A K-means-Teaching Learning based optimization algorithm for parallel machine scheduling problem

With the continuous increase of workshop production scale, traditional heuristic algorithms in solving the scheduling problem have the defects of unsatisfactory computing time and insufficient stability of the solution result. However, data mining has a good performance in solving large-scale schedu...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing Vol. 161; p. 111746
Main Authors: Li, Yibing, Liu, Jie, Wang, Lei, Liu, Jinfu, Tang, Hongtao, Guo, Jun, Xu, Wenxiang
Format: Journal Article
Language:English
Published: Elsevier B.V 01.08.2024
Subjects:
ISSN:1568-4946, 1872-9681
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the continuous increase of workshop production scale, traditional heuristic algorithms in solving the scheduling problem have the defects of unsatisfactory computing time and insufficient stability of the solution result. However, data mining has a good performance in solving large-scale scheduling problems. A data mining method was proposed for industrial big data to solve the problem of large-scale parallel machines scheduling. This methodology can obtain an effective initial solution for single-operation parallel machine scheduling problem by exploring the effective information in the historical scheduling data. Based on historical customer orders, the offline learning was used to continuously generate simulated data for learning, which makes up for the shortcomings of insufficient data. A TLBO framework (teaching-learning-based optimization) hybrid K-means algorithm was redesigned to enhance the accuracy of offline learning and the efficiency of data searching. In the online operation part, according to the optimal solutions for high-similarity manufacturing orders are the approximate solutions, the new customer order will be quickly matched with the most similar manufacturing order through similarity calculation, and then and then local search is performed. Finally, the globally optimal solution is obtained after screening. Experimental results show that the hybrid teaching–learning methodology can solve the large-scale parallel machines scheduling problem with a better learning performance and computational efficiency. ●A data-driven hybrid learning methodology is proposed, which consists of the offline learning part and the online scheduling part.●A KTLBO algorithm is proposed to learn the optimal scheduling solutions for sample manufacturing orders and historical customer orders in offline learning part.●It can be considered that the optimal solutions for high-similarity manufacturing orders are also approximate in the solution space, an improved K-means algorithm is applied to cluster similar manufacturing orders.●A local search algorithm is proposed to find the global optimal solution of current customer order around the cluster center in the online scheduling part.
AbstractList With the continuous increase of workshop production scale, traditional heuristic algorithms in solving the scheduling problem have the defects of unsatisfactory computing time and insufficient stability of the solution result. However, data mining has a good performance in solving large-scale scheduling problems. A data mining method was proposed for industrial big data to solve the problem of large-scale parallel machines scheduling. This methodology can obtain an effective initial solution for single-operation parallel machine scheduling problem by exploring the effective information in the historical scheduling data. Based on historical customer orders, the offline learning was used to continuously generate simulated data for learning, which makes up for the shortcomings of insufficient data. A TLBO framework (teaching-learning-based optimization) hybrid K-means algorithm was redesigned to enhance the accuracy of offline learning and the efficiency of data searching. In the online operation part, according to the optimal solutions for high-similarity manufacturing orders are the approximate solutions, the new customer order will be quickly matched with the most similar manufacturing order through similarity calculation, and then and then local search is performed. Finally, the globally optimal solution is obtained after screening. Experimental results show that the hybrid teaching–learning methodology can solve the large-scale parallel machines scheduling problem with a better learning performance and computational efficiency. ●A data-driven hybrid learning methodology is proposed, which consists of the offline learning part and the online scheduling part.●A KTLBO algorithm is proposed to learn the optimal scheduling solutions for sample manufacturing orders and historical customer orders in offline learning part.●It can be considered that the optimal solutions for high-similarity manufacturing orders are also approximate in the solution space, an improved K-means algorithm is applied to cluster similar manufacturing orders.●A local search algorithm is proposed to find the global optimal solution of current customer order around the cluster center in the online scheduling part.
ArticleNumber 111746
Author Liu, Jie
Liu, Jinfu
Wang, Lei
Tang, Hongtao
Xu, Wenxiang
Guo, Jun
Li, Yibing
Author_xml – sequence: 1
  givenname: Yibing
  surname: Li
  fullname: Li, Yibing
  organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 2
  givenname: Jie
  surname: Liu
  fullname: Liu, Jie
  organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 3
  givenname: Lei
  orcidid: 0000-0001-9970-9703
  surname: Wang
  fullname: Wang, Lei
  email: wanglei9455@whut.edu.cn
  organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 4
  givenname: Jinfu
  surname: Liu
  fullname: Liu, Jinfu
  organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 5
  givenname: Hongtao
  surname: Tang
  fullname: Tang, Hongtao
  organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 6
  givenname: Jun
  surname: Guo
  fullname: Guo, Jun
  organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 7
  givenname: Wenxiang
  surname: Xu
  fullname: Xu, Wenxiang
  organization: School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441000, PR China
BookMark eNp90L1OwzAUBWALFYm28AJMeYEE20kcR2KpKv5EJZYymxvnunWVxJEdkODpSVomhk73LN-VzlmQWec6JOSW0YRRJu4OCQSnE055ljDGikxckDmTBY9LIdlszLmQcVZm4oosQjjQEZVczsnHKnqNW4QuxFsEvbfdLtog-G4KFQSsI9cPtrU_MFjXRdDsnLfDvo2M81EPHpoGm6g9UoyC3mP92Uy4965qsL0mlwaagDd_d0neHx-26-d48_b0sl5tYp1SOsSi4FRwJk1ai8yUAgzPESqTloaxSmYZFjXIMi9NygCKXNAUAI2spM64ljpdEn76q70LwaNRvbct-G_FqJo2Ugc1baSmjdRpoxHJf0jb4Vh08GCb8_T-RHEs9WXRq6Atdhpr61EPqnb2HP8FrFyF-Q
CitedBy_id crossref_primary_10_1080_15567036_2025_2519881
crossref_primary_10_2478_amns_2024_2200
crossref_primary_10_3390_systems12090354
crossref_primary_10_2478_amns_2024_2443
crossref_primary_10_1016_j_asoc_2025_113870
crossref_primary_10_1016_j_dajour_2025_100591
crossref_primary_10_3390_su17051841
crossref_primary_10_1080_00207543_2025_2515506
crossref_primary_10_2478_amns_2024_3051
crossref_primary_10_1016_j_suscom_2025_101138
crossref_primary_10_1016_j_tust_2025_106609
crossref_primary_10_1080_17517575_2025_2453244
Cites_doi 10.1016/j.jfranklin.2007.12.003
10.1007/978-3-642-31600-5_7
10.1016/j.swevo.2021.100996
10.1016/j.ijpe.2005.01.003
10.1016/j.ejor.2009.01.008
10.1016/j.ejor.2011.01.011
10.1016/j.swevo.2022.101143
10.1016/j.ins.2010.10.009
10.1016/j.rcim.2010.12.005
10.4018/IJRSDA.2016010101
10.4028/www.scientific.net/AMR.482-484.2227
10.1016/j.asoc.2022.109980
10.1023/A:1024653810491
10.1177/1687814019838178
10.1016/j.jclepro.2018.11.231
10.1007/978-3-642-13495-1_69
10.1016/j.engappai.2012.04.001
10.1177/1687814018801442
10.1016/j.rcim.2020.102081
10.1080/18756891.2015.1017383
10.1007/s10951-020-00664-5
10.1021/ie800124g
10.3233/JIFS-169389
10.1016/j.cie.2016.06.025
10.1137/1.9781611975994.168
10.1080/0951192X.2013.800229
10.1016/j.apm.2013.07.038
10.1080/00207543.2013.802389
10.1007/s10100-018-0553-8
10.1016/j.swevo.2018.01.012
10.1109/TSMC.2018.2855700
10.24846/v24i2y201505
10.1080/00207543.2011.627388
10.1016/j.swevo.2023.101233
10.1016/j.swevo.2023.101316
10.1016/j.eswa.2010.08.145
10.1016/j.cie.2020.106347
10.1007/s10951-012-0270-4
10.4028/www.scientific.net/AMR.845.559
10.1109/TSMC.2021.3120702
10.1016/S0360-8352(00)00050-4
10.1007/978-3-319-13731-5_19
10.1007/s00170-016-9866-8
10.1016/j.ijpe.2004.12.007
10.1016/j.eswa.2020.113721
10.1016/j.eswa.2010.12.101
10.1109/TSMC.2016.2616347
10.1109/DMO.2009.5341895
10.1007/s12652-016-0425-9
10.1016/j.neucom.2013.10.042
10.1186/s13677-022-00282-w
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2024.111746
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2024_111746
S1568494624005209
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-67206218f3d64f96af25eabf39f11b844e7da8959f31aa75603aaef8b8c42c8c3
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001246725200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 03:06:03 EST 2025
Tue Nov 18 21:42:03 EST 2025
Tue Jun 18 08:51:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Teaching-Learning-Based Optimization Algorithm
K-means algorithm
Data Mining
Offline learning
Parallel machine scheduling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-67206218f3d64f96af25eabf39f11b844e7da8959f31aa75603aaef8b8c42c8c3
ORCID 0000-0001-9970-9703
ParticipantIDs crossref_primary_10_1016_j_asoc_2024_111746
crossref_citationtrail_10_1016_j_asoc_2024_111746
elsevier_sciencedirect_doi_10_1016_j_asoc_2024_111746
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Guo, Li, Du, Xu (bib1) 2016; 94
P.K. Mummareddy, S.C. Satapaty, - An Hybrid Approach for Data Clustering Using K-Means and Teaching Learning Based Optimization, (2015) - 171.
Toader (bib25) 2015; 24
Shivasankaran, Kumar, Raja (bib26) 2015; 8
Vallada, Ruiz (bib53) 2011; 211
Luo, Deng, Gong, Zhang, Han, Li (bib3) 2020; 160
Koonce, Tsai (bib46) 2000; 38
Zheng, Wang (bib21) 2018; 48
Habib Zahmani, Atmani (bib39) 2020; 24
R. Ismail, Z. Othman, A.Abu Bakar, Data Mining In Production Planning and Scheduling: A Review, in: 2nd Conference on Data Mining and Optimization, Ieee Computer Soc, Bangi, MALAYSIA, 2009, pp. 159-164.
Nhu Binh, Cing (bib30) 2008; 38
Liu, Huang (bib42) 2023
Dudas, Frantzén, Ng (bib6) 2011; 27
Song, Ou, Wu, Wu, Xing, Chen (bib48) 2023; 79
Tahar, Yalaoui, Chu, Amodeo (bib11) 2006; 99
Bülbül, Kaminsky (bib10) 2012; 16
Wang, Pan, Gao, Wang (bib32) 2022; 74
Li, Pan, Tasgetiren (bib19) 2014; 38
A. Antoniadis, N. Garg, G. Kumar, N. Kumar, Acm, Parallel Machine Scheduling to Minimize Energy Consumption, in: 31st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Assoc Computing Machinery, Salt Lake City, UT, 2020, pp. 2758-2769.
Kanungo, Nayak, Naik, Behera (bib50) 2016; 3
Huang, Guan, Yang (bib27) 2018; 10
Pan, Lei, Wang (bib36) 2022; 52
J.C. Tang, G.J. Zhang, B.B. Lin, B.X. Zhang, A Hybrid PSO/GA Algorithm for Job Shop Scheduling Problem, in: 1st International Conference on Swarm Intelligence, Springer-Verlag Berlin, Beijing, PEOPLES R CHINA, 2010, pp. 566-+.
Sawik (bib15) 2012; 50
Liang, Huang, Ning (bib28) 2016; 9
Ozcan, Yavuz, Fıglalı (bib40) 2020; 0
Asadzadeh (bib20) 2016; 102
Huang, Chen, Zhang, Su, Lin, Cao (bib55) 2022; 11
Bautista-Valhondo, Alfaro-Pozo (bib12) 2018; 28
Wang, Zhang, Choi (bib29) 2020; 50
Wu (bib8) 2013; 27
Zhang, Gao, Shi (bib17) 2011; 38
Wang, Ren, Bai, Ezeh, Zhang, Dong (bib56) 2022; 69
Mencía, Sierra, Varela (bib24) 2013; 51
Bartz-Beielstein, Preuss (bib54) 2014
Piroozfard, Hassan, Moghadam, Derakhshan Asl (bib33) 2014; 845
Javadi, Saidi-Mehrabad, Haji, Mahdavi, Jolai, Mahdavi-Amiri (bib14) 2008; 345
De Giovanni, Pezzella (bib16) 2010; 200
Jian, Nee, Fuh, Zhang (bib18) 2003; 14
R. Balasundaram, N. Baskar, R.S. Sankar, Discovering Dispathcing Rules for Job Shop Schdeuling Using Data Mining, in: 2nd International Conference on Advances in Computing and Information Technology (ACITY 2012), Springer-Verlag Berlin, Chennai, INDIA, 2012, pp. 63-+.
Qiu, Sawhney, Zhang, Chen, Zhang, Lisar, Jiang, Ji (bib47) 2019; 11
Xu, Li, Li (bib49) 2023; 134
Liu, Guo, Wang (bib2) 2019; 211
Wu, Chen, Lin, Lai, Liu, Yu (bib23) 2018; 41
Czuczai, Farkas, Rev, Lelkes (bib9) 2009; 48
Shahzad, Mebarki (bib44) 2012; 25
Shang, Tian, Liu, Liu (bib34) 2018; 34
Yan, Shi, Zhao (bib37) 2012; 482-484
Khademi Zare, Fakhrzad (bib38) 2011; 38
Meng, Zhang, Ren, Zhang, Lv (bib13) 2020; 142
Gajpal, Rajendran (bib22) 2006; 101
Ou, Xing, Yao, Li, Lv, He, Song, Wu, Zhang (bib41) 2023; 77
Zhang, Tan, Peng, Gao, Shen, Lian (bib5) 2021; 68
Pan, Wang, Gao, Li (bib35) 2011; 181
Liu, Tseng, Huang, Wang (bib45) 2023
Xu, Wang, Wang, Liu (bib52) 2015; 148
Asadzadeh (10.1016/j.asoc.2024.111746_bib20) 2016; 102
Wang (10.1016/j.asoc.2024.111746_bib56) 2022; 69
Liu (10.1016/j.asoc.2024.111746_bib45) 2023
Liang (10.1016/j.asoc.2024.111746_bib28) 2016; 9
Bülbül (10.1016/j.asoc.2024.111746_bib10) 2012; 16
10.1016/j.asoc.2024.111746_bib31
Vallada (10.1016/j.asoc.2024.111746_bib53) 2011; 211
Xu (10.1016/j.asoc.2024.111746_bib49) 2023; 134
Wang (10.1016/j.asoc.2024.111746_bib29) 2020; 50
Pan (10.1016/j.asoc.2024.111746_bib36) 2022; 52
Huang (10.1016/j.asoc.2024.111746_bib27) 2018; 10
Kanungo (10.1016/j.asoc.2024.111746_bib50) 2016; 3
De Giovanni (10.1016/j.asoc.2024.111746_bib16) 2010; 200
Zhang (10.1016/j.asoc.2024.111746_bib5) 2021; 68
Qiu (10.1016/j.asoc.2024.111746_bib47) 2019; 11
Song (10.1016/j.asoc.2024.111746_bib48) 2023; 79
Czuczai (10.1016/j.asoc.2024.111746_bib9) 2009; 48
10.1016/j.asoc.2024.111746_bib43
Huang (10.1016/j.asoc.2024.111746_bib55) 2022; 11
10.1016/j.asoc.2024.111746_bib4
Shahzad (10.1016/j.asoc.2024.111746_bib44) 2012; 25
10.1016/j.asoc.2024.111746_bib7
Habib Zahmani (10.1016/j.asoc.2024.111746_bib39) 2020; 24
Meng (10.1016/j.asoc.2024.111746_bib13) 2020; 142
Bautista-Valhondo (10.1016/j.asoc.2024.111746_bib12) 2018; 28
Piroozfard (10.1016/j.asoc.2024.111746_bib33) 2014; 845
Wang (10.1016/j.asoc.2024.111746_bib1) 2016; 94
Nhu Binh (10.1016/j.asoc.2024.111746_bib30) 2008; 38
Zhang (10.1016/j.asoc.2024.111746_bib17) 2011; 38
Luo (10.1016/j.asoc.2024.111746_bib3) 2020; 160
Xu (10.1016/j.asoc.2024.111746_bib52) 2015; 148
Wang (10.1016/j.asoc.2024.111746_bib32) 2022; 74
Gajpal (10.1016/j.asoc.2024.111746_bib22) 2006; 101
Ozcan (10.1016/j.asoc.2024.111746_bib40) 2020; 0
Yan (10.1016/j.asoc.2024.111746_bib37) 2012; 482-484
Wu (10.1016/j.asoc.2024.111746_bib8) 2013; 27
Tahar (10.1016/j.asoc.2024.111746_bib11) 2006; 99
Javadi (10.1016/j.asoc.2024.111746_bib14) 2008; 345
Mencía (10.1016/j.asoc.2024.111746_bib24) 2013; 51
Toader (10.1016/j.asoc.2024.111746_bib25) 2015; 24
Bartz-Beielstein (10.1016/j.asoc.2024.111746_bib54) 2014
Shang (10.1016/j.asoc.2024.111746_bib34) 2018; 34
Ou (10.1016/j.asoc.2024.111746_bib41) 2023; 77
10.1016/j.asoc.2024.111746_bib51
Shivasankaran (10.1016/j.asoc.2024.111746_bib26) 2015; 8
Dudas (10.1016/j.asoc.2024.111746_bib6) 2011; 27
Liu (10.1016/j.asoc.2024.111746_bib42) 2023
Zheng (10.1016/j.asoc.2024.111746_bib21) 2018; 48
Pan (10.1016/j.asoc.2024.111746_bib35) 2011; 181
Wu (10.1016/j.asoc.2024.111746_bib23) 2018; 41
Khademi Zare (10.1016/j.asoc.2024.111746_bib38) 2011; 38
Liu (10.1016/j.asoc.2024.111746_bib2) 2019; 211
Koonce (10.1016/j.asoc.2024.111746_bib46) 2000; 38
Sawik (10.1016/j.asoc.2024.111746_bib15) 2012; 50
Jian (10.1016/j.asoc.2024.111746_bib18) 2003; 14
Li (10.1016/j.asoc.2024.111746_bib19) 2014; 38
References_xml – volume: 38
  start-page: 1111
  year: 2014
  end-page: 1132
  ident: bib19
  article-title: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities
  publication-title: Appl. Math. Model.
– volume: 68
  year: 2021
  ident: bib5
  article-title: A discrete whale swarm algorithm for hybrid flow-shop scheduling problem with limited buffers
  publication-title: Robot. Comput. -Integr. Manuf.
– volume: 27
  start-page: 20
  year: 2013
  end-page: 35
  ident: bib8
  article-title: Solving a two-agent single-machine learning scheduling problem
  publication-title: Int. J. Comput. Integr. Manuf.
– volume: 48
  start-page: 790
  year: 2018
  end-page: 800
  ident: bib21
  article-title: A collaborative multiobjective fruit fly optimization algorithm for the resource constrained unrelated parallel machine green scheduling problem
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
– volume: 24
  start-page: 171
  year: 2015
  end-page: 180
  ident: bib25
  article-title: A hybrid algorithm for job shop scheduling problem
  publication-title: Stud. Inform. Control
– reference: R. Balasundaram, N. Baskar, R.S. Sankar, Discovering Dispathcing Rules for Job Shop Schdeuling Using Data Mining, in: 2nd International Conference on Advances in Computing and Information Technology (ACITY 2012), Springer-Verlag Berlin, Chennai, INDIA, 2012, pp. 63-+.
– volume: 14
  start-page: 351
  year: 2003
  end-page: 362
  ident: bib18
  article-title: A modified genetic algorithm for distributed scheduling problems
  publication-title: J. Intell. Manuf.
– reference: J.C. Tang, G.J. Zhang, B.B. Lin, B.X. Zhang, A Hybrid PSO/GA Algorithm for Job Shop Scheduling Problem, in: 1st International Conference on Swarm Intelligence, Springer-Verlag Berlin, Beijing, PEOPLES R CHINA, 2010, pp. 566-+.
– volume: 845
  start-page: 559
  year: 2014
  end-page: 563
  ident: bib33
  article-title: A hybrid genetic algorithm for solving job shop scheduling problems
  publication-title: Adv. Mater. Res.
– volume: 50
  start-page: 4598
  year: 2020
  end-page: 4610
  ident: bib29
  article-title: Bi-objective optimal scheduling with raw material’s shelf-life constraints in unrelated parallel machines production
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
– volume: 8
  start-page: 455
  year: 2015
  end-page: 466
  ident: bib26
  article-title: Hybrid sorting immune simulated annealing algorithm for flexible job shop scheduling
  publication-title: Int. J. Comput. Intell. Syst.
– volume: 16
  start-page: 161
  year: 2012
  end-page: 183
  ident: bib10
  article-title: A linear programming-based method for job shop scheduling
  publication-title: J. Sched.
– volume: 48
  start-page: 5321
  year: 2009
  end-page: 5335
  ident: bib9
  article-title: New mixed integer linear programming model for solving scheduling problems with special characteristics
  publication-title: Ind. Eng. Chem. Res.
– volume: 94
  start-page: 3375
  year: 2016
  end-page: 3388
  ident: bib1
  article-title: Distributed manufacturing resource selection strategy in cloud manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 69
  year: 2022
  ident: bib56
  article-title: Minimizing the sum of makespan on multi-agent single-machine scheduling with release dates
  publication-title: Swarm Evol. Comput.
– volume: 38
  start-page: 361
  year: 2000
  end-page: 374
  ident: bib46
  article-title: Using data mining to find patterns in genetic algorithm solutions to a job shop schedule
  publication-title: Comput. Ind. Eng.
– volume: 181
  start-page: 668
  year: 2011
  end-page: 685
  ident: bib35
  article-title: An effective hybrid discrete differential evolution algorithm for the flow shop scheduling with intermediate buffers
  publication-title: Inf. Sci.
– volume: 74
  year: 2022
  ident: bib32
  article-title: An effective two-stage iterated greedy algorithm to minimize total tardiness for the distributed flowshop group scheduling problem
  publication-title: Swarm Evol. Comput.
– volume: 160
  year: 2020
  ident: bib3
  article-title: An efficient memetic algorithm for distributed flexible job shop scheduling problem with transfers
  publication-title: Expert Syst. Appl.
– volume: 211
  start-page: 612
  year: 2011
  end-page: 622
  ident: bib53
  article-title: A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times
  publication-title: Eur. J. Oper. Res.
– volume: 200
  start-page: 395
  year: 2010
  end-page: 408
  ident: bib16
  article-title: An improved genetic algorithm for the distributed and flexible job-shop scheduling problem
  publication-title: Eur. J. Oper. Res.
– volume: 11
  start-page: 14
  year: 2019
  ident: bib47
  article-title: Data mining-based disturbances prediction for job shop scheduling
  publication-title: Adv. Mech. Eng.
– volume: 27
  start-page: 687
  year: 2011
  end-page: 695
  ident: bib6
  article-title: A synergy of multi-objective optimization and data mining for the analysis of a flexible flow shop
  publication-title: Robot. Comput. -Integr. Manuf.
– volume: 99
  start-page: 63
  year: 2006
  end-page: 73
  ident: bib11
  article-title: A linear programming approach for identical parallel machine scheduling with job splitting and sequence-dependent setup times
  publication-title: Int. J. Prod. Econ.
– reference: A. Antoniadis, N. Garg, G. Kumar, N. Kumar, Acm, Parallel Machine Scheduling to Minimize Energy Consumption, in: 31st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Assoc Computing Machinery, Salt Lake City, UT, 2020, pp. 2758-2769.
– volume: 11
  year: 2022
  ident: bib55
  article-title: Improved firefly algorithm with courtship learning for unrelated parallel machine scheduling problem with sequence-dependent setup times
  publication-title: J. Cloud Comput.
– start-page: 1
  year: 2023
  end-page: 13
  ident: bib45
  article-title: Dynamic parallel machine scheduling with deep q-network
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
– volume: 10
  year: 2018
  ident: bib27
  article-title: An effective hybrid algorithm for multi-objective flexible job-shop scheduling problem
  publication-title: Adv. Mech. Eng.
– volume: 34
  start-page: 955
  year: 2018
  end-page: 964
  ident: bib34
  article-title: Production scheduling optimization method based on hybrid particle swarm optimization algorithm
  publication-title: J. Intell. Fuzzy Syst.
– reference: R. Ismail, Z. Othman, A.Abu Bakar, Data Mining In Production Planning and Scheduling: A Review, in: 2nd Conference on Data Mining and Optimization, Ieee Computer Soc, Bangi, MALAYSIA, 2009, pp. 159-164.
– volume: 51
  start-page: 5221
  year: 2013
  end-page: 5237
  ident: bib24
  article-title: An efficient hybrid search algorithm for job shop scheduling with operators
  publication-title: Int. J. Prod. Res.
– year: 2014
  ident: bib54
  article-title: Experimental methods for the analysis of optimization algorithms
  publication-title: Int. J. Behav. Nutr. Phys. Act., (
– volume: 101
  start-page: 259
  year: 2006
  end-page: 272
  ident: bib22
  article-title: An ant-colony optimization algorithm for minimizing the completion-time variance of jobs in flowshops
  publication-title: Int. J. Prod. Econ.
– start-page: 1
  year: 2023
  end-page: 13
  ident: bib42
  article-title: Dynamic job-shop scheduling problems using graph neural network and deep reinforcement learning
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
– volume: 148
  start-page: 260
  year: 2015
  end-page: 268
  ident: bib52
  article-title: An effective teaching–learning-based optimization algorithm for the flexible job-shop scheduling problem with fuzzy processing time
  publication-title: Neurocomputing
– volume: 211
  start-page: 765
  year: 2019
  end-page: 786
  ident: bib2
  article-title: Integrated green scheduling optimization of flexible job shop and crane transportation considering comprehensive energy consumption
  publication-title: J. Clean. Prod.
– volume: 142
  year: 2020
  ident: bib13
  article-title: Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem
  publication-title: Comput. Ind. Eng.
– volume: 41
  start-page: 97
  year: 2018
  end-page: 110
  ident: bib23
  article-title: A two-stage three-machine assembly flow shop scheduling with learning consideration to minimize the flowtime by six hybrids of particle swarm optimization
  publication-title: Swarm Evol. Comput.
– volume: 134
  year: 2023
  ident: bib49
  article-title: A discrete teaching–learning based optimization algorithm with local search for rescue task allocation and scheduling
  publication-title: Appl. Soft. Comput.
– volume: 25
  start-page: 1173
  year: 2012
  end-page: 1181
  ident: bib44
  article-title: Data mining based job dispatching using hybrid simulation-optimization approach for shop scheduling problem
  publication-title: Eng. Appl. Artif. Intell.
– volume: 79
  year: 2023
  ident: bib48
  article-title: A cluster-based genetic optimization method for satellite range scheduling system
  publication-title: Swarm Evol. Comput.
– volume: 3
  start-page: 1
  year: 2016
  end-page: 19
  ident: bib50
  article-title: Hybrid clustering using elitist teaching learning-based optimization
  publication-title: Int. J. Rough. Sets Data Anal.
– reference: P.K. Mummareddy, S.C. Satapaty, - An Hybrid Approach for Data Clustering Using K-Means and Teaching Learning Based Optimization, (2015) - 171.
– volume: 482-484
  start-page: 2227
  year: 2012
  end-page: 2233
  ident: bib37
  article-title: Research on parallel hybrid genetic algorithm based on multi-group in job shop scheduling
  publication-title: Adv. Mater. Res.
– volume: 38
  start-page: 7609
  year: 2011
  end-page: 7615
  ident: bib38
  article-title: Solving flexible flow-shop problem with a hybrid genetic algorithm and data mining: a fuzzy approach
  publication-title: Expert Syst. Appl.
– volume: 24
  start-page: 175
  year: 2020
  end-page: 196
  ident: bib39
  article-title: Multiple dispatching rules allocation in real time using data mining, genetic algorithms, and simulation
  publication-title: J. Sched.
– volume: 345
  start-page: 452
  year: 2008
  end-page: 467
  ident: bib14
  article-title: No-wait flow shop scheduling using fuzzy multi-objective linear programming
  publication-title: J. Frankl. Inst.
– volume: 52
  start-page: 5295
  year: 2022
  end-page: 5307
  ident: bib36
  article-title: A bi-population evolutionary algorithm with feedback for energy-efficient fuzzy flexible job shop scheduling
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
– volume: 38
  start-page: 674
  year: 2008
  end-page: 685
  ident: bib30
  article-title: Solving Multiple-Objective Flexible Job Shop Problems by Evolution and Local Search, IEEE Transactions on Systems, Man, and Cybernetics
  publication-title: Part C. (Appl. Rev. )
– volume: 9
  start-page: 165
  year: 2016
  end-page: 171
  ident: bib28
  article-title: Flexible job shop scheduling based on improved hybrid immune algorithm
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 38
  start-page: 3563
  year: 2011
  end-page: 3573
  ident: bib17
  article-title: An effective genetic algorithm for the flexible job-shop scheduling problem
  publication-title: Expert Syst. Appl.
– volume: 28
  start-page: 5
  year: 2018
  end-page: 23
  ident: bib12
  article-title: Mixed integer linear programming models for Flow Shop Scheduling with a demand plan of job types
  publication-title: Cent. Eur. J. Oper. Res.
– volume: 77
  year: 2023
  ident: bib41
  article-title: Deep reinforcement learning method for satellite range scheduling problem
  publication-title: Swarm Evol. Comput.
– volume: 0
  year: 2020
  ident: bib40
  article-title: A data mining based solution method for flow shop scheduling problems
  publication-title: Sci. Iran.
– volume: 50
  start-page: 5017
  year: 2012
  end-page: 5034
  ident: bib15
  article-title: Batch versus cyclic scheduling of flexible flow shops by mixed-integer programming
  publication-title: Int. J. Prod. Res.
– volume: 102
  start-page: 359
  year: 2016
  end-page: 367
  ident: bib20
  article-title: A parallel artificial bee colony algorithm for the job shop scheduling problem with a dynamic migration strategy
  publication-title: Comput. Ind. Eng.
– volume: 345
  start-page: 452
  year: 2008
  ident: 10.1016/j.asoc.2024.111746_bib14
  article-title: No-wait flow shop scheduling using fuzzy multi-objective linear programming
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2007.12.003
– ident: 10.1016/j.asoc.2024.111746_bib43
  doi: 10.1007/978-3-642-31600-5_7
– volume: 69
  year: 2022
  ident: 10.1016/j.asoc.2024.111746_bib56
  article-title: Minimizing the sum of makespan on multi-agent single-machine scheduling with release dates
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100996
– volume: 101
  start-page: 259
  year: 2006
  ident: 10.1016/j.asoc.2024.111746_bib22
  article-title: An ant-colony optimization algorithm for minimizing the completion-time variance of jobs in flowshops
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2005.01.003
– volume: 200
  start-page: 395
  year: 2010
  ident: 10.1016/j.asoc.2024.111746_bib16
  article-title: An improved genetic algorithm for the distributed and flexible job-shop scheduling problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2009.01.008
– volume: 211
  start-page: 612
  year: 2011
  ident: 10.1016/j.asoc.2024.111746_bib53
  article-title: A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2011.01.011
– volume: 74
  year: 2022
  ident: 10.1016/j.asoc.2024.111746_bib32
  article-title: An effective two-stage iterated greedy algorithm to minimize total tardiness for the distributed flowshop group scheduling problem
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101143
– volume: 181
  start-page: 668
  year: 2011
  ident: 10.1016/j.asoc.2024.111746_bib35
  article-title: An effective hybrid discrete differential evolution algorithm for the flow shop scheduling with intermediate buffers
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.10.009
– volume: 27
  start-page: 687
  year: 2011
  ident: 10.1016/j.asoc.2024.111746_bib6
  article-title: A synergy of multi-objective optimization and data mining for the analysis of a flexible flow shop
  publication-title: Robot. Comput. -Integr. Manuf.
  doi: 10.1016/j.rcim.2010.12.005
– volume: 3
  start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2024.111746_bib50
  article-title: Hybrid clustering using elitist teaching learning-based optimization
  publication-title: Int. J. Rough. Sets Data Anal.
  doi: 10.4018/IJRSDA.2016010101
– volume: 482-484
  start-page: 2227
  year: 2012
  ident: 10.1016/j.asoc.2024.111746_bib37
  article-title: Research on parallel hybrid genetic algorithm based on multi-group in job shop scheduling
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.482-484.2227
– volume: 134
  year: 2023
  ident: 10.1016/j.asoc.2024.111746_bib49
  article-title: A discrete teaching–learning based optimization algorithm with local search for rescue task allocation and scheduling
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2022.109980
– volume: 14
  start-page: 351
  year: 2003
  ident: 10.1016/j.asoc.2024.111746_bib18
  article-title: A modified genetic algorithm for distributed scheduling problems
  publication-title: J. Intell. Manuf.
  doi: 10.1023/A:1024653810491
– volume: 0
  year: 2020
  ident: 10.1016/j.asoc.2024.111746_bib40
  article-title: A data mining based solution method for flow shop scheduling problems
  publication-title: Sci. Iran.
– volume: 11
  start-page: 14
  year: 2019
  ident: 10.1016/j.asoc.2024.111746_bib47
  article-title: Data mining-based disturbances prediction for job shop scheduling
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/1687814019838178
– volume: 211
  start-page: 765
  year: 2019
  ident: 10.1016/j.asoc.2024.111746_bib2
  article-title: Integrated green scheduling optimization of flexible job shop and crane transportation considering comprehensive energy consumption
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.11.231
– ident: 10.1016/j.asoc.2024.111746_bib31
  doi: 10.1007/978-3-642-13495-1_69
– volume: 25
  start-page: 1173
  year: 2012
  ident: 10.1016/j.asoc.2024.111746_bib44
  article-title: Data mining based job dispatching using hybrid simulation-optimization approach for shop scheduling problem
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.04.001
– volume: 10
  year: 2018
  ident: 10.1016/j.asoc.2024.111746_bib27
  article-title: An effective hybrid algorithm for multi-objective flexible job-shop scheduling problem
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/1687814018801442
– volume: 38
  start-page: 674
  year: 2008
  ident: 10.1016/j.asoc.2024.111746_bib30
  article-title: Solving Multiple-Objective Flexible Job Shop Problems by Evolution and Local Search, IEEE Transactions on Systems, Man, and Cybernetics
  publication-title: Part C. (Appl. Rev. )
– volume: 68
  year: 2021
  ident: 10.1016/j.asoc.2024.111746_bib5
  article-title: A discrete whale swarm algorithm for hybrid flow-shop scheduling problem with limited buffers
  publication-title: Robot. Comput. -Integr. Manuf.
  doi: 10.1016/j.rcim.2020.102081
– volume: 8
  start-page: 455
  year: 2015
  ident: 10.1016/j.asoc.2024.111746_bib26
  article-title: Hybrid sorting immune simulated annealing algorithm for flexible job shop scheduling
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.1080/18756891.2015.1017383
– volume: 24
  start-page: 175
  year: 2020
  ident: 10.1016/j.asoc.2024.111746_bib39
  article-title: Multiple dispatching rules allocation in real time using data mining, genetic algorithms, and simulation
  publication-title: J. Sched.
  doi: 10.1007/s10951-020-00664-5
– volume: 48
  start-page: 5321
  year: 2009
  ident: 10.1016/j.asoc.2024.111746_bib9
  article-title: New mixed integer linear programming model for solving scheduling problems with special characteristics
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie800124g
– volume: 34
  start-page: 955
  year: 2018
  ident: 10.1016/j.asoc.2024.111746_bib34
  article-title: Production scheduling optimization method based on hybrid particle swarm optimization algorithm
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-169389
– volume: 102
  start-page: 359
  year: 2016
  ident: 10.1016/j.asoc.2024.111746_bib20
  article-title: A parallel artificial bee colony algorithm for the job shop scheduling problem with a dynamic migration strategy
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.06.025
– ident: 10.1016/j.asoc.2024.111746_bib4
  doi: 10.1137/1.9781611975994.168
– volume: 27
  start-page: 20
  year: 2013
  ident: 10.1016/j.asoc.2024.111746_bib8
  article-title: Solving a two-agent single-machine learning scheduling problem
  publication-title: Int. J. Comput. Integr. Manuf.
  doi: 10.1080/0951192X.2013.800229
– volume: 38
  start-page: 1111
  year: 2014
  ident: 10.1016/j.asoc.2024.111746_bib19
  article-title: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.07.038
– volume: 51
  start-page: 5221
  year: 2013
  ident: 10.1016/j.asoc.2024.111746_bib24
  article-title: An efficient hybrid search algorithm for job shop scheduling with operators
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2013.802389
– volume: 28
  start-page: 5
  year: 2018
  ident: 10.1016/j.asoc.2024.111746_bib12
  article-title: Mixed integer linear programming models for Flow Shop Scheduling with a demand plan of job types
  publication-title: Cent. Eur. J. Oper. Res.
  doi: 10.1007/s10100-018-0553-8
– volume: 41
  start-page: 97
  year: 2018
  ident: 10.1016/j.asoc.2024.111746_bib23
  article-title: A two-stage three-machine assembly flow shop scheduling with learning consideration to minimize the flowtime by six hybrids of particle swarm optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.01.012
– volume: 50
  start-page: 4598
  year: 2020
  ident: 10.1016/j.asoc.2024.111746_bib29
  article-title: Bi-objective optimal scheduling with raw material’s shelf-life constraints in unrelated parallel machines production
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
  doi: 10.1109/TSMC.2018.2855700
– volume: 24
  start-page: 171
  year: 2015
  ident: 10.1016/j.asoc.2024.111746_bib25
  article-title: A hybrid algorithm for job shop scheduling problem
  publication-title: Stud. Inform. Control
  doi: 10.24846/v24i2y201505
– volume: 50
  start-page: 5017
  year: 2012
  ident: 10.1016/j.asoc.2024.111746_bib15
  article-title: Batch versus cyclic scheduling of flexible flow shops by mixed-integer programming
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2011.627388
– volume: 77
  year: 2023
  ident: 10.1016/j.asoc.2024.111746_bib41
  article-title: Deep reinforcement learning method for satellite range scheduling problem
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101233
– year: 2014
  ident: 10.1016/j.asoc.2024.111746_bib54
  article-title: Experimental methods for the analysis of optimization algorithms
  publication-title: Int. J. Behav. Nutr. Phys. Act., (
– volume: 79
  year: 2023
  ident: 10.1016/j.asoc.2024.111746_bib48
  article-title: A cluster-based genetic optimization method for satellite range scheduling system
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101316
– volume: 38
  start-page: 3563
  year: 2011
  ident: 10.1016/j.asoc.2024.111746_bib17
  article-title: An effective genetic algorithm for the flexible job-shop scheduling problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.08.145
– volume: 142
  year: 2020
  ident: 10.1016/j.asoc.2024.111746_bib13
  article-title: Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106347
– volume: 16
  start-page: 161
  year: 2012
  ident: 10.1016/j.asoc.2024.111746_bib10
  article-title: A linear programming-based method for job shop scheduling
  publication-title: J. Sched.
  doi: 10.1007/s10951-012-0270-4
– volume: 845
  start-page: 559
  year: 2014
  ident: 10.1016/j.asoc.2024.111746_bib33
  article-title: A hybrid genetic algorithm for solving job shop scheduling problems
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.845.559
– volume: 52
  start-page: 5295
  year: 2022
  ident: 10.1016/j.asoc.2024.111746_bib36
  article-title: A bi-population evolutionary algorithm with feedback for energy-efficient fuzzy flexible job shop scheduling
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
  doi: 10.1109/TSMC.2021.3120702
– volume: 38
  start-page: 361
  year: 2000
  ident: 10.1016/j.asoc.2024.111746_bib46
  article-title: Using data mining to find patterns in genetic algorithm solutions to a job shop schedule
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/S0360-8352(00)00050-4
– ident: 10.1016/j.asoc.2024.111746_bib51
  doi: 10.1007/978-3-319-13731-5_19
– volume: 94
  start-page: 3375
  year: 2016
  ident: 10.1016/j.asoc.2024.111746_bib1
  article-title: Distributed manufacturing resource selection strategy in cloud manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-016-9866-8
– volume: 99
  start-page: 63
  year: 2006
  ident: 10.1016/j.asoc.2024.111746_bib11
  article-title: A linear programming approach for identical parallel machine scheduling with job splitting and sequence-dependent setup times
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2004.12.007
– start-page: 1
  year: 2023
  ident: 10.1016/j.asoc.2024.111746_bib45
  article-title: Dynamic parallel machine scheduling with deep q-network
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
– volume: 160
  year: 2020
  ident: 10.1016/j.asoc.2024.111746_bib3
  article-title: An efficient memetic algorithm for distributed flexible job shop scheduling problem with transfers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113721
– volume: 38
  start-page: 7609
  year: 2011
  ident: 10.1016/j.asoc.2024.111746_bib38
  article-title: Solving flexible flow-shop problem with a hybrid genetic algorithm and data mining: a fuzzy approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.12.101
– volume: 48
  start-page: 790
  year: 2018
  ident: 10.1016/j.asoc.2024.111746_bib21
  article-title: A collaborative multiobjective fruit fly optimization algorithm for the resource constrained unrelated parallel machine green scheduling problem
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
  doi: 10.1109/TSMC.2016.2616347
– ident: 10.1016/j.asoc.2024.111746_bib7
  doi: 10.1109/DMO.2009.5341895
– volume: 9
  start-page: 165
  year: 2016
  ident: 10.1016/j.asoc.2024.111746_bib28
  article-title: Flexible job shop scheduling based on improved hybrid immune algorithm
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-016-0425-9
– volume: 148
  start-page: 260
  year: 2015
  ident: 10.1016/j.asoc.2024.111746_bib52
  article-title: An effective teaching–learning-based optimization algorithm for the flexible job-shop scheduling problem with fuzzy processing time
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.10.042
– start-page: 1
  year: 2023
  ident: 10.1016/j.asoc.2024.111746_bib42
  article-title: Dynamic job-shop scheduling problems using graph neural network and deep reinforcement learning
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
– volume: 11
  year: 2022
  ident: 10.1016/j.asoc.2024.111746_bib55
  article-title: Improved firefly algorithm with courtship learning for unrelated parallel machine scheduling problem with sequence-dependent setup times
  publication-title: J. Cloud Comput.
  doi: 10.1186/s13677-022-00282-w
SSID ssj0016928
Score 2.50211
Snippet With the continuous increase of workshop production scale, traditional heuristic algorithms in solving the scheduling problem have the defects of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111746
SubjectTerms Data Mining
K-means algorithm
Offline learning
Parallel machine scheduling
Teaching-Learning-Based Optimization Algorithm
Title A K-means-Teaching Learning based optimization algorithm for parallel machine scheduling problem
URI https://dx.doi.org/10.1016/j.asoc.2024.111746
Volume 161
WOSCitedRecordID wos001246725200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBa2tIdd1q3t0HYP6LCbocAv2dIxGFLsERQ7pEB68iRH6lw4TpE4Q39-aVlyHu2K9bCDBUOWaMP8TNIURSL0WVKtUkAKAfBIEseKEqZUTPxQUz_MBbQmZf4ovbhgkwn_aVfwl6acQFpV7O6O3_5XVkMfMLvZOvsMdndEoQPOgenQAtuh_SfGD7wfZKZAA5Gxi5QcOf9Ho7Om3hzExMzuv_REeT1fFPXvmQk4bDKBl6UqvZmZqjz4-QVlZPesm9ozm-ass2GXIMxNdPqqdqqwCfIxkQJXhdzqWxngFOs1IeuxHqniwaBKrzbdEmHcBcV1kjRhJObWv-hEbZt43QpLELNpe_2BHG9dCjd9ARDtN-T768HbSbN3lFkXYuii126yhkbW0MhaGi_RXphSznpob_BtOPneLTol3JTi7Z7c7rFqwwF3n-RxO2bDNhm_Qa_tTwUetGB4i16o6hAduIId2MrvI_RrgHexgR02sMEG3sQG7rCBARvYYQNbbOA1NrDFxjG6PB-Ov3wltsQGySPfr0mShn4CVp6OpkmseSJ0SJWQOuI6CCSDbzedCsYp11EgRArmcSSE0kyyPA5zlkfvUK-aV-oEYc0ZAwJUxZICKS3B9FOMSj-RwRSOUxS4F5blNv98UwalzP7OqlPkdXNu2-wrT46mjg-ZtR9buzADWD0x7-xZd3mPXq3x_gH16sVKfUT7-Z-6WC4-WUzdA4fXkcw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+K-means-Teaching+Learning+based+optimization+algorithm+for+parallel+machine+scheduling+problem&rft.jtitle=Applied+soft+computing&rft.au=Li%2C+Yibing&rft.au=Liu%2C+Jie&rft.au=Wang%2C+Lei&rft.au=Liu%2C+Jinfu&rft.date=2024-08-01&rft.issn=1568-4946&rft.volume=161&rft.spage=111746&rft_id=info:doi/10.1016%2Fj.asoc.2024.111746&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2024_111746
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon