A parallel metaheuristic data clustering framework for cloud
A high performance data analytics for internet of things (IoT) has been a promising research subject in recent years because traditional data mining algorithms may not be applicable to big data of IoT. One of the main reasons is that the data that need to be analyzed may exceed the storage size of a...
Uloženo v:
| Vydáno v: | Journal of parallel and distributed computing Ročník 116; s. 39 - 49 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.06.2018
|
| Témata: | |
| ISSN: | 0743-7315, 1096-0848 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A high performance data analytics for internet of things (IoT) has been a promising research subject in recent years because traditional data mining algorithms may not be applicable to big data of IoT. One of the main reasons is that the data that need to be analyzed may exceed the storage size of a single machine. The computation cost of data analysis tasks that is too high for a single computer system is another critical problem we have to confront when analyzing data from an IoT system. That is why an efficient data clustering framework for metaheuristic algorithm on a cloud computing environment is presented in this paper for data analytics, which explains how to divide mining tasks of a mining algorithm into different nodes (i.e., the Map process) and then aggregate the mining results from these nodes (i.e., Reduce process). We further attempted to use the proposed framework to implement data clustering algorithms (e.g., k-means, genetic k-means, and particle swarm optimization) on a standalone system and Spark. The experimental results show that the performance of the proposed framework makes it useful to develop data clustering algorithms on a cloud computing environment. |
|---|---|
| AbstractList | A high performance data analytics for internet of things (IoT) has been a promising research subject in recent years because traditional data mining algorithms may not be applicable to big data of IoT. One of the main reasons is that the data that need to be analyzed may exceed the storage size of a single machine. The computation cost of data analysis tasks that is too high for a single computer system is another critical problem we have to confront when analyzing data from an IoT system. That is why an efficient data clustering framework for metaheuristic algorithm on a cloud computing environment is presented in this paper for data analytics, which explains how to divide mining tasks of a mining algorithm into different nodes (i.e., the Map process) and then aggregate the mining results from these nodes (i.e., Reduce process). We further attempted to use the proposed framework to implement data clustering algorithms (e.g., k-means, genetic k-means, and particle swarm optimization) on a standalone system and Spark. The experimental results show that the performance of the proposed framework makes it useful to develop data clustering algorithms on a cloud computing environment. |
| Author | Tsai, Chun-Wei Wang, Yi-Chung Liu, Shi-Jui |
| Author_xml | – sequence: 1 givenname: Chun-Wei orcidid: 0000-0003-0128-4052 surname: Tsai fullname: Tsai, Chun-Wei email: cwtsai@nchu.edu.tw – sequence: 2 givenname: Shi-Jui surname: Liu fullname: Liu, Shi-Jui – sequence: 3 givenname: Yi-Chung surname: Wang fullname: Wang, Yi-Chung |
| BookMark | eNp9kMtqwzAQRUVJoUnaH-jKP2B3JFmyA9mE0BcEumnXYiKNW7mOHSSlpX9fh3TVRVYDdzgX7pmxST_0xNgth4ID13dt0e6dLQTwagwKEHDBphwWOoe6rCdsClUp80pydcVmMbYAnKuqnrLlKttjwK6jLttRwg86BB-Tt5nDhJntDjFR8P171gTc0fcQPrNmCONjOLhrdtlgF-nm787Z28P96_op37w8Pq9Xm9xKgJRrLYA4WC6karTVSAJBYb2QUpe6sdtxgVQWORdKbmslhQOnSkcloNs2Vs5Zfeq1YYgxUGOsT5j80KeAvjMczNGCac3RgjlaOGajhREV_9B98DsMP-eh5QmicdSXp2Ci9dRbcj6QTcYN_hz-C6XoeE4 |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2024_101483 crossref_primary_10_1002_ett_4484 crossref_primary_10_1016_j_jpdc_2019_03_006 crossref_primary_10_1016_j_jpdc_2018_03_003 crossref_primary_10_1080_09544828_2018_1463514 crossref_primary_10_1016_j_comcom_2022_04_004 crossref_primary_10_1109_ACCESS_2021_3128814 crossref_primary_10_1007_s10288_019_00402_4 crossref_primary_10_1007_s12530_023_09539_4 crossref_primary_10_1007_s10462_019_09685_9 crossref_primary_10_1088_1742_6596_1979_1_012015 crossref_primary_10_1007_s10479_021_04496_0 crossref_primary_10_1016_j_jpdc_2019_12_015 crossref_primary_10_1109_TII_2020_2995680 crossref_primary_10_1007_s00500_019_03950_3 crossref_primary_10_1016_j_iot_2024_101187 crossref_primary_10_4018_IJCVIP_2018100102 crossref_primary_10_1016_j_swevo_2020_100748 crossref_primary_10_1002_cpe_7229 |
| Cites_doi | 10.1109/SNPD.2012.31 10.1145/2396761.2398587 10.1007/978-3-319-31153-1_6 10.1016/j.procs.2015.07.286 10.1109/TII.2014.2306382 10.1007/s11390-016-1635-5 10.11591/telkomnika.v10i5.1353 10.1016/j.fss.2014.01.015 10.1155/2015/431047 10.1109/TPDS.2016.2603511 10.1109/ICICIS.2010.5534718 10.1109/SMC.2015.445 10.1109/3PGCIC.2015.55 10.1145/2184751.2184842 10.1109/SURV.2013.042313.00197 10.1109/CEC.2016.7743853 10.1109/GreenCom.2012.18 10.3390/a8030407 10.1016/j.compeleceng.2016.09.035 10.1109/TST.2013.6574675 10.1109/SOLI.2014.6960692 10.1109/TII.2017.2670505 10.1080/18756891.2015.1017377 10.1109/ChinaGrid.2009.39 10.1016/j.adhoc.2012.02.016 10.1109/CSCWD.2015.7230970 10.1109/3477.764879 10.1007/s10586-017-0838-z 10.1145/331499.331504 10.1109/TII.2014.2306384 10.1007/978-3-642-10665-1_71 10.1007/s11036-016-0803-8 10.1109/TII.2014.2299233 10.1109/ICNN.1995.488968 10.1145/2020408.2020515 10.1109/CBD.2016.016 10.1145/2396761.2396776 10.1109/ICBNMT.2013.6823956 10.1109/ICDM.2008.142 10.1145/2809890.2809893 10.1109/CC.2014.6969789 10.1109/CEC.2007.4424448 10.1109/SURV.2013.103013.00206 10.1109/eScience.2008.78 10.1007/s10586-015-0477-1 10.1109/JSYST.2013.2256731 10.1109/JIOT.2014.2306328 10.1109/HONET.2015.7395434 10.1016/j.jnca.2011.10.015 10.1109/IPDPSW.2014.192 10.1145/2020408.2020516 10.1007/s11277-011-0288-5 10.1109/BigData.2015.7363907 10.1016/j.comnet.2010.05.010 10.1016/j.future.2013.01.010 10.1109/BigDataCongress.2015.12 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Inc. |
| Copyright_xml | – notice: 2017 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jpdc.2017.10.020 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1096-0848 |
| EndPage | 49 |
| ExternalDocumentID | 10_1016_j_jpdc_2017_10_020 S0743731517302964 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFSI ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADHUB ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 E.L EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 TWZ WUQ XJT XOL XPP ZMT ZU3 ZY4 ~G- ~G0 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-6620e10c1235f6c6ae2a05a8933646fcb01635ca11253b8532d0d54de40adbfc3 |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430372200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0743-7315 |
| IngestDate | Sat Nov 29 07:13:18 EST 2025 Tue Nov 18 22:48:39 EST 2025 Fri Feb 23 02:31:22 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Metaheuristic algorithm Internet of things Data clustering problem |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-6620e10c1235f6c6ae2a05a8933646fcb01635ca11253b8532d0d54de40adbfc3 |
| ORCID | 0000-0003-0128-4052 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jpdc_2017_10_020 crossref_primary_10_1016_j_jpdc_2017_10_020 elsevier_sciencedirect_doi_10_1016_j_jpdc_2017_10_020 |
| PublicationCentury | 2000 |
| PublicationDate | June 2018 2018-06-00 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of parallel and distributed computing |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | W. Zhao, H. Ma, Q. He, Parallel k-means clustering based on mapreduce, in: Proceedings of the International Conference Cloud Computing, 2009,pp. 674–679. Zanella, Bui, Castellani, Vangelista, Zorzi (b78) 2014; 1 A. Grilo, H. Sarmento, M. Nunes1, J. Gona̧lves, P. Pereira, A. Casaca, C. Fortunato, A Wireless Sensors Suite for Smart Grid Applications, in: Proceedings of the International Workshop on Information Technology for Energy Applications, 2012, pp. 1–10. C.W. Tsai, C.H. Hsieh, M.C. Chiang, Parallel black hole clustering based on mapreduce, in: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, 2015, pp. 2543–2548. Xie, Lv, Qin, Du, Huang (b74) 2017 Keller (b27) 2011 Y. Ma, J. Rao, W. Hu, X. Meng, X. Han, Y. Zhang, Y. Chai, C. Liu, An efficient index for massive IOT data in cloud environment, in: Proceedings of the ACM International Conference on Information and Knowledge Management, 2012, pp. 2129–2133. Gubbi, Buyya, Marusic, Palaniswami (b18) 2013; 29 Auto-ID Labs, Massachusetts Institute of Technology, 2012, available at A.K. Koliopoulos, P. Yiapanis, F. Tekiner, G. Nenadic, J. Keane, A parallel distributed weka framework for big data mining using spark, in: 2015 IEEE International Congress on Big Data, 2015, pp. 9–16. Atzori, Iera, Morabito (b3) 2010; 54 A. Ene, S. Im, B. Moseley, Fast clustering using mapreduce, in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011, pp. 681–689. T. Li, Y. Liu, Y. Tian, S. Shen, W. Mao, A storage solution for massive IoT data based on NoSQL, in: Proceedings of the IEEE International Conference on Green Computing and Communications, 2012, pp. 50–57. Piccialli, Jung (b49) 2017; 22 Qi, Wang, Li (b51) 2016; 31 User-locations-Finland_N13467-D2, 2017, available at Zhang, Liu, Gui, Shen, Shami, Ma (b79) 2015; 18 Fan, Chen, Xiong, Chen (b12) 2012; 6 A.W. McNabb, C.K. Monson, K.D. Seppi, Parallel PSO using mapreduce, in: Proceedings of the IEEE Congress on Evolutionary Computation, 2007,pp. 7–14. S. Papadimitriou, J. Sun, DisCo: Distributed co-clustering with map-reduce: A case study towards petabyte-scale end-to-end mining, in: Proceedings of the IEEE International Conference on Data Mining, 2008, pp. 512–521. J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, 1995, pp. 1942–1948. Perera, Zaslavsky, Christen, Georgakopoulos (b48) 2014; 16 Krishna, Narasimha Murty (b30) 1999; 29 Mahout, 2011, available at Chen, Li, Tang, Bilal, Yu, Weng, Li (b7) 2017; 28 He, Yan, Xu (b20) 2014; 10 Wan, Tang, Li, Wang, Liu, Abbas, Vasilakos (b69) 2017; 13 M.-Y. Lin, P.-Y. Lee, S.-C. Hsueh, Apriori-based frequent itemset mining algorithms on mapreduce, in: Proceedings of the 6th International Conference on Ubiquitous Information Management and Communication, 2012,pp. 76:1–76:8. Shuttle, 2017, available at R.Z. Qi, Pairwise test generation based on parallel genetic algorithm with spark, in: Proceedings of the International Conference on Computer Information Systems and Industrial Applications, 2015, pp. 67–70. Three misunderstandings of Spark, 2017, available at Yang, Wang, Li, Liu, Sun (b77) 2014; 11 Chen, Deng, Wan, Zhang, Vasilakos, Rong (b6) 2015 G. Wu, H. Li, X. Hu, Y. Bi, J. Zhang, X. Wu, MReC4.5: C4.5 ensemble classification with mapreduce, in: 2009 Fourth ChinaGrid Annual Conference, 2009,pp. 249–255. S. Misbahuddin, J.A. Zubairi, A. Saggaf, J. Basuni, S. A-Wadany, A. Al-Sofi, IoT based dynamic road traffic management for smart cities, in: Proceedings of the International Conference on High-capacity Optical Networks and Enabling/Emerging Technologies, 2015, pp. 1–5. Tsai, Rodrigues (b65) 2014; 8 Zhou, Hu, Wang, Lu, Zhao (b81) 2013; 18 Jain, Murty, Flynn (b24) 1999; 31 S. Cuomo, P.D. Michele, A. Galletti, F. Piccialli, A cultural heritage case study of visitor experiences shared on a social network, in: Proceedings of the International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 2015, pp. 539–544. Bandyopadhyay, Sen (b5) 2011; 58 S. Rathee, M. Kaul, A. Kashyap, R-Apriori: An efficient apriori based algorithm on spark, in: Proceedings of the Workshop on Ph.D. Workshop in Information and Knowledge Management, 2015, pp. 27–34. . D. Laney, 3D Data Management: Controlling Data Volume, Velocity, and Variety, Tech. Rep., META Group, 2001 X.Y. Yang, Z. Liu, Y. Fu, MapReduce as a programming model for association rules algorithm on Hadoop, in: Proceedings of the International Conference on Information Sciences and Interaction Sciences, 2010, pp. 99–102. Reyes-Ortiz, Oneto, Anguita (b53) 2015; 53 R.L. Ferreira Cordeiro, C. Traina, JuniorA. J. Machado Traina, J. López, U. Kang, C. Faloutsos, Clustering very large multi-dimensional datasets with mapreduce, in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011, pp. 690–698. C. Jin, C. Vecchiola, R. Buyya, MRPGA: An extension of mapreduce for parallelizing genetic algorithms, in: Proceedings of the IEEE Fourth International Conference on eScience, 2008, pp. 214–221. Robert L. Mitchell, The Internet of Things at home: 14 smart products that could change your life, computerworld, 2014. Available at G. Motta, L. You, D. Sacco, T. Ma, G. Miceli, Mobility Service Systems: Guidelines for a possible paradigm and a case study, in: Proceedings of IEEE International Conference on Service Operations and Logistics, and Informatics, 2014,pp. 48–53. Wine, 2017, available at K. Govindarajan, D. Boulanger, V.S. Kumar, . Kinshuk, Parallel particle swarm optimization (PPSO) clustering for learning analytics, in: Proceedings of the IEEE International Conference on Big Data, 2015, pp. 1461–1465. Iris, 2017, available at Gaifang, Xueliang, Honghui, Pengfei (b14) 2017; 60 Online News Popularity, 2017, available at G. Santucci, From Internet of Data to Internet of Things, in: Proceedings of the International Conference on Future Trends of the Internet, 2009, pp. 1–19. D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra, A. Kapoor, S. Sinha,M. Sudarshan, S. Stratman, FarmBeats: An IoT platform for data-driven agriculture, in: Proceedings of the USENIX Symposium on Networked Systems Design and Implementation, 2017, pp. 515–529. Domingo (b10) 2012; 35 Wang, Wang, Xie (b70) 2015; 8 Jiang, Xu, Cai, Jiang, Bu, Xu (b25) 2014; 10 I. Triguero, M. Galar, D. Merino, J. Maillo, H. Bustince, F. Herrera, Evolutionary undersampling for extremely imbalanced big data classification under apache spark, in: Proceedings of the IEEE Congress on Evolutionary Computation, CEC, 2016, pp. 640–647. Tuning Spark, 2017, available at B. Wang, J. Yin, Q. Hua, Z. Wu, J. Cao, Parallelizing k-means-based clustering on spark, in: Proceedings of the International Conference on Advanced Cloud and Big Data, 2016, pp. 31–36. del Río, López, Benítez, Herrera (b9) 2015; 8 Ashton (b2) 2009; 22 Gopalani, Arora (b15) 2015; 113 D. Teijeiro, X.C. Pardo, P. González, J.R. Banga, R. Doallo, Implementing parallel differential evolution on spark, in: Proceedings of the European Conference on Applications of Evolutionary Computation, 2016, pp. 75–90. Xu, Xu, Cai, Xie, Hu, Bu (b75) 2014; 10 Meng, Bradley, Yavuz, Sparks, Venkataraman, Liu, Freeman, Tsai, Amde, Owen, Xin, Xin, Franklin, Zadeh, Zaharia, Talwalkar (b41) 2016; 17 Ashton (b1) 2009 T. Sarazin, H. Azzag, M. Lebbah, SOM clustering using spark-mapreduce, in: Proceedings of the IEEE International Parallel Distributed Processing Symposium Workshops, 2014, pp. 1727–1734. M. Riondato, J.A. DeBrabant, R. Fonseca, E. Upfal, PARMA: A parallel randomized algorithm for approximate association rules mining in mapreduce, in: Proceedings of the ACM International Conference on Information and Knowledge Management, 2012, pp. 85–94. C.-W. Tsai, H.-C. Chang, K.-C. Hu, M.-C. Chiang, Parallel coral reef algorithm for solving JSP on Spark, in: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, SMC, 2016, pp. 1872–1877. Miorandi, Sicari, De Pellegrini, Chlamtac (b42) 2012; 10 Tsai, Lai, Chiang, Yang (b64) 2014; 16 N. Li, L. Zeng, Q. He, Z. Shi, Parallel implementation of apriori algorithm based on mapreduce, in: Proceedings of the ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 2012, pp. 236–241. Spark, 2014, available at X. Lin, P. Wang, B. Wu, Log analysis in cloud computing environment with Hadoop and Spark, in: Proceedings of the IEEE International Conference on Broadband Network Multimedia Technology, 2013, pp. 273–276. Hu, Ren, Liu, Li, Jie (b21) 2017; 20 J.B. McQueen, Some methods of classification and analysis of multivariate observations, in: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297. Zhou, Wang, Wang (b82) 2012; 10 F. Gui, Y. Ma, F. Zhang, M. Liu, F. Li, W. Shen, H. Bai, A distributed frequent itemset mining algorithm based on Spark, in: Proceedings of the IEEE International Conference on Computer Supported Cooperative Work in Design, 2015, pp. 271–275. Internet of Things Technology Market by Hardware (Processor. Sensor, Connectivity Technology), Platform (Device Management Platform, Application Management Platform, Network Management Platform) Software Solutions, and Services, Application, and Geography - Forecast to 2022, 2016. URL López, del Río, Benítez, Herrera (b36) 2015; 258 del Río (10.1016/j.jpdc.2017.10.020_b9) 2015; 8 10.1016/j.jpdc.2017.10.020_b23 10.1016/j.jpdc.2017.10.020_b67 Wang (10.1016/j.jpdc.2017.10.020_b70) 2015; 8 10.1016/j.jpdc.2017.10.020_b68 10.1016/j.jpdc.2017.10.020_b26 10.1016/j.jpdc.2017.10.020_b63 10.1016/j.jpdc.2017.10.020_b22 Perera (10.1016/j.jpdc.2017.10.020_b48) 2014; 16 10.1016/j.jpdc.2017.10.020_b66 Meng (10.1016/j.jpdc.2017.10.020_b41) 2016; 17 Jiang (10.1016/j.jpdc.2017.10.020_b25) 2014; 10 10.1016/j.jpdc.2017.10.020_b28 10.1016/j.jpdc.2017.10.020_b29 Zhang (10.1016/j.jpdc.2017.10.020_b79) 2015; 18 López (10.1016/j.jpdc.2017.10.020_b36) 2015; 258 10.1016/j.jpdc.2017.10.020_b71 10.1016/j.jpdc.2017.10.020_b72 Krishna (10.1016/j.jpdc.2017.10.020_b30) 1999; 29 10.1016/j.jpdc.2017.10.020_b73 Qi (10.1016/j.jpdc.2017.10.020_b51) 2016; 31 10.1016/j.jpdc.2017.10.020_b34 10.1016/j.jpdc.2017.10.020_b35 10.1016/j.jpdc.2017.10.020_b37 Piccialli (10.1016/j.jpdc.2017.10.020_b49) 2017; 22 10.1016/j.jpdc.2017.10.020_b31 10.1016/j.jpdc.2017.10.020_b32 10.1016/j.jpdc.2017.10.020_b76 10.1016/j.jpdc.2017.10.020_b33 Yang (10.1016/j.jpdc.2017.10.020_b77) 2014; 11 10.1016/j.jpdc.2017.10.020_b38 10.1016/j.jpdc.2017.10.020_b39 Zhou (10.1016/j.jpdc.2017.10.020_b82) 2012; 10 Tsai (10.1016/j.jpdc.2017.10.020_b64) 2014; 16 Atzori (10.1016/j.jpdc.2017.10.020_b3) 2010; 54 Zanella (10.1016/j.jpdc.2017.10.020_b78) 2014; 1 Chen (10.1016/j.jpdc.2017.10.020_b7) 2017; 28 Gaifang (10.1016/j.jpdc.2017.10.020_b14) 2017; 60 Keller (10.1016/j.jpdc.2017.10.020_b27) 2011 10.1016/j.jpdc.2017.10.020_b40 Xie (10.1016/j.jpdc.2017.10.020_b74) 2017 Zhou (10.1016/j.jpdc.2017.10.020_b81) 2013; 18 10.1016/j.jpdc.2017.10.020_b80 10.1016/j.jpdc.2017.10.020_b45 Chen (10.1016/j.jpdc.2017.10.020_b6) 2015 10.1016/j.jpdc.2017.10.020_b46 Wan (10.1016/j.jpdc.2017.10.020_b69) 2017; 13 10.1016/j.jpdc.2017.10.020_b47 Ashton (10.1016/j.jpdc.2017.10.020_b1) 2009 10.1016/j.jpdc.2017.10.020_b43 10.1016/j.jpdc.2017.10.020_b44 Miorandi (10.1016/j.jpdc.2017.10.020_b42) 2012; 10 Bandyopadhyay (10.1016/j.jpdc.2017.10.020_b5) 2011; 58 10.1016/j.jpdc.2017.10.020_b50 Gopalani (10.1016/j.jpdc.2017.10.020_b15) 2015; 113 Jain (10.1016/j.jpdc.2017.10.020_b24) 1999; 31 10.1016/j.jpdc.2017.10.020_b56 Xu (10.1016/j.jpdc.2017.10.020_b75) 2014; 10 10.1016/j.jpdc.2017.10.020_b13 10.1016/j.jpdc.2017.10.020_b57 Gubbi (10.1016/j.jpdc.2017.10.020_b18) 2013; 29 10.1016/j.jpdc.2017.10.020_b58 10.1016/j.jpdc.2017.10.020_b59 10.1016/j.jpdc.2017.10.020_b52 10.1016/j.jpdc.2017.10.020_b54 10.1016/j.jpdc.2017.10.020_b11 10.1016/j.jpdc.2017.10.020_b55 Domingo (10.1016/j.jpdc.2017.10.020_b10) 2012; 35 Ashton (10.1016/j.jpdc.2017.10.020_b2) 2009; 22 Reyes-Ortiz (10.1016/j.jpdc.2017.10.020_b53) 2015; 53 10.1016/j.jpdc.2017.10.020_b16 10.1016/j.jpdc.2017.10.020_b17 Hu (10.1016/j.jpdc.2017.10.020_b21) 2017; 20 10.1016/j.jpdc.2017.10.020_b19 10.1016/j.jpdc.2017.10.020_b8 Fan (10.1016/j.jpdc.2017.10.020_b12) 2012; 6 10.1016/j.jpdc.2017.10.020_b4 He (10.1016/j.jpdc.2017.10.020_b20) 2014; 10 Tsai (10.1016/j.jpdc.2017.10.020_b65) 2014; 8 10.1016/j.jpdc.2017.10.020_b60 10.1016/j.jpdc.2017.10.020_b61 10.1016/j.jpdc.2017.10.020_b62 |
| References_xml | – volume: 35 start-page: 584 year: 2012 end-page: 596 ident: b10 article-title: An overview of the internet of things for people with disabilities publication-title: J. Netw. Comput. Appl. – reference: I. Triguero, M. Galar, D. Merino, J. Maillo, H. Bustince, F. Herrera, Evolutionary undersampling for extremely imbalanced big data classification under apache spark, in: Proceedings of the IEEE Congress on Evolutionary Computation, CEC, 2016, pp. 640–647. – reference: A. Grilo, H. Sarmento, M. Nunes1, J. Gona̧lves, P. Pereira, A. Casaca, C. Fortunato, A Wireless Sensors Suite for Smart Grid Applications, in: Proceedings of the International Workshop on Information Technology for Energy Applications, 2012, pp. 1–10. – reference: S. Cuomo, P.D. Michele, A. Galletti, F. Piccialli, A cultural heritage case study of visitor experiences shared on a social network, in: Proceedings of the International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 2015, pp. 539–544. – year: 2015 ident: b6 article-title: Data mining for the internet of things: Literature review and challenges publication-title: Int. J. Distrib. Sens. Netw. – reference: Wine, 2017, available at – volume: 113 start-page: 8 year: 2015 end-page: 11 ident: b15 article-title: Comparing apache spark and map reduce with performance analysis using k-means publication-title: Int. J. Comput. Appl. – volume: 58 start-page: 49 year: 2011 end-page: 69 ident: b5 article-title: Internet of things: Applications and challenges in technology and standardization publication-title: Wirel. Pers. Commun. – reference: User-locations-Finland_N13467-D2, 2017, available at – reference: C.-W. Tsai, H.-C. Chang, K.-C. Hu, M.-C. Chiang, Parallel coral reef algorithm for solving JSP on Spark, in: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, SMC, 2016, pp. 1872–1877. – volume: 18 start-page: 369 year: 2013 end-page: 378 ident: b81 article-title: An efficient multidimensional fusion algorithm for IoT data based on partitioning publication-title: Tsinghua Sci. Technol. – reference: Online News Popularity, 2017, available at – reference: T. Sarazin, H. Azzag, M. Lebbah, SOM clustering using spark-mapreduce, in: Proceedings of the IEEE International Parallel Distributed Processing Symposium Workshops, 2014, pp. 1727–1734. – volume: 53 start-page: 121 year: 2015 end-page: 130 ident: b53 article-title: Big data analytics in the cloud: Spark on Hadoop vs MPI/OpenMP on beowulf publication-title: Procedia Comput. Sci. – reference: J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, 1995, pp. 1942–1948. – volume: 60 start-page: 66 year: 2017 end-page: 75 ident: b14 article-title: Cooperative ant colony-genetic algorithm based on spark publication-title: Comput. Electr. Eng. – volume: 17 start-page: 1235 year: 2016 end-page: 1241 ident: b41 article-title: MLlib: Machine learning in apache spark publication-title: J. Mach. Learn. Res. – reference: Iris, 2017, available at – reference: Y. Ma, J. Rao, W. Hu, X. Meng, X. Han, Y. Zhang, Y. Chai, C. Liu, An efficient index for massive IOT data in cloud environment, in: Proceedings of the ACM International Conference on Information and Knowledge Management, 2012, pp. 2129–2133. – volume: 54 start-page: 2787 year: 2010 end-page: 2805 ident: b3 article-title: The Internet of Things: A survey publication-title: Comput. Netw. – reference: Auto-ID Labs, Massachusetts Institute of Technology, 2012, available at – reference: A.W. McNabb, C.K. Monson, K.D. Seppi, Parallel PSO using mapreduce, in: Proceedings of the IEEE Congress on Evolutionary Computation, 2007,pp. 7–14. – reference: A. Ene, S. Im, B. Moseley, Fast clustering using mapreduce, in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011, pp. 681–689. – reference: G. Santucci, From Internet of Data to Internet of Things, in: Proceedings of the International Conference on Future Trends of the Internet, 2009, pp. 1–19. – reference: R.Z. Qi, Pairwise test generation based on parallel genetic algorithm with spark, in: Proceedings of the International Conference on Computer Information Systems and Industrial Applications, 2015, pp. 67–70. – volume: 13 start-page: 2039 year: 2017 end-page: 2047 ident: b69 article-title: A manufacturing big data solution for active preventive maintenance publication-title: IEEE Trans. Ind. Inf. – volume: 8 start-page: 279 year: 2014 end-page: 291 ident: b65 article-title: Metaheuristic scheduling for cloud: A survey publication-title: IEEE Syst. J. – volume: 10 start-page: 1087 year: 2012 end-page: 1092 ident: b82 article-title: Parallel implementation of classification algorithms based on cloud computing environment publication-title: TELKOMNIKA – reference: S. Misbahuddin, J.A. Zubairi, A. Saggaf, J. Basuni, S. A-Wadany, A. Al-Sofi, IoT based dynamic road traffic management for smart cities, in: Proceedings of the International Conference on High-capacity Optical Networks and Enabling/Emerging Technologies, 2015, pp. 1–5. – reference: Three misunderstandings of Spark, 2017, available at – volume: 1 start-page: 22 year: 2014 end-page: 32 ident: b78 article-title: Internet of Things for smart cities publication-title: IEEE Internet Things J. – volume: 20 start-page: 1089 year: 2017 end-page: 1099 ident: b21 article-title: A Spark-based genetic algorithm for sensor placement in large scale drinking water distribution systems publication-title: Cluster Comput. – reference: Robert L. Mitchell, The Internet of Things at home: 14 smart products that could change your life, computerworld, 2014. Available at – volume: 16 start-page: 77 year: 2014 end-page: 97 ident: b64 article-title: Data mining for Internet of Things: A survey publication-title: IEEE Commun. Surv. Tutor. – reference: C.W. Tsai, C.H. Hsieh, M.C. Chiang, Parallel black hole clustering based on mapreduce, in: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, 2015, pp. 2543–2548. – reference: D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra, A. Kapoor, S. Sinha,M. Sudarshan, S. Stratman, FarmBeats: An IoT platform for data-driven agriculture, in: Proceedings of the USENIX Symposium on Networked Systems Design and Implementation, 2017, pp. 515–529. – volume: 18 start-page: 1493 year: 2015 end-page: 1501 ident: b79 article-title: A distributed frequent itemset mining algorithm using Spark for Big Data analytics publication-title: Cluster Comput. – year: 2011 ident: b27 publication-title: Mining the Internet of Things: Detection of False-Positive RFID Tag Reads using Low-Level Reader Data – reference: S. Rathee, M. Kaul, A. Kashyap, R-Apriori: An efficient apriori based algorithm on spark, in: Proceedings of the Workshop on Ph.D. Workshop in Information and Knowledge Management, 2015, pp. 27–34. – reference: M. Riondato, J.A. DeBrabant, R. Fonseca, E. Upfal, PARMA: A parallel randomized algorithm for approximate association rules mining in mapreduce, in: Proceedings of the ACM International Conference on Information and Knowledge Management, 2012, pp. 85–94. – reference: X. Lin, P. Wang, B. Wu, Log analysis in cloud computing environment with Hadoop and Spark, in: Proceedings of the IEEE International Conference on Broadband Network Multimedia Technology, 2013, pp. 273–276. – volume: 10 start-page: 1587 year: 2014 end-page: 1595 ident: b20 article-title: Developing vehicular data cloud services in the IoT environment publication-title: IEEE Trans. Ind. Inf. – volume: 8 start-page: 407 year: 2015 end-page: 414 ident: b70 article-title: Implementation of a parallel algorithm based on a spark cloud computing platform publication-title: Algorithms – year: 2009 ident: b1 article-title: That ‘Internet of Things’ thing publication-title: RFID J. – volume: 29 start-page: 1645 year: 2013 end-page: 1660 ident: b18 article-title: Internet of Things (IoT): A vision, architectural elements, and future directions publication-title: Future Gener. Comput. Syst. – reference: M.-Y. Lin, P.-Y. Lee, S.-C. Hsueh, Apriori-based frequent itemset mining algorithms on mapreduce, in: Proceedings of the 6th International Conference on Ubiquitous Information Management and Communication, 2012,pp. 76:1–76:8. – reference: Internet of Things Technology Market by Hardware (Processor. Sensor, Connectivity Technology), Platform (Device Management Platform, Application Management Platform, Network Management Platform) Software Solutions, and Services, Application, and Geography - Forecast to 2022, 2016. URL – reference: S. Papadimitriou, J. Sun, DisCo: Distributed co-clustering with map-reduce: A case study towards petabyte-scale end-to-end mining, in: Proceedings of the IEEE International Conference on Data Mining, 2008, pp. 512–521. – reference: K. Govindarajan, D. Boulanger, V.S. Kumar, . Kinshuk, Parallel particle swarm optimization (PPSO) clustering for learning analytics, in: Proceedings of the IEEE International Conference on Big Data, 2015, pp. 1461–1465. – reference: J.B. McQueen, Some methods of classification and analysis of multivariate observations, in: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297. – volume: 10 start-page: 1578 year: 2014 end-page: 1586 ident: b75 article-title: Ubiquitous data accessing method in IoT-based information system for emergency medical services publication-title: IEEE Trans. Ind. Inf. – start-page: 1 year: 2017 end-page: 14 ident: b74 article-title: An evolvable and transparent data as a service framework for multisource data integration and fusion publication-title: Peer-To-Peer Netw. Appl. – volume: 8 start-page: 422 year: 2015 end-page: 437 ident: b9 article-title: A mapreduce approach to address big data classification problems based on the fusion of linguistic fuzzy rules publication-title: Int. J. Comput. Intell. Syst. – reference: W. Zhao, H. Ma, Q. He, Parallel k-means clustering based on mapreduce, in: Proceedings of the International Conference Cloud Computing, 2009,pp. 674–679. – reference: R.L. Ferreira Cordeiro, C. Traina, JuniorA. J. Machado Traina, J. López, U. Kang, C. Faloutsos, Clustering very large multi-dimensional datasets with mapreduce, in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011, pp. 690–698. – reference: N. Li, L. Zeng, Q. He, Z. Shi, Parallel implementation of apriori algorithm based on mapreduce, in: Proceedings of the ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 2012, pp. 236–241. – volume: 31 start-page: 264 year: 1999 end-page: 323 ident: b24 article-title: Data clustering: A review publication-title: ACM Comput. Surv. – reference: Spark, 2014, available at – volume: 6 start-page: 660 year: 2012 end-page: 667 ident: b12 article-title: The Internet of data: A new idea to extend the IOT in the digital world publication-title: Front. Comput. Sci. – reference: B. Wang, J. Yin, Q. Hua, Z. Wu, J. Cao, Parallelizing k-means-based clustering on spark, in: Proceedings of the International Conference on Advanced Cloud and Big Data, 2016, pp. 31–36. – reference: X.Y. Yang, Z. Liu, Y. Fu, MapReduce as a programming model for association rules algorithm on Hadoop, in: Proceedings of the International Conference on Information Sciences and Interaction Sciences, 2010, pp. 99–102. – reference: Shuttle, 2017, available at – volume: 31 start-page: 417 year: 2016 end-page: 427 ident: b51 article-title: A parallel genetic algorithm based on spark for pairwise test suite generation publication-title: J. Comput. Sci. Tech. – volume: 22 start-page: 97 year: 2009 end-page: 114 ident: b2 article-title: That internet of things thing publication-title: RFID J. – reference: . – reference: Tuning Spark, 2017, available at – volume: 11 start-page: 1 year: 2014 end-page: 15 ident: b77 article-title: An overview of Internet of Vehicles publication-title: China Commun. – reference: G. Wu, H. Li, X. Hu, Y. Bi, J. Zhang, X. Wu, MReC4.5: C4.5 ensemble classification with mapreduce, in: 2009 Fourth ChinaGrid Annual Conference, 2009,pp. 249–255. – reference: F. Gui, Y. Ma, F. Zhang, M. Liu, F. Li, W. Shen, H. Bai, A distributed frequent itemset mining algorithm based on Spark, in: Proceedings of the IEEE International Conference on Computer Supported Cooperative Work in Design, 2015, pp. 271–275. – reference: D. Laney, 3D Data Management: Controlling Data Volume, Velocity, and Variety, Tech. Rep., META Group, 2001, – volume: 16 start-page: 414 year: 2014 end-page: 454 ident: b48 article-title: Context aware computing for the internet of things: A survey publication-title: IEEE Commun. Surv. Tutor. – volume: 10 start-page: 1497 year: 2012 end-page: 1516 ident: b42 article-title: Internet of things: Vision, applications and research challenges publication-title: Ad Hoc Networks – reference: . – reference: C. Jin, C. Vecchiola, R. Buyya, MRPGA: An extension of mapreduce for parallelizing genetic algorithms, in: Proceedings of the IEEE Fourth International Conference on eScience, 2008, pp. 214–221. – volume: 22 start-page: 605 year: 2017 end-page: 612 ident: b49 article-title: Understanding customer experience diffusion on social networking services by big data analytics publication-title: Mob. Netw. Appl. – volume: 10 start-page: 1443 year: 2014 end-page: 1451 ident: b25 article-title: An IoT-oriented data storage framework in cloud computing platform publication-title: IEEE Trans. Ind. Inf. – reference: A.K. Koliopoulos, P. Yiapanis, F. Tekiner, G. Nenadic, J. Keane, A parallel distributed weka framework for big data mining using spark, in: 2015 IEEE International Congress on Big Data, 2015, pp. 9–16. – volume: 29 start-page: 433 year: 1999 end-page: 439 ident: b30 article-title: Genetic K-means algorithm publication-title: IEEE Trans. Syst. Man Cybern. B – volume: 258 start-page: 5 year: 2015 end-page: 38 ident: b36 article-title: Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data publication-title: Fuzzy Sets and Systems – reference: D. Teijeiro, X.C. Pardo, P. González, J.R. Banga, R. Doallo, Implementing parallel differential evolution on spark, in: Proceedings of the European Conference on Applications of Evolutionary Computation, 2016, pp. 75–90. – reference: T. Li, Y. Liu, Y. Tian, S. Shen, W. Mao, A storage solution for massive IoT data based on NoSQL, in: Proceedings of the IEEE International Conference on Green Computing and Communications, 2012, pp. 50–57. – reference: Mahout, 2011, available at – reference: G. Motta, L. You, D. Sacco, T. Ma, G. Miceli, Mobility Service Systems: Guidelines for a possible paradigm and a case study, in: Proceedings of IEEE International Conference on Service Operations and Logistics, and Informatics, 2014,pp. 48–53. – volume: 28 start-page: 919 year: 2017 end-page: 933 ident: b7 article-title: A Parallel random forest algorithm for big data in a spark cloud computing environment publication-title: IEEE Trans. Parallel Distrib. Syst. – ident: 10.1016/j.jpdc.2017.10.020_b33 doi: 10.1109/SNPD.2012.31 – ident: 10.1016/j.jpdc.2017.10.020_b37 doi: 10.1145/2396761.2398587 – ident: 10.1016/j.jpdc.2017.10.020_b62 – ident: 10.1016/j.jpdc.2017.10.020_b59 doi: 10.1007/978-3-319-31153-1_6 – ident: 10.1016/j.jpdc.2017.10.020_b66 – volume: 53 start-page: 121 year: 2015 ident: 10.1016/j.jpdc.2017.10.020_b53 article-title: Big data analytics in the cloud: Spark on Hadoop vs MPI/OpenMP on beowulf publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.07.286 – volume: 6 start-page: 660 issue: 6 year: 2012 ident: 10.1016/j.jpdc.2017.10.020_b12 article-title: The Internet of data: A new idea to extend the IOT in the digital world publication-title: Front. Comput. Sci. – ident: 10.1016/j.jpdc.2017.10.020_b4 – year: 2011 ident: 10.1016/j.jpdc.2017.10.020_b27 – volume: 10 start-page: 1578 issue: 2 year: 2014 ident: 10.1016/j.jpdc.2017.10.020_b75 article-title: Ubiquitous data accessing method in IoT-based information system for emergency medical services publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2014.2306382 – volume: 31 start-page: 417 issue: 2 year: 2016 ident: 10.1016/j.jpdc.2017.10.020_b51 article-title: A parallel genetic algorithm based on spark for pairwise test suite generation publication-title: J. Comput. Sci. Tech. doi: 10.1007/s11390-016-1635-5 – volume: 10 start-page: 1087 issue: 5 year: 2012 ident: 10.1016/j.jpdc.2017.10.020_b82 article-title: Parallel implementation of classification algorithms based on cloud computing environment publication-title: TELKOMNIKA doi: 10.11591/telkomnika.v10i5.1353 – volume: 258 start-page: 5 year: 2015 ident: 10.1016/j.jpdc.2017.10.020_b36 article-title: Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2014.01.015 – year: 2015 ident: 10.1016/j.jpdc.2017.10.020_b6 article-title: Data mining for the internet of things: Literature review and challenges publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1155/2015/431047 – ident: 10.1016/j.jpdc.2017.10.020_b72 – volume: 28 start-page: 919 issue: 4 year: 2017 ident: 10.1016/j.jpdc.2017.10.020_b7 article-title: A Parallel random forest algorithm for big data in a spark cloud computing environment publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2016.2603511 – ident: 10.1016/j.jpdc.2017.10.020_b76 doi: 10.1109/ICICIS.2010.5534718 – ident: 10.1016/j.jpdc.2017.10.020_b63 doi: 10.1109/SMC.2015.445 – ident: 10.1016/j.jpdc.2017.10.020_b8 doi: 10.1109/3PGCIC.2015.55 – ident: 10.1016/j.jpdc.2017.10.020_b34 doi: 10.1145/2184751.2184842 – volume: 16 start-page: 414 issue: 1 year: 2014 ident: 10.1016/j.jpdc.2017.10.020_b48 article-title: Context aware computing for the internet of things: A survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/SURV.2013.042313.00197 – ident: 10.1016/j.jpdc.2017.10.020_b38 – ident: 10.1016/j.jpdc.2017.10.020_b40 – ident: 10.1016/j.jpdc.2017.10.020_b61 doi: 10.1109/CEC.2016.7743853 – ident: 10.1016/j.jpdc.2017.10.020_b32 doi: 10.1109/GreenCom.2012.18 – volume: 8 start-page: 407 issue: 3 year: 2015 ident: 10.1016/j.jpdc.2017.10.020_b70 article-title: Implementation of a parallel algorithm based on a spark cloud computing platform publication-title: Algorithms doi: 10.3390/a8030407 – volume: 60 start-page: 66 year: 2017 ident: 10.1016/j.jpdc.2017.10.020_b14 article-title: Cooperative ant colony-genetic algorithm based on spark publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2016.09.035 – ident: 10.1016/j.jpdc.2017.10.020_b55 – volume: 18 start-page: 369 issue: 4 year: 2013 ident: 10.1016/j.jpdc.2017.10.020_b81 article-title: An efficient multidimensional fusion algorithm for IoT data based on partitioning publication-title: Tsinghua Sci. Technol. doi: 10.1109/TST.2013.6574675 – ident: 10.1016/j.jpdc.2017.10.020_b17 – ident: 10.1016/j.jpdc.2017.10.020_b45 doi: 10.1109/SOLI.2014.6960692 – ident: 10.1016/j.jpdc.2017.10.020_b50 – ident: 10.1016/j.jpdc.2017.10.020_b44 – volume: 13 start-page: 2039 issue: 4 year: 2017 ident: 10.1016/j.jpdc.2017.10.020_b69 article-title: A manufacturing big data solution for active preventive maintenance publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2017.2670505 – ident: 10.1016/j.jpdc.2017.10.020_b23 – volume: 8 start-page: 422 issue: 3 year: 2015 ident: 10.1016/j.jpdc.2017.10.020_b9 article-title: A mapreduce approach to address big data classification problems based on the fusion of linguistic fuzzy rules publication-title: Int. J. Comput. Intell. Syst. doi: 10.1080/18756891.2015.1017377 – ident: 10.1016/j.jpdc.2017.10.020_b73 doi: 10.1109/ChinaGrid.2009.39 – volume: 10 start-page: 1497 issue: 7 year: 2012 ident: 10.1016/j.jpdc.2017.10.020_b42 article-title: Internet of things: Vision, applications and research challenges publication-title: Ad Hoc Networks doi: 10.1016/j.adhoc.2012.02.016 – ident: 10.1016/j.jpdc.2017.10.020_b19 doi: 10.1109/CSCWD.2015.7230970 – volume: 29 start-page: 433 issue: 3 year: 1999 ident: 10.1016/j.jpdc.2017.10.020_b30 article-title: Genetic K-means algorithm publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/3477.764879 – year: 2009 ident: 10.1016/j.jpdc.2017.10.020_b1 article-title: That ‘Internet of Things’ thing publication-title: RFID J. – volume: 20 start-page: 1089 issue: 2 year: 2017 ident: 10.1016/j.jpdc.2017.10.020_b21 article-title: A Spark-based genetic algorithm for sensor placement in large scale drinking water distribution systems publication-title: Cluster Comput. doi: 10.1007/s10586-017-0838-z – volume: 31 start-page: 264 issue: 3 year: 1999 ident: 10.1016/j.jpdc.2017.10.020_b24 article-title: Data clustering: A review publication-title: ACM Comput. Surv. doi: 10.1145/331499.331504 – ident: 10.1016/j.jpdc.2017.10.020_b58 – ident: 10.1016/j.jpdc.2017.10.020_b68 – start-page: 1 year: 2017 ident: 10.1016/j.jpdc.2017.10.020_b74 article-title: An evolvable and transparent data as a service framework for multisource data integration and fusion publication-title: Peer-To-Peer Netw. Appl. – volume: 10 start-page: 1443 issue: 2 year: 2014 ident: 10.1016/j.jpdc.2017.10.020_b25 article-title: An IoT-oriented data storage framework in cloud computing platform publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2014.2306384 – ident: 10.1016/j.jpdc.2017.10.020_b80 doi: 10.1007/978-3-642-10665-1_71 – volume: 22 start-page: 605 issue: 4 year: 2017 ident: 10.1016/j.jpdc.2017.10.020_b49 article-title: Understanding customer experience diffusion on social networking services by big data analytics publication-title: Mob. Netw. Appl. doi: 10.1007/s11036-016-0803-8 – ident: 10.1016/j.jpdc.2017.10.020_b31 – volume: 10 start-page: 1587 issue: 2 year: 2014 ident: 10.1016/j.jpdc.2017.10.020_b20 article-title: Developing vehicular data cloud services in the IoT environment publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2014.2299233 – ident: 10.1016/j.jpdc.2017.10.020_b28 doi: 10.1109/ICNN.1995.488968 – volume: 17 start-page: 1235 issue: 1 year: 2016 ident: 10.1016/j.jpdc.2017.10.020_b41 article-title: MLlib: Machine learning in apache spark publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.jpdc.2017.10.020_b11 doi: 10.1145/2020408.2020515 – ident: 10.1016/j.jpdc.2017.10.020_b71 doi: 10.1109/CBD.2016.016 – ident: 10.1016/j.jpdc.2017.10.020_b60 – ident: 10.1016/j.jpdc.2017.10.020_b22 – ident: 10.1016/j.jpdc.2017.10.020_b54 doi: 10.1145/2396761.2396776 – ident: 10.1016/j.jpdc.2017.10.020_b35 doi: 10.1109/ICBNMT.2013.6823956 – ident: 10.1016/j.jpdc.2017.10.020_b47 doi: 10.1109/ICDM.2008.142 – ident: 10.1016/j.jpdc.2017.10.020_b52 doi: 10.1145/2809890.2809893 – volume: 11 start-page: 1 issue: 10 year: 2014 ident: 10.1016/j.jpdc.2017.10.020_b77 article-title: An overview of Internet of Vehicles publication-title: China Commun. doi: 10.1109/CC.2014.6969789 – ident: 10.1016/j.jpdc.2017.10.020_b39 doi: 10.1109/CEC.2007.4424448 – volume: 16 start-page: 77 issue: 1 year: 2014 ident: 10.1016/j.jpdc.2017.10.020_b64 article-title: Data mining for Internet of Things: A survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/SURV.2013.103013.00206 – ident: 10.1016/j.jpdc.2017.10.020_b67 – ident: 10.1016/j.jpdc.2017.10.020_b57 – ident: 10.1016/j.jpdc.2017.10.020_b26 doi: 10.1109/eScience.2008.78 – volume: 18 start-page: 1493 issue: 4 year: 2015 ident: 10.1016/j.jpdc.2017.10.020_b79 article-title: A distributed frequent itemset mining algorithm using Spark for Big Data analytics publication-title: Cluster Comput. doi: 10.1007/s10586-015-0477-1 – volume: 8 start-page: 279 issue: 1 year: 2014 ident: 10.1016/j.jpdc.2017.10.020_b65 article-title: Metaheuristic scheduling for cloud: A survey publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2013.2256731 – volume: 1 start-page: 22 issue: 1 year: 2014 ident: 10.1016/j.jpdc.2017.10.020_b78 article-title: Internet of Things for smart cities publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2014.2306328 – ident: 10.1016/j.jpdc.2017.10.020_b43 doi: 10.1109/HONET.2015.7395434 – volume: 113 start-page: 8 issue: 1 year: 2015 ident: 10.1016/j.jpdc.2017.10.020_b15 article-title: Comparing apache spark and map reduce with performance analysis using k-means publication-title: Int. J. Comput. Appl. – volume: 22 start-page: 97 issue: 7 year: 2009 ident: 10.1016/j.jpdc.2017.10.020_b2 article-title: That internet of things thing publication-title: RFID J. – volume: 35 start-page: 584 issue: 2 year: 2012 ident: 10.1016/j.jpdc.2017.10.020_b10 article-title: An overview of the internet of things for people with disabilities publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2011.10.015 – ident: 10.1016/j.jpdc.2017.10.020_b56 doi: 10.1109/IPDPSW.2014.192 – ident: 10.1016/j.jpdc.2017.10.020_b13 doi: 10.1145/2020408.2020516 – ident: 10.1016/j.jpdc.2017.10.020_b46 – volume: 58 start-page: 49 issue: 1 year: 2011 ident: 10.1016/j.jpdc.2017.10.020_b5 article-title: Internet of things: Applications and challenges in technology and standardization publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-011-0288-5 – ident: 10.1016/j.jpdc.2017.10.020_b16 doi: 10.1109/BigData.2015.7363907 – volume: 54 start-page: 2787 issue: 15 year: 2010 ident: 10.1016/j.jpdc.2017.10.020_b3 article-title: The Internet of Things: A survey publication-title: Comput. Netw. doi: 10.1016/j.comnet.2010.05.010 – volume: 29 start-page: 1645 issue: 7 year: 2013 ident: 10.1016/j.jpdc.2017.10.020_b18 article-title: Internet of Things (IoT): A vision, architectural elements, and future directions publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2013.01.010 – ident: 10.1016/j.jpdc.2017.10.020_b29 doi: 10.1109/BigDataCongress.2015.12 |
| SSID | ssj0011578 |
| Score | 2.3395948 |
| Snippet | A high performance data analytics for internet of things (IoT) has been a promising research subject in recent years because traditional data mining algorithms... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 39 |
| SubjectTerms | Data clustering problem Internet of things Metaheuristic algorithm |
| Title | A parallel metaheuristic data clustering framework for cloud |
| URI | https://dx.doi.org/10.1016/j.jpdc.2017.10.020 |
| Volume | 116 |
| WOSCitedRecordID | wos000430372200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1096-0848 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011578 issn: 0743-7315 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF6l0EMvLX0J-kB76C0yWq_ttSNxiRBVQRXqgZb05K7X68aRZSKwET-fGe8jgRZUDr2srE12E3vGM-PxN98Q8klFPGOKa3gsgSEOCxZkcQE3XllWhRS8MKjKH1_Tk5NsNpt8G41-uVqYqyZt2-z6erL8r6KGORA2ls4-Qtx-U5iAYxA6jCB2GP9J8NMx0nk3jcaykE7OdW_ImMcIBh2rpkdqhAE_6XBZA9RQNef9raada6Gq3xCz7CVS7WKXLD0UxC37znk_TABcmvbWB_O-Dc507fE-dT_kWed1cNz72TObrP5ZB7jg93oKIsxWUClrqZDnNI1MXaY3q-G6YTSMRdbFGpLSP4y3ySMs9hbLEsklw3QPcXecrVyVez1_x4N5XKGDrC1y3CPHPWAihz2ekE2eJhOwe5vTo8PZsX_TFCbGW7tTsIVVBgN495_8PXhZC0hOt8hzKx46NRrwkox0-4q8cF06qDXar8n-lDr50VsKQVEh6EohqFcICgpBB4V4Q75_Pjw9-BLYnhmBihjrAiE40yFTWAJdCSWk5pIlEqLSSMSiUgWcWJQoCWF2EhUQq_GSlUlc6pjJsqhU9JZstOet3iZUyKxQsVDwCKpjDp-GleSymogqgbiOxTskdBcjV5ZQHvuaNPn9YtghY79maehUHvx24q5xbgNCE-jloDIPrHv3qF95T56tlPoD2eguev2RPFVXXX15sWv15QZXq4GG |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+metaheuristic+data+clustering+framework+for+cloud&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Tsai%2C+Chun-Wei&rft.au=Liu%2C+Shi-Jui&rft.au=Wang%2C+Yi-Chung&rft.date=2018-06-01&rft.issn=0743-7315&rft.volume=116&rft.spage=39&rft.epage=49&rft_id=info:doi/10.1016%2Fj.jpdc.2017.10.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpdc_2017_10_020 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon |