashima, Yoshida, Ito, Watanabe, Yatabe (b0055) 2022; 17
Blei, Kucukelbir, McAuliffe (b0175) 2017; 112
Y. Dai S. Oehmcke F. Gieseke Y. Wu K. Barnard Attention as Activation 2021 IEEE 9156 9163.
An, Wang, Cai, Zhao, Dooper, Litjens, Gao (b0155) 2024
Sori, Feng, Godana, Liu, Gelmecha (b0015) 2021; 15
Apostolopoulos, Papathanasiou, Panayiotakis (b0070) 2021; 41
Mei, Song, Ma, Xu (b0205) 2022; 60
Kalaivani, Manimaran, Sophia, Devi (b0255) 2020; 994
Abdollahzadeh, Khodadadi, Barshandeh, Trojovský, Gharehchopogh, Sayed, Kenawy, Abualigah, Mirjalili (b0190) 2024
Li, Yue, Jiang (b0165) 2020; 37
Ramalakshmi, Rajagopal, Kulkarni, Poddar (b0025) 2024; 96
Zhang, Qi, Monkam, Li, Yang, Yao, Qian (b0050) 2019; 7
Kumar, Mehta, Reddy, Singh (b0145) 2024; 5
Shafi, Din, Khan, Díez, Casanova, Pifarre, Ashraf (b0040) 2022; 14
Gunjan, Singh, Shaik, Roy (b0065) 2022; 12
Abid, Zia, Ghafoor, Windridge (b0115) 2021; 453
Ibrahim, Elshennawy, Sarhan (b0045) 2021; 132
Saleh, Chin, Penshie, Al-Absi (b0135) 2021; 7
Ali, Mohsen, Shah (b0095) 2023; 23
Chaturvedi, Jhamb, Vanani, Nemade (b0035) 2021; 1099
Faiz, Ulla (b0160) 2023
(2020).
Rathan, Lokesh (b0260) 2024; 34
Abdulgani, Ahmad (b0250) 2020; 8
Zhao, Xu (b0215) 2024; 13179
J. Zhou, H. Kuang, Y. Wang & J. Wang, Hybrid CNN and Low-Complexity Transformer Network with Attention-Based Feature Fusion for Predicting Lung Cancer Tumor After Neoadjuvant Chemoimmunotherapy. In International Symposium on Bioinformatics Research and Applications (b0150) 2024
Tang, Xiao, Yang, Zhang, Wang, Gao (b0265) 2024; 1–19
https://www.kaggle.com/datasets/adityamahimkar/iqothnccd-lung-cancer-dataset.
Wang, Jin, Sun, Sun (b0170) 2019; 163
Ren, Zhang, Wang (b0030) 2022; 11
Talib, Amin, Sharif, Raza (b0100) 2024; 92
Meraj, Rauf, Zahoor, Hassan, Lali, Ali, Shoaib (b0075) 2021; 33
Song, Gao, Lan, Jiang, Yin, Jiang, Zhang, Li (b0200) 2024
Schuler, Paulo, Also, Puig, Rashwan, Nasser (b0210) 2022; 24
Mastouri, Khlifa, Neji, Zannad (b0130) 2021; 16
T. Guan, D. Kothandaraman, R. Chandra, A. J. Sathyamoorthy & D. Manocha, GANav: Group-wise Attention for Classifying Navigable Regions in Unstructured Outdoor Environments.
Hage Chehade, Abdallah, Marion, Oueidat, Chauvet (b0080) 2022; 45
A. Dosovitskiy, An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929
Vijh, Gaurav, Pandey (b0110) 2023; 35
J. Vlad Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. Courville & Y. Bengio. A hierarchical latent variable encoder-decoder model for generating dialogues. arXiv e-prints (2016): arXiv-1605.
D. P. Kingma, Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013).
Althubiti, Paul, Mohanty, Mohanty, Alenezi, Polat (b0125) 2022; 2022
Naik, Edla (b0020) 2021; 116
Harsono, Liawatimena, Cenggoro (b0060) 2022; 34
https://www.kaggle.com/datasets/mohamedhanyyy/chest-ctscan-images.
Disruptive Developments in Biomedical Applications, (2022) 75-89. CRC Press.
Abdollahzadeh (10.1016/j.bspc.2024.107371_b0190) 2024
Rane (10.1016/j.bspc.2024.107371_b0090) 2023
Chaturvedi (10.1016/j.bspc.2024.107371_b0035) 2021; 1099
Mastouri (10.1016/j.bspc.2024.107371_b0130) 2021; 16
Faruqui (10.1016/j.bspc.2024.107371_b0140) 2021; 139
10.1016/j.bspc.2024.107371_b0235
Sharma (10.1016/j.bspc.2024.107371_b0230) 2022; 10
Mohandass (10.1016/j.bspc.2024.107371_b0085) 2024; 95
Ali (10.1016/j.bspc.2024.107371_b0095) 2023; 23
10.1016/j.bspc.2024.107371_b0240
Meraj (10.1016/j.bspc.2024.107371_b0075) 2021; 33
Ibrahim (10.1016/j.bspc.2024.107371_b0045) 2021; 132
Harsono (10.1016/j.bspc.2024.107371_b0060) 2022; 34
Naik (10.1016/j.bspc.2024.107371_b0020) 2021; 116
Gunjan (10.1016/j.bspc.2024.107371_b0065) 2022; 12
Ren (10.1016/j.bspc.2024.107371_b0030) 2022; 11
Kumar (10.1016/j.bspc.2024.107371_b0145) 2024; 5
Kalaivani (10.1016/j.bspc.2024.107371_b0255) 2020; 994
Rathan (10.1016/j.bspc.2024.107371_b0260) 2024; 34
Saleh (10.1016/j.bspc.2024.107371_b0135) 2021; 7
10.1016/j.bspc.2024.107371_b0010
Apostolopoulos (10.1016/j.bspc.2024.107371_b0070) 2021; 41
Qin (10.1016/j.bspc.2024.107371_b0245) 2020; 2020
Cui (10.1016/j.bspc.2024.107371_b0105) 2024; 95
Abid (10.1016/j.bspc.2024.107371_b0115) 2021; 453
Yadav (10.1016/j.bspc.2024.107371_b0120) 2021; 70
Talib (10.1016/j.bspc.2024.107371_b0100) 2024; 92
Song (10.1016/j.bspc.2024.107371_b0200) 2024
Schuler (10.1016/j.bspc.2024.107371_b0210) 2022; 24
Tang (10.1016/j.bspc.2024.107371_b0265) 2024; 1–19
Althubiti (10.1016/j.bspc.2024.107371_b0125) 2022; 2022
Faiz (10.1016/j.bspc.2024.107371_b0160) 2023
Mei (10.1016/j.bspc.2024.107371_b0205) 2022; 60
An (10.1016/j.bspc.2024.107371_b0155) 2024
10.1016/j.bspc.2024.107371_b0220
Blei (10.1016/j.bspc.2024.107371_b0175) 2017; 112
10.1016/j.bspc.2024.107371_b0185
Shafi (10.1016/j.bspc.2024.107371_b0040) 2022; 14
Hage Chehade (10.1016/j.bspc.2024.107371_b0080) 2022; 45
10.1016/j.bspc.2024.107371_b0180
Zhao (10.1016/j.bspc.2024.107371_b0215) 2024; 13179
Fujikawa (10.1016/j.bspc.2024.107371_b0055) 2022; 17
Abdulgani (10.1016/j.bspc.2024.107371_b0250) 2020; 8
Li (10.1016/j.bspc.2024.107371_b0165) 2020; 37
Sori (10.1016/j.bspc.2024.107371_b0015) 2021; 15
10.1016/j.bspc.2024.107371_b0225
Zhang (10.1016/j.bspc.2024.107371_b0050) 2019; 7
J. Zhou, H. Kuang, Y. Wang & J. Wang, Hybrid CNN and Low-Complexity Transformer Network with Attention-Based Feature Fusion for Predicting Lung Cancer Tumor After Neoadjuvant Chemoimmunotherapy. In International Symposium on Bioinformatics Research and Applications (10.1016/j.bspc.2024.107371_b0150) 2024
Vijh (10.1016/j.bspc.2024.107371_b0110) 2023; 35
Han (10.1016/j.bspc.2024.107371_b0005) 2021; 48
10.1016/j.bspc.2024.107371_b0195
Ramalakshmi (10.1016/j.bspc.2024.107371_b0025) 2024; 96
Wang (10.1016/j.bspc.2024.107371_b0170) 2019; 163
References_xml – start-page: 1
  year: 2024
  end-page: 49
  ident: b0190
  article-title: Puma optimizer (PO): A novel metaheuristic optimization algorithm and its application in machine learning
  publication-title: Clust. Comput.
– reference: Disruptive Developments in Biomedical Applications, (2022) 75-89. CRC Press.
– volume: 994
  year: 2020
  ident: b0255
  publication-title: Deep Learning Based Lung Cancer Detection and Classification
– volume: 34
  start-page: 567
  year: 2022
  end-page: 577
  ident: b0060
  article-title: Lung nodule detection and classification from Thorax CT-scan using RetinaNet with transfer learning
  publication-title: Journal of King Saud University-Computer and Information Sciences
– volume: 112
  start-page: 859
  year: 2017
  end-page: 877
  ident: b0175
  article-title: Variational inference: A review for statisticians
  publication-title: J. Am. Stat. Assoc.
– volume: 132
  year: 2021
  ident: b0045
  article-title: Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases
  publication-title: Comput. Biol. Med.
– volume: 116
  start-page: 655
  year: 2021
  end-page: 690
  ident: b0020
  article-title: Lung nodule classification on computed tomography images using deep learning
  publication-title: Wirel. Pers. Commun.
– reference: Y. Dai S. Oehmcke F. Gieseke Y. Wu K. Barnard Attention as Activation 2021 IEEE 9156 9163.
– volume: 96
  year: 2024
  ident: b0025
  article-title: A hyperdimensional framework: Unveiling the interplay of RBP and GSN within CNNs for ultra-precise brain tumor classification
  publication-title: Biomed. Signal Process. Control
– volume: 8
  start-page: 32882
  year: 2020
  end-page: 32890
  ident: b0250
  article-title: Label-free normal and cancer cells classification combining Prony's method and optical techniques
  publication-title: IEEE Access
– reference: D. P. Kingma, Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013).
– year: 2023 (2023).
  ident: b0090
  article-title: Transformers for Medical Image Analysis: Applications, Challenges, and Future Scope. Challenges, and Future
  publication-title: Scope
– reference: (2020).
– volume: 15
  start-page: 1
  year: 2021
  end-page: 13
  ident: b0015
  article-title: DFD-Net: lung cancer detection from denoised CT scan image using deep learning
  publication-title: Front. Comp. Sci.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 14
  ident: b0205
  article-title: Hyperspectral image classification using group-aware hierarchical transformer
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 35
  start-page: 23711
  year: 2023
  end-page: 23724
  ident: b0110
  article-title: Hybrid bio-inspired algorithm and convolutional neural network for automatic lung tumor detection
  publication-title: Neural Comput. & Applic.
– reference: https://www.kaggle.com/datasets/adityamahimkar/iqothnccd-lung-cancer-dataset.
– reference: https://www.kaggle.com/datasets/mohamedhanyyy/chest-ctscan-images.
– reference: J. Vlad Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. Courville & Y. Bengio. A hierarchical latent variable encoder-decoder model for generating dialogues. arXiv e-prints (2016): arXiv-1605.
– volume: 24
  start-page: 1264
  year: 2022
  ident: b0210
  article-title: An enhanced scheme for reducing the complexity of pointwise convolutions in CNNs for image classification based on interleaved grouped filters without divisibility constraints
  publication-title: Entropy
– reference: N. Baranwal, P. Doravari & R. Kachhoria, Classification of histopathology images of lung cancer using convolutional neural network (CNN) In
– volume: 92
  year: 2024
  ident: b0100
  article-title: Transformer-based semantic segmentation and CNN network for detection of histopathological lung cancer
  publication-title: Biomed. Signal Process. Control
– volume: 7
  start-page: 151
  year: 2021
  end-page: 162
  ident: b0135
  article-title: Lung cancer medical images classification using hybrid CNN-SVM
  publication-title: International Journal of Advances in Intelligent Informatics.
– reference: A. Dosovitskiy, An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929
– volume: 2022
  year: 2022
  ident: b0125
  article-title: Ensemble learning framework with GLCM texture extraction for early detection of lung cancer on CT images
  publication-title: Comput. Math. Methods Med.
– start-page: 32
  year: 2023
  ident: b0160
  publication-title: Adaptive Bilateral Filter. Image Processing Applications.
– volume: 13179
  start-page: 282
  year: 2024
  end-page: 287
  ident: b0215
  publication-title: A Lightweight Network of Groupwise Separable Convolution and Vision Transformer for Hyperspectral Image Classification
– volume: 5
  start-page: 1
  year: 2024
  end-page: 17
  ident: b0145
  article-title: Vision Transformer Based Effective Model for Early Detection and Classification of Lung Cancer
  publication-title: SN Comput. Sci.
– volume: 12
  start-page: 1197
  year: 2022
  end-page: 1210
  ident: b0065
  article-title: Detection of lung cancer in CT scans using grey wolf optimization algorithm and recurrent neural network
  publication-title: Heal. Technol.
– volume: 2020
  year: 2020
  ident: b0245
  article-title: Fine-Grained Lung Cancer Classification from PET and CT Images Based on Multidimensional Attention Mechanism
  publication-title: Complexity
– volume: 70
  start-page: 2774
  year: 2021
  end-page: 2786
  ident: b0120
  article-title: Lung-GANs: unsupervised representation learning for lung disease classification using chest CT and X-ray images
  publication-title: IEEE Trans. Eng. Manag.
– volume: 163
  start-page: 438
  year: 2019
  end-page: 449
  ident: b0170
  article-title: Planetary gearbox fault feature learning using conditional variational neural networks under noise environment
  publication-title: Knowl.-Based Syst.
– volume: 48
  start-page: 350
  year: 2021
  end-page: 360
  ident: b0005
  article-title: Histologic subtype classification of non-small cell lung cancer using PET/CT images
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 17
  start-page: 700
  year: 2022
  end-page: 707
  ident: b0055
  article-title: Clinicopathologic and genotypic features of lung adenocarcinoma characterized by the international association for the study of lung cancer grading system
  publication-title: J. Thorac. Oncol.
– volume: 41
  start-page: 1243
  year: 2021
  end-page: 1257
  ident: b0070
  article-title: Classification of lung nodule malignancy in computed tomography imaging utilising generative adversarial networks and semi-supervised transfer learning
  publication-title: Biocybernetics and Biomedical Engineering
– volume: 139
  year: 2021
  ident: b0140
  article-title: LungNet: A hybrid deep-CNN model for lung cancer diagnosis using CT and wearable sensor-based medical IoT data
  publication-title: Comput. Biol. Med.
– volume: 23
  start-page: 129
  year: 2023
  ident: b0095
  article-title: Improving diagnosis and prognosis of lung cancer using vision transformers: a scoping review
  publication-title: BMC Med. Imaging
– volume: 37
  year: 2020
  ident: b0165
  article-title: Adaptive and Feature-Preserving Bilateral Filters for Three-Dimensional Models
  publication-title: Traitement Du Signal.
– year: 2024
  ident: b0155
  article-title: Transformer-Based Weakly Supervised Learning for Whole Slide Lung Cancer Image Classification
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 11
  start-page: 1614
  year: 2022
  ident: b0030
  article-title: A hybrid framework for lung cancer classification
  publication-title: Electronics
– volume: 7
  start-page: 110358
  year: 2019
  end-page: 110371
  ident: b0050
  article-title: Ensemble learners of multiple deep CNNs for pulmonary nodules classification using CT images
  publication-title: IEEE Access
– volume: 16
  start-page: 91
  year: 2021
  end-page: 101
  ident: b0130
  article-title: A bilinear convolutional neural network for lung nodules classification on CT images
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– reference: T. Guan, D. Kothandaraman, R. Chandra, A. J. Sathyamoorthy & D. Manocha, GANav: Group-wise Attention for Classifying Navigable Regions in Unstructured Outdoor Environments.
– volume: 45
  start-page: 729
  year: 2022
  end-page: 746
  ident: b0080
  article-title: Lung and colon cancer classification using medical imaging: A feature engineering approach
  publication-title: Phys. Eng. Sci. Med.
– volume: 10
  start-page: 30655
  year: 2022
  end-page: 30665
  ident: b0230
  article-title: SMOTified-GAN for class imbalanced pattern classification problems
  publication-title: IEEE Access
– volume: 14
  start-page: 5457
  year: 2022
  ident: b0040
  article-title: An effective method for lung cancer diagnosis from CT scan using deep learning-based support vector network
  publication-title: Cancers
– volume: 33
  start-page: 10737
  year: 2021
  end-page: 10750
  ident: b0075
  article-title: Lung nodules detection using semantic segmentation and classification with optimal features
  publication-title: Neural Comput. & Applic.
– year: 2024
  ident: b0200
  article-title: LIRnet: Lightweight Hyperspectral Image Classification Based Information Redistribution
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 95
  year: 2024
  ident: b0085
  article-title: Lung Cancer Classification using Optimized Attention-based Convolutional Neural Network with DenseNet-201 Transfer Learning Model on CT image
  publication-title: Biomed. Signal Process. Control
– volume: 95
  year: 2024
  ident: b0105
  article-title: SF2T: Leveraging Swin Transformer and Two-stream networks for lung nodule detection
  publication-title: Biomed. Signal Process. Control
– volume: 1–19
  year: 2024
  ident: b0265
  article-title: VSNet: classification of pulmonary nodules in 3D using vision transformer and sequence spatial attention mechanism
  publication-title: Multimed. Tools Appl.
– volume: 34
  year: 2024
  ident: b0260
  article-title: Enhanced Lung Cancer Diagnosis and Staging with HRNeT: A Deep Learning Approach
  publication-title: Int. J. Imaging Syst. Technol.
– year: 2024
  ident: b0150
  article-title: 408–417
– volume: 1099
  year: 2021
  ident: b0035
  publication-title: Prediction and Classification of Lung Cancer Using Machine Learning Techniques
– volume: 453
  start-page: 299
  year: 2021
  end-page: 311
  ident: b0115
  article-title: Multi-view convolutional recurrent neural networks for lung cancer nodule identification
  publication-title: Neurocomputing
– volume: 95
  year: 2024
  ident: 10.1016/j.bspc.2024.107371_b0105
  article-title: SF2T: Leveraging Swin Transformer and Two-stream networks for lung nodule detection
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2024.106389
– ident: 10.1016/j.bspc.2024.107371_b0220
– year: 2023
  ident: 10.1016/j.bspc.2024.107371_b0090
  article-title: Transformers for Medical Image Analysis: Applications, Challenges, and Future Scope. Challenges, and Future
  publication-title: Scope
– volume: 5
  start-page: 1
  issue: 7
  year: 2024
  ident: 10.1016/j.bspc.2024.107371_b0145
  article-title: Vision Transformer Based Effective Model for Early Detection and Classification of Lung Cancer
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-024-03120-9
– volume: 163
  start-page: 438
  year: 2019
  ident: 10.1016/j.bspc.2024.107371_b0170
  article-title: Planetary gearbox fault feature learning using conditional variational neural networks under noise environment
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.09.005
– volume: 45
  start-page: 729
  issue: 3
  year: 2022
  ident: 10.1016/j.bspc.2024.107371_b0080
  article-title: Lung and colon cancer classification using medical imaging: A feature engineering approach
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-022-01139-x
– volume: 35
  start-page: 23711
  issue: 33
  year: 2023
  ident: 10.1016/j.bspc.2024.107371_b0110
  article-title: Hybrid bio-inspired algorithm and convolutional neural network for automatic lung tumor detection
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-020-05362-z
– volume: 48
  start-page: 350
  year: 2021
  ident: 10.1016/j.bspc.2024.107371_b0005
  article-title: Histologic subtype classification of non-small cell lung cancer using PET/CT images
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-020-04771-5
– ident: 10.1016/j.bspc.2024.107371_b0195
– year: 2024
  ident: 10.1016/j.bspc.2024.107371_b0150
– ident: 10.1016/j.bspc.2024.107371_b0240
– volume: 16
  start-page: 91
  year: 2021
  ident: 10.1016/j.bspc.2024.107371_b0130
  article-title: A bilinear convolutional neural network for lung nodules classification on CT images
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-020-02283-z
– volume: 13179
  start-page: 282
  year: 2024
  ident: 10.1016/j.bspc.2024.107371_b0215
  publication-title: A Lightweight Network of Groupwise Separable Convolution and Vision Transformer for Hyperspectral Image Classification
– volume: 1099
  year: 2021
  ident: 10.1016/j.bspc.2024.107371_b0035
  publication-title: Prediction and Classification of Lung Cancer Using Machine Learning Techniques
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2024.107371_b0205
  article-title: Hyperspectral image classification using group-aware hierarchical transformer
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 34
  start-page: 567
  issue: 3
  year: 2022
  ident: 10.1016/j.bspc.2024.107371_b0060
  article-title: Lung nodule detection and classification from Thorax CT-scan using RetinaNet with transfer learning
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2020.03.013
– ident: 10.1016/j.bspc.2024.107371_b0010
  doi: 10.1201/9781003272694-7
– year: 2024
  ident: 10.1016/j.bspc.2024.107371_b0200
  article-title: LIRnet: Lightweight Hyperspectral Image Classification Based Information Redistribution
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2024.3475635
– volume: 95
  year: 2024
  ident: 10.1016/j.bspc.2024.107371_b0085
  article-title: Lung Cancer Classification using Optimized Attention-based Convolutional Neural Network with DenseNet-201 Transfer Learning Model on CT image
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2024.106330
– volume: 15
  start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2024.107371_b0015
  article-title: DFD-Net: lung cancer detection from denoised CT scan image using deep learning
  publication-title: Front. Comp. Sci.
– volume: 70
  start-page: 2774
  issue: 8
  year: 2021
  ident: 10.1016/j.bspc.2024.107371_b0120
  article-title: Lung-GANs: unsupervised representation learning for lung disease classification using chest CT and X-ray images
  publication-title: IEEE Trans. Eng. Manag.
  doi: 10.1109/TEM.2021.3103334
– year: 2024
  ident: 10.1016/j.bspc.2024.107371_b0155
  article-title: Transformer-Based Weakly Supervised Learning for Whole Slide Lung Cancer Image Classification
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2024.3425434
– volume: 2020
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2024.107371_b0245
  article-title: Fine-Grained Lung Cancer Classification from PET and CT Images Based on Multidimensional Attention Mechanism
  publication-title: Complexity
– volume: 7
  start-page: 110358
  year: 2019
  ident: 10.1016/j.bspc.2024.107371_b0050
  article-title: Ensemble learners of multiple deep CNNs for pulmonary nodules classification using CT images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933670
– volume: 10
  start-page: 30655
  year: 2022
  ident: 10.1016/j.bspc.2024.107371_b0230
  article-title: SMOTified-GAN for class imbalanced pattern classification problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3158977
– ident: 10.1016/j.bspc.2024.107371_b0235
– volume: 1–19
  year: 2024
  ident: 10.1016/j.bspc.2024.107371_b0265
  article-title: VSNet: classification of pulmonary nodules in 3D using vision transformer and sequence spatial attention mechanism
  publication-title: Multimed. Tools Appl.
– volume: 994
  year: 2020
  ident: 10.1016/j.bspc.2024.107371_b0255
  publication-title: Deep Learning Based Lung Cancer Detection and Classification
– volume: 92
  year: 2024
  ident: 10.1016/j.bspc.2024.107371_b0100
  article-title: Transformer-based semantic segmentation and CNN network for detection of histopathological lung cancer
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2024.106106
– volume: 24
  start-page: 1264
  issue: 9
  year: 2022
  ident: 10.1016/j.bspc.2024.107371_b0210
  article-title: An enhanced scheme for reducing the complexity of pointwise convolutions in CNNs for image classification based on interleaved grouped filters without divisibility constraints
  publication-title: Entropy
  doi: 10.3390/e24091264
– volume: 33
  start-page: 10737
  year: 2021
  ident: 10.1016/j.bspc.2024.107371_b0075
  article-title: Lung nodules detection using semantic segmentation and classification with optimal features
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-020-04870-2
– volume: 132
  year: 2021
  ident: 10.1016/j.bspc.2024.107371_b0045
  article-title: Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104348
– volume: 116
  start-page: 655
  issue: 1
  year: 2021
  ident: 10.1016/j.bspc.2024.107371_b0020
  article-title: Lung nodule classification on computed tomography images using deep learning
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-020-07732-1
– ident: 10.1016/j.bspc.2024.107371_b0180
  doi: 10.1609/aaai.v31i1.10983
– start-page: 1
  year: 2024
  ident: 10.1016/j.bspc.2024.107371_b0190
  article-title: Puma optimizer (PO): A novel metaheuristic optimization algorithm and its application in machine learning
  publication-title: Clust. Comput.
– volume: 96
  year: 2024
  ident: 10.1016/j.bspc.2024.107371_b0025
  article-title: A hyperdimensional framework: Unveiling the interplay of RBP and GSN within CNNs for ultra-precise brain tumor classification
  publication-title: Biomed. Signal Process. Control
– volume: 453
  start-page: 299
  year: 2021
  ident: 10.1016/j.bspc.2024.107371_b0115
  article-title: Multi-view convolutional recurrent neural networks for lung cancer nodule identification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.06.144
– volume: 112
  start-page: 859
  issue: 518
  year: 2017
  ident: 10.1016/j.bspc.2024.107371_b0175
  article-title: Variational inference: A review for statisticians
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2017.1285773
– ident: 10.1016/j.bspc.2024.107371_b0185
– volume: 11
  start-page: 1614
  issue: 10
  year: 2022
  ident: 10.1016/j.bspc.2024.107371_b0030
  article-title: A hybrid framework for lung cancer classification
  publication-title: Electronics
  doi: 10.3390/electronics11101614
– volume: 2022
  issue: 1
  year: 2022
  ident: 10.1016/j.bspc.2024.107371_b0125
  article-title: Ensemble learning framework with GLCM texture extraction for early detection of lung cancer on CT images
  publication-title: Comput. Math. Methods Med.
– volume: 17
  start-page: 700
  issue: 5
  year: 2022
  ident: 10.1016/j.bspc.2024.107371_b0055
  article-title: Clinicopathologic and genotypic features of lung adenocarcinoma characterized by the international association for the study of lung cancer grading system
  publication-title: J. Thorac. Oncol.
  doi: 10.1016/j.jtho.2022.02.005
– volume: 34
  issue: 6
  year: 2024
  ident: 10.1016/j.bspc.2024.107371_b0260
  article-title: Enhanced Lung Cancer Diagnosis and Staging with HRNeT: A Deep Learning Approach
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.23193
– ident: 10.1016/j.bspc.2024.107371_b0225
  doi: 10.1109/ICPR48806.2021.9413020
– volume: 8
  start-page: 32882
  year: 2020
  ident: 10.1016/j.bspc.2024.107371_b0250
  article-title: Label-free normal and cancer cells classification combining Prony's method and optical techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2973468
– start-page: 32
  year: 2023
  ident: 10.1016/j.bspc.2024.107371_b0160
  publication-title: Adaptive Bilateral Filter. Image Processing Applications.
– volume: 14
  start-page: 5457
  issue: 21
  year: 2022
  ident: 10.1016/j.bspc.2024.107371_b0040
  article-title: An effective method for lung cancer diagnosis from CT scan using deep learning-based support vector network
  publication-title: Cancers
  doi: 10.3390/cancers14215457
– volume: 23
  start-page: 129
  issue: 1
  year: 2023
  ident: 10.1016/j.bspc.2024.107371_b0095
  article-title: Improving diagnosis and prognosis of lung cancer using vision transformers: a scoping review
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-023-01098-z
– volume: 12
  start-page: 1197
  issue: 6
  year: 2022
  ident: 10.1016/j.bspc.2024.107371_b0065
  article-title: Detection of lung cancer in CT scans using grey wolf optimization algorithm and recurrent neural network
  publication-title: Heal. Technol.
  doi: 10.1007/s12553-022-00700-8
– volume: 41
  start-page: 1243
  issue: 4
  year: 2021
  ident: 10.1016/j.bspc.2024.107371_b0070
  article-title: Classification of lung nodule malignancy in computed tomography imaging utilising generative adversarial networks and semi-supervised transfer learning
  publication-title: Biocybernetics and Biomedical Engineering
  doi: 10.1016/j.bbe.2021.08.006
– volume: 139
  year: 2021
  ident: 10.1016/j.bspc.2024.107371_b0140
  article-title: LungNet: A hybrid deep-CNN model for lung cancer diagnosis using CT and wearable sensor-based medical IoT data
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104961
– volume: 7
  start-page: 151
  issue: 2
  year: 2021
  ident: 10.1016/j.bspc.2024.107371_b0135
  article-title: Lung cancer medical images classification using hybrid CNN-SVM
  publication-title: International Journal of Advances in Intelligent Informatics.
  doi: 10.26555/ijain.v7i2.317
– volume: 37
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2024.107371_b0165
  article-title: Adaptive and Feature-Preserving Bilateral Filters for Three-Dimensional Models
  publication-title: Traitement Du Signal.
  doi: 10.18280/ts.370202
SSID ssj0048714
Score 2.3855975
Snippet •To remove the noise present in the input images, the Gaussian enclosed Bilateral Filtering (GaBF) method is used.•For extracting deep features with low...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107371
SubjectTerms Conditional Variational Auto-encoder
Groupwise Separable Convolutional
Lightweight Vision Transformer
Lung cancer detection
Pre-processing
Title GSC-DVIT: A vision transformer based deep learning model for lung cancer classification in CT images
URI https://dx.doi.org/10.1016/j.bspc.2024.107371
Volume 103
WOSCitedRecordID wos001412091200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0048714
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xvOQDtyoozaNOuJXuAsthhdSAeosmsdvNKoQobVf7Q_jBzGTiprugFSBxiSordiPPp_HY_r4ZIV7H4HmggHRby9wJMIJ3wM9iJ6Jq8No3FIS0xSbU6Wm0WMSfB4MfVgtzUaqqii4v4_q_mhrb0Ngknf0Lc-8GxQb8jUbHJ5odn39k-A_zmXP09SRhzTlrx6kSBMenphnRwqVH2pja1oxYcUGclnJYbkmFS1hoRjmF1sQlAkuJnCWj4hu6oPWVy-BWws_6ymJF4W3N8gMrgOz48P3pNzr3GkpWZh9tmxXUDaxB9_dK6HUSYBJ3D993UELrlc66ospzusYysMcrmhONCFu5xrspAYfe6mL_bMMLeyYhH7hZ0U3PcCIfrQLKocy1kXdOvM2U8OuCwGcT52-ydU0JK70Am5TPVV-uJdqe08A0LgY5Y1ym3VviwFNhHA3FwfTkePHJrvC4x2tzxu8-pBNjMW_w-j_9PuDZC2KS--Jet_uQU0bNAzEw1UNxdy8n5SOhLX7eyqlk9Mg99MgWPZLQIy16ZIseiS9IQo9k9Mir6JFFJWeJZPQ8Fl_eHyezj05XisPJfdfdOBjSBKGZRGAmoTZaj42fTzS4cRSa0ORhHkA0UcaNPUOberrNy7JlEEEYqNzzwX8ihtX3yjwV0sNBdEzJ9HFMWGbxGDK1DBXE-URp7R6KsZ2vNO_y1FO5lDK1hMTzlOY4pTlOeY4PxWjXp-YsLTe-HVozpF2cyfFjiqi5od-zf-z3XNzpwf1CDDfN1rwUt_OLTbFuXnXg-gkeyqS8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GSC-DVIT%3A+A+vision+transformer+based+deep+learning+model+for+lung+cancer+classification+in+CT+images&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Mannepalli%2C+Durgaprasad&rft.au=Kuan+Tak%2C+Tan&rft.au=Bala+Krishnan%2C+Sivaneasan&rft.au=Sreenivas%2C+Velagapudi&rft.date=2025-05-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.volume=103&rft_id=info:doi/10.1016%2Fj.bspc.2024.107371&rft.externalDocID=S1746809424014290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon