GSC-DVIT: A vision transformer based deep learning model for lung cancer classification in CT images
•To remove the noise present in the input images, the Gaussian enclosed Bilateral Filtering (GaBF) method is used.•For extracting deep features with low dimensionality parameters, Conditional Variational Autoencoder (CVA) model is used.•To detect lung cancer, a GroupWise Separable Convolutional base...
Saved in:
| Published in: | Biomedical signal processing and control Vol. 103; p. 107371 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.05.2025
|
| Subjects: | |
| ISSN: | 1746-8094 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •To remove the noise present in the input images, the Gaussian enclosed Bilateral Filtering (GaBF) method is used.•For extracting deep features with low dimensionality parameters, Conditional Variational Autoencoder (CVA) model is used.•To detect lung cancer, a GroupWise Separable Convolutional based dual attention assisted ViT (gSC-DViT) is implemented.
Vision transformer (ViT)-based techniques are advancing in the area of medical artificial intelligence (AI) and cancer imaging, comprising lung cancer applications. In recent days, numerous works have used AI techniques using computed tomography (CT) images for lung cancer diagnosis and prognosis based on visual transformers. However, the existing methods often suffer from large parameter counts and high computational complexity, particularly with limited training data. Thereby, this paper proposes an innovative approach based on lightweight vision transformer (LwViT)-based deep learning (DL) for effective classification of lung cancer using CT images. Initially, the proposed model performs pre-processing using Gaussian enclosed Bilateral Filtering (GaBF) to remove the noise. Then, the features are extracted using a conditional variational auto-encoder (CVA). Further, based on the extracted features, a GroupWise Separable Convolutional based dual attention-assisted Vision Transformer (gSC-DViT) is employed for classification. The hyperparameters of the gSC-DViT model are tuned using a puma optimizer to minimize the error and maximize the classification rate. The proposed LwViT-DL model is implemented in the Python platform using the Chest CT Scan image dataset and the Lung Cancer dataset. Moreover, the performance of the LwViT-DL model is compared with existing classifiers in terms of different evaluation measures. The maximum classification accuracy obtained by the LwViT-DL model is 99.52% in the Chest CT Scan image dataset and 99.69% in the Lung Cancer Dataset, superior to the existing classifiers for lung cancer classification. |
|---|---|
| AbstractList | •To remove the noise present in the input images, the Gaussian enclosed Bilateral Filtering (GaBF) method is used.•For extracting deep features with low dimensionality parameters, Conditional Variational Autoencoder (CVA) model is used.•To detect lung cancer, a GroupWise Separable Convolutional based dual attention assisted ViT (gSC-DViT) is implemented.
Vision transformer (ViT)-based techniques are advancing in the area of medical artificial intelligence (AI) and cancer imaging, comprising lung cancer applications. In recent days, numerous works have used AI techniques using computed tomography (CT) images for lung cancer diagnosis and prognosis based on visual transformers. However, the existing methods often suffer from large parameter counts and high computational complexity, particularly with limited training data. Thereby, this paper proposes an innovative approach based on lightweight vision transformer (LwViT)-based deep learning (DL) for effective classification of lung cancer using CT images. Initially, the proposed model performs pre-processing using Gaussian enclosed Bilateral Filtering (GaBF) to remove the noise. Then, the features are extracted using a conditional variational auto-encoder (CVA). Further, based on the extracted features, a GroupWise Separable Convolutional based dual attention-assisted Vision Transformer (gSC-DViT) is employed for classification. The hyperparameters of the gSC-DViT model are tuned using a puma optimizer to minimize the error and maximize the classification rate. The proposed LwViT-DL model is implemented in the Python platform using the Chest CT Scan image dataset and the Lung Cancer dataset. Moreover, the performance of the LwViT-DL model is compared with existing classifiers in terms of different evaluation measures. The maximum classification accuracy obtained by the LwViT-DL model is 99.52% in the Chest CT Scan image dataset and 99.69% in the Lung Cancer Dataset, superior to the existing classifiers for lung cancer classification. |
| ArticleNumber | 107371 |
| Author | Kuan Tak, Tan Bala Krishnan, Sivaneasan Sreenivas, Velagapudi Mannepalli, Durgaprasad |
| Author_xml | – sequence: 1 givenname: Durgaprasad surname: Mannepalli fullname: Mannepalli, Durgaprasad email: dp.mannepalli@gmail.com organization: Singapore Institute of Technology, 138683, Singapore – sequence: 2 givenname: Tan surname: Kuan Tak fullname: Kuan Tak, Tan organization: Engineering Cluster, Singapore Institute of Technology 138683, Singapore – sequence: 3 givenname: Sivaneasan surname: Bala Krishnan fullname: Bala Krishnan, Sivaneasan organization: Engineering Cluster, Singapore Institute of Technology 138683, Singapore – sequence: 4 givenname: Velagapudi surname: Sreenivas fullname: Sreenivas, Velagapudi organization: Department of CSE, SRK Institute of Technology, Vijayawada, Andhra Pradesh 521108, India |
| BookMark | eNp9kM9OAjEQh3vAREBfwFNfYLHd7T-MF4KKJCQeRK9Nt50lJUuXtCuJb29XPHngNJnJfJP5fRM0Cl0AhO4omVFCxf1-VqejnZWkZHkgK0lHaEwlE4Uic3aNJintCWFKUjZGbvW-LJ4-19sHvMAnn3wXcB9NSE0XDxBxbRI47ACOuAUTgw87fOgctDgv4PYrt9YEmzdta1LyjbemH474gJdb7A9mB-kGXTWmTXD7V6fo4-V5u3wtNm-r9XKxKWxFSF8IqRgHoQwI7sA5CpUVzpC54sDBcsuMEhLIvARSCiq45HXdMGU4k7asTDVF6nzXxi6lCI22vv99J0fyraZED4b0Xg-G9GBInw1ltPyHHmN-Pn5fhh7PEORQJw9RJ-sh23A-gu216_wl_AfARIPR |
| CitedBy_id | crossref_primary_10_1016_j_imu_2025_101669 crossref_primary_10_1007_s41237_025_00270_9 crossref_primary_10_4236_ojmi_2025_152005 crossref_primary_10_1016_j_bspc_2025_108529 crossref_primary_10_1007_s12652_025_04996_y crossref_primary_10_1016_j_eswa_2025_128882 |
| Cites_doi | 10.1016/j.bspc.2024.106389 10.1007/s42979-024-03120-9 10.1016/j.knosys.2018.09.005 10.1007/s13246-022-01139-x 10.1007/s00521-020-05362-z 10.1007/s00259-020-04771-5 10.1007/s11548-020-02283-z 10.1016/j.jksuci.2020.03.013 10.1201/9781003272694-7 10.1109/TGRS.2024.3475635 10.1016/j.bspc.2024.106330 10.1109/TEM.2021.3103334 10.1109/JBHI.2024.3425434 10.1109/ACCESS.2019.2933670 10.1109/ACCESS.2022.3158977 10.1016/j.bspc.2024.106106 10.3390/e24091264 10.1007/s00521-020-04870-2 10.1016/j.compbiomed.2021.104348 10.1007/s11277-020-07732-1 10.1609/aaai.v31i1.10983 10.1016/j.neucom.2020.06.144 10.1080/01621459.2017.1285773 10.3390/electronics11101614 10.1016/j.jtho.2022.02.005 10.1002/ima.23193 10.1109/ICPR48806.2021.9413020 10.1109/ACCESS.2020.2973468 10.3390/cancers14215457 10.1186/s12880-023-01098-z 10.1007/s12553-022-00700-8 10.1016/j.bbe.2021.08.006 10.1016/j.compbiomed.2021.104961 10.26555/ijain.v7i2.317 10.18280/ts.370202 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2024.107371 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_bspc_2024_107371 S1746809424014290 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSH SST SSV SSZ T5K UNMZH ~G- 9DU AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-67845e68ae65dedd1e3c6da0985e5ec5c4a867e092e02616575bbf48a547c23a3 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001412091200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1746-8094 |
| IngestDate | Tue Nov 18 22:23:33 EST 2025 Sat Nov 29 07:58:44 EST 2025 Sat Jun 07 17:01:56 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Conditional Variational Auto-encoder Lung cancer detection Lightweight Vision Transformer Pre-processing Groupwise Separable Convolutional |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-67845e68ae65dedd1e3c6da0985e5ec5c4a867e092e02616575bbf48a547c23a3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2024_107371 crossref_primary_10_1016_j_bspc_2024_107371 elsevier_sciencedirect_doi_10_1016_j_bspc_2024_107371 |
| PublicationCentury | 2000 |
| PublicationDate | May 2025 2025-05-00 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | N. Baranwal, P. Doravari & R. Kachhoria, Classification of histopathology images of lung cancer using convolutional neural network (CNN) In Yadav, Menon, Ravi, Vishvanathan (b0120) 2021; 70 Qin, Wang, Jiang, Qiao, Hai, Chen, Xu, Shi, Yan (b0245) 2020; 2020 Faruqui, Yousuf, Whaiduzzaman, Azad, Barros, Moni (b0140) 2021; 139 Mohandass, Krishnan, Selvaraj, Sridhathan (b0085) 2024; 95 Sharma, Singh, Chandra (b0230) 2022; 10 Rane (b0090) 2023 (2023). Cui, Li, Luo, Zhang, Du (b0105) 2024; 95 Han, Ma, Wu, Zhang, Zheng, Liu, Guo (b0005) 2021; 48 Fujikawa, Muraoka, Kashima, Yoshida, Ito, Watanabe, Yatabe (b0055) 2022; 17 Blei, Kucukelbir, McAuliffe (b0175) 2017; 112 Y. Dai S. Oehmcke F. Gieseke Y. Wu K. Barnard Attention as Activation 2021 IEEE 9156 9163. An, Wang, Cai, Zhao, Dooper, Litjens, Gao (b0155) 2024 Sori, Feng, Godana, Liu, Gelmecha (b0015) 2021; 15 Apostolopoulos, Papathanasiou, Panayiotakis (b0070) 2021; 41 Mei, Song, Ma, Xu (b0205) 2022; 60 Kalaivani, Manimaran, Sophia, Devi (b0255) 2020; 994 Abdollahzadeh, Khodadadi, Barshandeh, Trojovský, Gharehchopogh, Sayed, Kenawy, Abualigah, Mirjalili (b0190) 2024 Li, Yue, Jiang (b0165) 2020; 37 Ramalakshmi, Rajagopal, Kulkarni, Poddar (b0025) 2024; 96 Zhang, Qi, Monkam, Li, Yang, Yao, Qian (b0050) 2019; 7 Kumar, Mehta, Reddy, Singh (b0145) 2024; 5 Shafi, Din, Khan, Díez, Casanova, Pifarre, Ashraf (b0040) 2022; 14 Gunjan, Singh, Shaik, Roy (b0065) 2022; 12 Abid, Zia, Ghafoor, Windridge (b0115) 2021; 453 Ibrahim, Elshennawy, Sarhan (b0045) 2021; 132 Saleh, Chin, Penshie, Al-Absi (b0135) 2021; 7 Ali, Mohsen, Shah (b0095) 2023; 23 Chaturvedi, Jhamb, Vanani, Nemade (b0035) 2021; 1099 Faiz, Ulla (b0160) 2023 (2020). Rathan, Lokesh (b0260) 2024; 34 Abdulgani, Ahmad (b0250) 2020; 8 Zhao, Xu (b0215) 2024; 13179 J. Zhou, H. Kuang, Y. Wang & J. Wang, Hybrid CNN and Low-Complexity Transformer Network with Attention-Based Feature Fusion for Predicting Lung Cancer Tumor After Neoadjuvant Chemoimmunotherapy. In International Symposium on Bioinformatics Research and Applications (b0150) 2024 Tang, Xiao, Yang, Zhang, Wang, Gao (b0265) 2024; 1–19 https://www.kaggle.com/datasets/adityamahimkar/iqothnccd-lung-cancer-dataset. Wang, Jin, Sun, Sun (b0170) 2019; 163 Ren, Zhang, Wang (b0030) 2022; 11 Talib, Amin, Sharif, Raza (b0100) 2024; 92 Meraj, Rauf, Zahoor, Hassan, Lali, Ali, Shoaib (b0075) 2021; 33 Song, Gao, Lan, Jiang, Yin, Jiang, Zhang, Li (b0200) 2024 Schuler, Paulo, Also, Puig, Rashwan, Nasser (b0210) 2022; 24 Mastouri, Khlifa, Neji, Zannad (b0130) 2021; 16 T. Guan, D. Kothandaraman, R. Chandra, A. J. Sathyamoorthy & D. Manocha, GANav: Group-wise Attention for Classifying Navigable Regions in Unstructured Outdoor Environments. Hage Chehade, Abdallah, Marion, Oueidat, Chauvet (b0080) 2022; 45 A. Dosovitskiy, An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 Vijh, Gaurav, Pandey (b0110) 2023; 35 J. Vlad Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. Courville & Y. Bengio. A hierarchical latent variable encoder-decoder model for generating dialogues. arXiv e-prints (2016): arXiv-1605. D. P. Kingma, Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013). Althubiti, Paul, Mohanty, Mohanty, Alenezi, Polat (b0125) 2022; 2022 Naik, Edla (b0020) 2021; 116 Harsono, Liawatimena, Cenggoro (b0060) 2022; 34 https://www.kaggle.com/datasets/mohamedhanyyy/chest-ctscan-images. Disruptive Developments in Biomedical Applications, (2022) 75-89. CRC Press. Abdollahzadeh (10.1016/j.bspc.2024.107371_b0190) 2024 Rane (10.1016/j.bspc.2024.107371_b0090) 2023 Chaturvedi (10.1016/j.bspc.2024.107371_b0035) 2021; 1099 Mastouri (10.1016/j.bspc.2024.107371_b0130) 2021; 16 Faruqui (10.1016/j.bspc.2024.107371_b0140) 2021; 139 10.1016/j.bspc.2024.107371_b0235 Sharma (10.1016/j.bspc.2024.107371_b0230) 2022; 10 Mohandass (10.1016/j.bspc.2024.107371_b0085) 2024; 95 Ali (10.1016/j.bspc.2024.107371_b0095) 2023; 23 10.1016/j.bspc.2024.107371_b0240 Meraj (10.1016/j.bspc.2024.107371_b0075) 2021; 33 Ibrahim (10.1016/j.bspc.2024.107371_b0045) 2021; 132 Harsono (10.1016/j.bspc.2024.107371_b0060) 2022; 34 Naik (10.1016/j.bspc.2024.107371_b0020) 2021; 116 Gunjan (10.1016/j.bspc.2024.107371_b0065) 2022; 12 Ren (10.1016/j.bspc.2024.107371_b0030) 2022; 11 Kumar (10.1016/j.bspc.2024.107371_b0145) 2024; 5 Kalaivani (10.1016/j.bspc.2024.107371_b0255) 2020; 994 Rathan (10.1016/j.bspc.2024.107371_b0260) 2024; 34 Saleh (10.1016/j.bspc.2024.107371_b0135) 2021; 7 10.1016/j.bspc.2024.107371_b0010 Apostolopoulos (10.1016/j.bspc.2024.107371_b0070) 2021; 41 Qin (10.1016/j.bspc.2024.107371_b0245) 2020; 2020 Cui (10.1016/j.bspc.2024.107371_b0105) 2024; 95 Abid (10.1016/j.bspc.2024.107371_b0115) 2021; 453 Yadav (10.1016/j.bspc.2024.107371_b0120) 2021; 70 Talib (10.1016/j.bspc.2024.107371_b0100) 2024; 92 Song (10.1016/j.bspc.2024.107371_b0200) 2024 Schuler (10.1016/j.bspc.2024.107371_b0210) 2022; 24 Tang (10.1016/j.bspc.2024.107371_b0265) 2024; 1–19 Althubiti (10.1016/j.bspc.2024.107371_b0125) 2022; 2022 Faiz (10.1016/j.bspc.2024.107371_b0160) 2023 Mei (10.1016/j.bspc.2024.107371_b0205) 2022; 60 An (10.1016/j.bspc.2024.107371_b0155) 2024 10.1016/j.bspc.2024.107371_b0220 Blei (10.1016/j.bspc.2024.107371_b0175) 2017; 112 10.1016/j.bspc.2024.107371_b0185 Shafi (10.1016/j.bspc.2024.107371_b0040) 2022; 14 Hage Chehade (10.1016/j.bspc.2024.107371_b0080) 2022; 45 10.1016/j.bspc.2024.107371_b0180 Zhao (10.1016/j.bspc.2024.107371_b0215) 2024; 13179 Fujikawa (10.1016/j.bspc.2024.107371_b0055) 2022; 17 Abdulgani (10.1016/j.bspc.2024.107371_b0250) 2020; 8 Li (10.1016/j.bspc.2024.107371_b0165) 2020; 37 Sori (10.1016/j.bspc.2024.107371_b0015) 2021; 15 10.1016/j.bspc.2024.107371_b0225 Zhang (10.1016/j.bspc.2024.107371_b0050) 2019; 7 J. Zhou, H. Kuang, Y. Wang & J. Wang, Hybrid CNN and Low-Complexity Transformer Network with Attention-Based Feature Fusion for Predicting Lung Cancer Tumor After Neoadjuvant Chemoimmunotherapy. In International Symposium on Bioinformatics Research and Applications (10.1016/j.bspc.2024.107371_b0150) 2024 Vijh (10.1016/j.bspc.2024.107371_b0110) 2023; 35 Han (10.1016/j.bspc.2024.107371_b0005) 2021; 48 10.1016/j.bspc.2024.107371_b0195 Ramalakshmi (10.1016/j.bspc.2024.107371_b0025) 2024; 96 Wang (10.1016/j.bspc.2024.107371_b0170) 2019; 163 |
| References_xml | – start-page: 1 year: 2024 end-page: 49 ident: b0190 article-title: Puma optimizer (PO): A novel metaheuristic optimization algorithm and its application in machine learning publication-title: Clust. Comput. – reference: Disruptive Developments in Biomedical Applications, (2022) 75-89. CRC Press. – volume: 994 year: 2020 ident: b0255 publication-title: Deep Learning Based Lung Cancer Detection and Classification – volume: 34 start-page: 567 year: 2022 end-page: 577 ident: b0060 article-title: Lung nodule detection and classification from Thorax CT-scan using RetinaNet with transfer learning publication-title: Journal of King Saud University-Computer and Information Sciences – volume: 112 start-page: 859 year: 2017 end-page: 877 ident: b0175 article-title: Variational inference: A review for statisticians publication-title: J. Am. Stat. Assoc. – volume: 132 year: 2021 ident: b0045 article-title: Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases publication-title: Comput. Biol. Med. – volume: 116 start-page: 655 year: 2021 end-page: 690 ident: b0020 article-title: Lung nodule classification on computed tomography images using deep learning publication-title: Wirel. Pers. Commun. – reference: Y. Dai S. Oehmcke F. Gieseke Y. Wu K. Barnard Attention as Activation 2021 IEEE 9156 9163. – volume: 96 year: 2024 ident: b0025 article-title: A hyperdimensional framework: Unveiling the interplay of RBP and GSN within CNNs for ultra-precise brain tumor classification publication-title: Biomed. Signal Process. Control – volume: 8 start-page: 32882 year: 2020 end-page: 32890 ident: b0250 article-title: Label-free normal and cancer cells classification combining Prony's method and optical techniques publication-title: IEEE Access – reference: D. P. Kingma, Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013). – year: 2023 (2023). ident: b0090 article-title: Transformers for Medical Image Analysis: Applications, Challenges, and Future Scope. Challenges, and Future publication-title: Scope – reference: (2020). – volume: 15 start-page: 1 year: 2021 end-page: 13 ident: b0015 article-title: DFD-Net: lung cancer detection from denoised CT scan image using deep learning publication-title: Front. Comp. Sci. – volume: 60 start-page: 1 year: 2022 end-page: 14 ident: b0205 article-title: Hyperspectral image classification using group-aware hierarchical transformer publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 35 start-page: 23711 year: 2023 end-page: 23724 ident: b0110 article-title: Hybrid bio-inspired algorithm and convolutional neural network for automatic lung tumor detection publication-title: Neural Comput. & Applic. – reference: https://www.kaggle.com/datasets/adityamahimkar/iqothnccd-lung-cancer-dataset. – reference: https://www.kaggle.com/datasets/mohamedhanyyy/chest-ctscan-images. – reference: J. Vlad Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. Courville & Y. Bengio. A hierarchical latent variable encoder-decoder model for generating dialogues. arXiv e-prints (2016): arXiv-1605. – volume: 24 start-page: 1264 year: 2022 ident: b0210 article-title: An enhanced scheme for reducing the complexity of pointwise convolutions in CNNs for image classification based on interleaved grouped filters without divisibility constraints publication-title: Entropy – reference: N. Baranwal, P. Doravari & R. Kachhoria, Classification of histopathology images of lung cancer using convolutional neural network (CNN) In – volume: 92 year: 2024 ident: b0100 article-title: Transformer-based semantic segmentation and CNN network for detection of histopathological lung cancer publication-title: Biomed. Signal Process. Control – volume: 7 start-page: 151 year: 2021 end-page: 162 ident: b0135 article-title: Lung cancer medical images classification using hybrid CNN-SVM publication-title: International Journal of Advances in Intelligent Informatics. – reference: A. Dosovitskiy, An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 – volume: 2022 year: 2022 ident: b0125 article-title: Ensemble learning framework with GLCM texture extraction for early detection of lung cancer on CT images publication-title: Comput. Math. Methods Med. – start-page: 32 year: 2023 ident: b0160 publication-title: Adaptive Bilateral Filter. Image Processing Applications. – volume: 13179 start-page: 282 year: 2024 end-page: 287 ident: b0215 publication-title: A Lightweight Network of Groupwise Separable Convolution and Vision Transformer for Hyperspectral Image Classification – volume: 5 start-page: 1 year: 2024 end-page: 17 ident: b0145 article-title: Vision Transformer Based Effective Model for Early Detection and Classification of Lung Cancer publication-title: SN Comput. Sci. – volume: 12 start-page: 1197 year: 2022 end-page: 1210 ident: b0065 article-title: Detection of lung cancer in CT scans using grey wolf optimization algorithm and recurrent neural network publication-title: Heal. Technol. – volume: 2020 year: 2020 ident: b0245 article-title: Fine-Grained Lung Cancer Classification from PET and CT Images Based on Multidimensional Attention Mechanism publication-title: Complexity – volume: 70 start-page: 2774 year: 2021 end-page: 2786 ident: b0120 article-title: Lung-GANs: unsupervised representation learning for lung disease classification using chest CT and X-ray images publication-title: IEEE Trans. Eng. Manag. – volume: 163 start-page: 438 year: 2019 end-page: 449 ident: b0170 article-title: Planetary gearbox fault feature learning using conditional variational neural networks under noise environment publication-title: Knowl.-Based Syst. – volume: 48 start-page: 350 year: 2021 end-page: 360 ident: b0005 article-title: Histologic subtype classification of non-small cell lung cancer using PET/CT images publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 17 start-page: 700 year: 2022 end-page: 707 ident: b0055 article-title: Clinicopathologic and genotypic features of lung adenocarcinoma characterized by the international association for the study of lung cancer grading system publication-title: J. Thorac. Oncol. – volume: 41 start-page: 1243 year: 2021 end-page: 1257 ident: b0070 article-title: Classification of lung nodule malignancy in computed tomography imaging utilising generative adversarial networks and semi-supervised transfer learning publication-title: Biocybernetics and Biomedical Engineering – volume: 139 year: 2021 ident: b0140 article-title: LungNet: A hybrid deep-CNN model for lung cancer diagnosis using CT and wearable sensor-based medical IoT data publication-title: Comput. Biol. Med. – volume: 23 start-page: 129 year: 2023 ident: b0095 article-title: Improving diagnosis and prognosis of lung cancer using vision transformers: a scoping review publication-title: BMC Med. Imaging – volume: 37 year: 2020 ident: b0165 article-title: Adaptive and Feature-Preserving Bilateral Filters for Three-Dimensional Models publication-title: Traitement Du Signal. – year: 2024 ident: b0155 article-title: Transformer-Based Weakly Supervised Learning for Whole Slide Lung Cancer Image Classification publication-title: IEEE J. Biomed. Health Inform. – volume: 11 start-page: 1614 year: 2022 ident: b0030 article-title: A hybrid framework for lung cancer classification publication-title: Electronics – volume: 7 start-page: 110358 year: 2019 end-page: 110371 ident: b0050 article-title: Ensemble learners of multiple deep CNNs for pulmonary nodules classification using CT images publication-title: IEEE Access – volume: 16 start-page: 91 year: 2021 end-page: 101 ident: b0130 article-title: A bilinear convolutional neural network for lung nodules classification on CT images publication-title: Int. J. Comput. Assist. Radiol. Surg. – reference: T. Guan, D. Kothandaraman, R. Chandra, A. J. Sathyamoorthy & D. Manocha, GANav: Group-wise Attention for Classifying Navigable Regions in Unstructured Outdoor Environments. – volume: 45 start-page: 729 year: 2022 end-page: 746 ident: b0080 article-title: Lung and colon cancer classification using medical imaging: A feature engineering approach publication-title: Phys. Eng. Sci. Med. – volume: 10 start-page: 30655 year: 2022 end-page: 30665 ident: b0230 article-title: SMOTified-GAN for class imbalanced pattern classification problems publication-title: IEEE Access – volume: 14 start-page: 5457 year: 2022 ident: b0040 article-title: An effective method for lung cancer diagnosis from CT scan using deep learning-based support vector network publication-title: Cancers – volume: 33 start-page: 10737 year: 2021 end-page: 10750 ident: b0075 article-title: Lung nodules detection using semantic segmentation and classification with optimal features publication-title: Neural Comput. & Applic. – year: 2024 ident: b0200 article-title: LIRnet: Lightweight Hyperspectral Image Classification Based Information Redistribution publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 95 year: 2024 ident: b0085 article-title: Lung Cancer Classification using Optimized Attention-based Convolutional Neural Network with DenseNet-201 Transfer Learning Model on CT image publication-title: Biomed. Signal Process. Control – volume: 95 year: 2024 ident: b0105 article-title: SF2T: Leveraging Swin Transformer and Two-stream networks for lung nodule detection publication-title: Biomed. Signal Process. Control – volume: 1–19 year: 2024 ident: b0265 article-title: VSNet: classification of pulmonary nodules in 3D using vision transformer and sequence spatial attention mechanism publication-title: Multimed. Tools Appl. – volume: 34 year: 2024 ident: b0260 article-title: Enhanced Lung Cancer Diagnosis and Staging with HRNeT: A Deep Learning Approach publication-title: Int. J. Imaging Syst. Technol. – year: 2024 ident: b0150 article-title: 408–417 – volume: 1099 year: 2021 ident: b0035 publication-title: Prediction and Classification of Lung Cancer Using Machine Learning Techniques – volume: 453 start-page: 299 year: 2021 end-page: 311 ident: b0115 article-title: Multi-view convolutional recurrent neural networks for lung cancer nodule identification publication-title: Neurocomputing – volume: 95 year: 2024 ident: 10.1016/j.bspc.2024.107371_b0105 article-title: SF2T: Leveraging Swin Transformer and Two-stream networks for lung nodule detection publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2024.106389 – ident: 10.1016/j.bspc.2024.107371_b0220 – year: 2023 ident: 10.1016/j.bspc.2024.107371_b0090 article-title: Transformers for Medical Image Analysis: Applications, Challenges, and Future Scope. Challenges, and Future publication-title: Scope – volume: 5 start-page: 1 issue: 7 year: 2024 ident: 10.1016/j.bspc.2024.107371_b0145 article-title: Vision Transformer Based Effective Model for Early Detection and Classification of Lung Cancer publication-title: SN Comput. Sci. doi: 10.1007/s42979-024-03120-9 – volume: 163 start-page: 438 year: 2019 ident: 10.1016/j.bspc.2024.107371_b0170 article-title: Planetary gearbox fault feature learning using conditional variational neural networks under noise environment publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.09.005 – volume: 45 start-page: 729 issue: 3 year: 2022 ident: 10.1016/j.bspc.2024.107371_b0080 article-title: Lung and colon cancer classification using medical imaging: A feature engineering approach publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-022-01139-x – volume: 35 start-page: 23711 issue: 33 year: 2023 ident: 10.1016/j.bspc.2024.107371_b0110 article-title: Hybrid bio-inspired algorithm and convolutional neural network for automatic lung tumor detection publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-020-05362-z – volume: 48 start-page: 350 year: 2021 ident: 10.1016/j.bspc.2024.107371_b0005 article-title: Histologic subtype classification of non-small cell lung cancer using PET/CT images publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-020-04771-5 – ident: 10.1016/j.bspc.2024.107371_b0195 – year: 2024 ident: 10.1016/j.bspc.2024.107371_b0150 – ident: 10.1016/j.bspc.2024.107371_b0240 – volume: 16 start-page: 91 year: 2021 ident: 10.1016/j.bspc.2024.107371_b0130 article-title: A bilinear convolutional neural network for lung nodules classification on CT images publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-020-02283-z – volume: 13179 start-page: 282 year: 2024 ident: 10.1016/j.bspc.2024.107371_b0215 publication-title: A Lightweight Network of Groupwise Separable Convolution and Vision Transformer for Hyperspectral Image Classification – volume: 1099 year: 2021 ident: 10.1016/j.bspc.2024.107371_b0035 publication-title: Prediction and Classification of Lung Cancer Using Machine Learning Techniques – volume: 60 start-page: 1 year: 2022 ident: 10.1016/j.bspc.2024.107371_b0205 article-title: Hyperspectral image classification using group-aware hierarchical transformer publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 34 start-page: 567 issue: 3 year: 2022 ident: 10.1016/j.bspc.2024.107371_b0060 article-title: Lung nodule detection and classification from Thorax CT-scan using RetinaNet with transfer learning publication-title: Journal of King Saud University-Computer and Information Sciences doi: 10.1016/j.jksuci.2020.03.013 – ident: 10.1016/j.bspc.2024.107371_b0010 doi: 10.1201/9781003272694-7 – year: 2024 ident: 10.1016/j.bspc.2024.107371_b0200 article-title: LIRnet: Lightweight Hyperspectral Image Classification Based Information Redistribution publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2024.3475635 – volume: 95 year: 2024 ident: 10.1016/j.bspc.2024.107371_b0085 article-title: Lung Cancer Classification using Optimized Attention-based Convolutional Neural Network with DenseNet-201 Transfer Learning Model on CT image publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2024.106330 – volume: 15 start-page: 1 year: 2021 ident: 10.1016/j.bspc.2024.107371_b0015 article-title: DFD-Net: lung cancer detection from denoised CT scan image using deep learning publication-title: Front. Comp. Sci. – volume: 70 start-page: 2774 issue: 8 year: 2021 ident: 10.1016/j.bspc.2024.107371_b0120 article-title: Lung-GANs: unsupervised representation learning for lung disease classification using chest CT and X-ray images publication-title: IEEE Trans. Eng. Manag. doi: 10.1109/TEM.2021.3103334 – year: 2024 ident: 10.1016/j.bspc.2024.107371_b0155 article-title: Transformer-Based Weakly Supervised Learning for Whole Slide Lung Cancer Image Classification publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2024.3425434 – volume: 2020 issue: 1 year: 2020 ident: 10.1016/j.bspc.2024.107371_b0245 article-title: Fine-Grained Lung Cancer Classification from PET and CT Images Based on Multidimensional Attention Mechanism publication-title: Complexity – volume: 7 start-page: 110358 year: 2019 ident: 10.1016/j.bspc.2024.107371_b0050 article-title: Ensemble learners of multiple deep CNNs for pulmonary nodules classification using CT images publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2933670 – volume: 10 start-page: 30655 year: 2022 ident: 10.1016/j.bspc.2024.107371_b0230 article-title: SMOTified-GAN for class imbalanced pattern classification problems publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3158977 – ident: 10.1016/j.bspc.2024.107371_b0235 – volume: 1–19 year: 2024 ident: 10.1016/j.bspc.2024.107371_b0265 article-title: VSNet: classification of pulmonary nodules in 3D using vision transformer and sequence spatial attention mechanism publication-title: Multimed. Tools Appl. – volume: 994 year: 2020 ident: 10.1016/j.bspc.2024.107371_b0255 publication-title: Deep Learning Based Lung Cancer Detection and Classification – volume: 92 year: 2024 ident: 10.1016/j.bspc.2024.107371_b0100 article-title: Transformer-based semantic segmentation and CNN network for detection of histopathological lung cancer publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2024.106106 – volume: 24 start-page: 1264 issue: 9 year: 2022 ident: 10.1016/j.bspc.2024.107371_b0210 article-title: An enhanced scheme for reducing the complexity of pointwise convolutions in CNNs for image classification based on interleaved grouped filters without divisibility constraints publication-title: Entropy doi: 10.3390/e24091264 – volume: 33 start-page: 10737 year: 2021 ident: 10.1016/j.bspc.2024.107371_b0075 article-title: Lung nodules detection using semantic segmentation and classification with optimal features publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-020-04870-2 – volume: 132 year: 2021 ident: 10.1016/j.bspc.2024.107371_b0045 article-title: Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104348 – volume: 116 start-page: 655 issue: 1 year: 2021 ident: 10.1016/j.bspc.2024.107371_b0020 article-title: Lung nodule classification on computed tomography images using deep learning publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-020-07732-1 – ident: 10.1016/j.bspc.2024.107371_b0180 doi: 10.1609/aaai.v31i1.10983 – start-page: 1 year: 2024 ident: 10.1016/j.bspc.2024.107371_b0190 article-title: Puma optimizer (PO): A novel metaheuristic optimization algorithm and its application in machine learning publication-title: Clust. Comput. – volume: 96 year: 2024 ident: 10.1016/j.bspc.2024.107371_b0025 article-title: A hyperdimensional framework: Unveiling the interplay of RBP and GSN within CNNs for ultra-precise brain tumor classification publication-title: Biomed. Signal Process. Control – volume: 453 start-page: 299 year: 2021 ident: 10.1016/j.bspc.2024.107371_b0115 article-title: Multi-view convolutional recurrent neural networks for lung cancer nodule identification publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.06.144 – volume: 112 start-page: 859 issue: 518 year: 2017 ident: 10.1016/j.bspc.2024.107371_b0175 article-title: Variational inference: A review for statisticians publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2017.1285773 – ident: 10.1016/j.bspc.2024.107371_b0185 – volume: 11 start-page: 1614 issue: 10 year: 2022 ident: 10.1016/j.bspc.2024.107371_b0030 article-title: A hybrid framework for lung cancer classification publication-title: Electronics doi: 10.3390/electronics11101614 – volume: 2022 issue: 1 year: 2022 ident: 10.1016/j.bspc.2024.107371_b0125 article-title: Ensemble learning framework with GLCM texture extraction for early detection of lung cancer on CT images publication-title: Comput. Math. Methods Med. – volume: 17 start-page: 700 issue: 5 year: 2022 ident: 10.1016/j.bspc.2024.107371_b0055 article-title: Clinicopathologic and genotypic features of lung adenocarcinoma characterized by the international association for the study of lung cancer grading system publication-title: J. Thorac. Oncol. doi: 10.1016/j.jtho.2022.02.005 – volume: 34 issue: 6 year: 2024 ident: 10.1016/j.bspc.2024.107371_b0260 article-title: Enhanced Lung Cancer Diagnosis and Staging with HRNeT: A Deep Learning Approach publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.23193 – ident: 10.1016/j.bspc.2024.107371_b0225 doi: 10.1109/ICPR48806.2021.9413020 – volume: 8 start-page: 32882 year: 2020 ident: 10.1016/j.bspc.2024.107371_b0250 article-title: Label-free normal and cancer cells classification combining Prony's method and optical techniques publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2973468 – start-page: 32 year: 2023 ident: 10.1016/j.bspc.2024.107371_b0160 publication-title: Adaptive Bilateral Filter. Image Processing Applications. – volume: 14 start-page: 5457 issue: 21 year: 2022 ident: 10.1016/j.bspc.2024.107371_b0040 article-title: An effective method for lung cancer diagnosis from CT scan using deep learning-based support vector network publication-title: Cancers doi: 10.3390/cancers14215457 – volume: 23 start-page: 129 issue: 1 year: 2023 ident: 10.1016/j.bspc.2024.107371_b0095 article-title: Improving diagnosis and prognosis of lung cancer using vision transformers: a scoping review publication-title: BMC Med. Imaging doi: 10.1186/s12880-023-01098-z – volume: 12 start-page: 1197 issue: 6 year: 2022 ident: 10.1016/j.bspc.2024.107371_b0065 article-title: Detection of lung cancer in CT scans using grey wolf optimization algorithm and recurrent neural network publication-title: Heal. Technol. doi: 10.1007/s12553-022-00700-8 – volume: 41 start-page: 1243 issue: 4 year: 2021 ident: 10.1016/j.bspc.2024.107371_b0070 article-title: Classification of lung nodule malignancy in computed tomography imaging utilising generative adversarial networks and semi-supervised transfer learning publication-title: Biocybernetics and Biomedical Engineering doi: 10.1016/j.bbe.2021.08.006 – volume: 139 year: 2021 ident: 10.1016/j.bspc.2024.107371_b0140 article-title: LungNet: A hybrid deep-CNN model for lung cancer diagnosis using CT and wearable sensor-based medical IoT data publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104961 – volume: 7 start-page: 151 issue: 2 year: 2021 ident: 10.1016/j.bspc.2024.107371_b0135 article-title: Lung cancer medical images classification using hybrid CNN-SVM publication-title: International Journal of Advances in Intelligent Informatics. doi: 10.26555/ijain.v7i2.317 – volume: 37 issue: 2 year: 2020 ident: 10.1016/j.bspc.2024.107371_b0165 article-title: Adaptive and Feature-Preserving Bilateral Filters for Three-Dimensional Models publication-title: Traitement Du Signal. doi: 10.18280/ts.370202 |
| SSID | ssj0048714 |
| Score | 2.3855975 |
| Snippet | •To remove the noise present in the input images, the Gaussian enclosed Bilateral Filtering (GaBF) method is used.•For extracting deep features with low... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107371 |
| SubjectTerms | Conditional Variational Auto-encoder Groupwise Separable Convolutional Lightweight Vision Transformer Lung cancer detection Pre-processing |
| Title | GSC-DVIT: A vision transformer based deep learning model for lung cancer classification in CT images |
| URI | https://dx.doi.org/10.1016/j.bspc.2024.107371 |
| Volume | 103 |
| WOSCitedRecordID | wos001412091200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1746-8094 databaseCode: AIEXJ dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0048714 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xvOQDtyoozaNOuJXuAsthhdSAeosmsdvNKoQobVf7Q_jBzGTiprugFSBxiSordiPPp_HY_r4ZIV7H4HmggHRby9wJMIJ3wM9iJ6Jq8No3FIS0xSbU6Wm0WMSfB4MfVgtzUaqqii4v4_q_mhrb0Ngknf0Lc-8GxQb8jUbHJ5odn39k-A_zmXP09SRhzTlrx6kSBMenphnRwqVH2pja1oxYcUGclnJYbkmFS1hoRjmF1sQlAkuJnCWj4hu6oPWVy-BWws_6ymJF4W3N8gMrgOz48P3pNzr3GkpWZh9tmxXUDaxB9_dK6HUSYBJ3D993UELrlc66ospzusYysMcrmhONCFu5xrspAYfe6mL_bMMLeyYhH7hZ0U3PcCIfrQLKocy1kXdOvM2U8OuCwGcT52-ydU0JK70Am5TPVV-uJdqe08A0LgY5Y1ym3VviwFNhHA3FwfTkePHJrvC4x2tzxu8-pBNjMW_w-j_9PuDZC2KS--Jet_uQU0bNAzEw1UNxdy8n5SOhLX7eyqlk9Mg99MgWPZLQIy16ZIseiS9IQo9k9Mir6JFFJWeJZPQ8Fl_eHyezj05XisPJfdfdOBjSBKGZRGAmoTZaj42fTzS4cRSa0ORhHkA0UcaNPUOberrNy7JlEEEYqNzzwX8ihtX3yjwV0sNBdEzJ9HFMWGbxGDK1DBXE-URp7R6KsZ2vNO_y1FO5lDK1hMTzlOY4pTlOeY4PxWjXp-YsLTe-HVozpF2cyfFjiqi5od-zf-z3XNzpwf1CDDfN1rwUt_OLTbFuXnXg-gkeyqS8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GSC-DVIT%3A+A+vision+transformer+based+deep+learning+model+for+lung+cancer+classification+in+CT+images&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Mannepalli%2C+Durgaprasad&rft.au=Kuan+Tak%2C+Tan&rft.au=Bala+Krishnan%2C+Sivaneasan&rft.au=Sreenivas%2C+Velagapudi&rft.date=2025-05-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.volume=103&rft_id=info:doi/10.1016%2Fj.bspc.2024.107371&rft.externalDocID=S1746809424014290 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |