A parallel metaheuristic data clustering framework for cloud

A high performance data analytics for internet of things (IoT) has been a promising research subject in recent years because traditional data mining algorithms may not be applicable to big data of IoT. One of the main reasons is that the data that need to be analyzed may exceed the storage size of a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of parallel and distributed computing Ročník 116; s. 39 - 49
Hlavní autori: Tsai, Chun-Wei, Liu, Shi-Jui, Wang, Yi-Chung
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.06.2018
Predmet:
ISSN:0743-7315, 1096-0848
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A high performance data analytics for internet of things (IoT) has been a promising research subject in recent years because traditional data mining algorithms may not be applicable to big data of IoT. One of the main reasons is that the data that need to be analyzed may exceed the storage size of a single machine. The computation cost of data analysis tasks that is too high for a single computer system is another critical problem we have to confront when analyzing data from an IoT system. That is why an efficient data clustering framework for metaheuristic algorithm on a cloud computing environment is presented in this paper for data analytics, which explains how to divide mining tasks of a mining algorithm into different nodes (i.e., the Map process) and then aggregate the mining results from these nodes (i.e., Reduce process). We further attempted to use the proposed framework to implement data clustering algorithms (e.g., k-means, genetic k-means, and particle swarm optimization) on a standalone system and Spark. The experimental results show that the performance of the proposed framework makes it useful to develop data clustering algorithms on a cloud computing environment.
AbstractList A high performance data analytics for internet of things (IoT) has been a promising research subject in recent years because traditional data mining algorithms may not be applicable to big data of IoT. One of the main reasons is that the data that need to be analyzed may exceed the storage size of a single machine. The computation cost of data analysis tasks that is too high for a single computer system is another critical problem we have to confront when analyzing data from an IoT system. That is why an efficient data clustering framework for metaheuristic algorithm on a cloud computing environment is presented in this paper for data analytics, which explains how to divide mining tasks of a mining algorithm into different nodes (i.e., the Map process) and then aggregate the mining results from these nodes (i.e., Reduce process). We further attempted to use the proposed framework to implement data clustering algorithms (e.g., k-means, genetic k-means, and particle swarm optimization) on a standalone system and Spark. The experimental results show that the performance of the proposed framework makes it useful to develop data clustering algorithms on a cloud computing environment.
Author Tsai, Chun-Wei
Wang, Yi-Chung
Liu, Shi-Jui
Author_xml – sequence: 1
  givenname: Chun-Wei
  orcidid: 0000-0003-0128-4052
  surname: Tsai
  fullname: Tsai, Chun-Wei
  email: cwtsai@nchu.edu.tw
– sequence: 2
  givenname: Shi-Jui
  surname: Liu
  fullname: Liu, Shi-Jui
– sequence: 3
  givenname: Yi-Chung
  surname: Wang
  fullname: Wang, Yi-Chung
BookMark eNp9kMtqwzAQRUVJoUnaH-jKP2B3JFmyA9mE0BcEumnXYiKNW7mOHSSlpX9fh3TVRVYDdzgX7pmxST_0xNgth4ID13dt0e6dLQTwagwKEHDBphwWOoe6rCdsClUp80pydcVmMbYAnKuqnrLlKttjwK6jLttRwg86BB-Tt5nDhJntDjFR8P171gTc0fcQPrNmCONjOLhrdtlgF-nm787Z28P96_op37w8Pq9Xm9xKgJRrLYA4WC6karTVSAJBYb2QUpe6sdtxgVQWORdKbmslhQOnSkcloNs2Vs5Zfeq1YYgxUGOsT5j80KeAvjMczNGCac3RgjlaOGajhREV_9B98DsMP-eh5QmicdSXp2Ci9dRbcj6QTcYN_hz-C6XoeE4
CitedBy_id crossref_primary_10_1016_j_swevo_2024_101483
crossref_primary_10_1002_ett_4484
crossref_primary_10_1016_j_jpdc_2019_03_006
crossref_primary_10_1016_j_jpdc_2018_03_003
crossref_primary_10_1080_09544828_2018_1463514
crossref_primary_10_1016_j_comcom_2022_04_004
crossref_primary_10_1109_ACCESS_2021_3128814
crossref_primary_10_1007_s10288_019_00402_4
crossref_primary_10_1007_s12530_023_09539_4
crossref_primary_10_1007_s10462_019_09685_9
crossref_primary_10_1088_1742_6596_1979_1_012015
crossref_primary_10_1007_s10479_021_04496_0
crossref_primary_10_1016_j_jpdc_2019_12_015
crossref_primary_10_1109_TII_2020_2995680
crossref_primary_10_1007_s00500_019_03950_3
crossref_primary_10_1016_j_iot_2024_101187
crossref_primary_10_4018_IJCVIP_2018100102
crossref_primary_10_1016_j_swevo_2020_100748
crossref_primary_10_1002_cpe_7229
Cites_doi 10.1109/SNPD.2012.31
10.1145/2396761.2398587
10.1007/978-3-319-31153-1_6
10.1016/j.procs.2015.07.286
10.1109/TII.2014.2306382
10.1007/s11390-016-1635-5
10.11591/telkomnika.v10i5.1353
10.1016/j.fss.2014.01.015
10.1155/2015/431047
10.1109/TPDS.2016.2603511
10.1109/ICICIS.2010.5534718
10.1109/SMC.2015.445
10.1109/3PGCIC.2015.55
10.1145/2184751.2184842
10.1109/SURV.2013.042313.00197
10.1109/CEC.2016.7743853
10.1109/GreenCom.2012.18
10.3390/a8030407
10.1016/j.compeleceng.2016.09.035
10.1109/TST.2013.6574675
10.1109/SOLI.2014.6960692
10.1109/TII.2017.2670505
10.1080/18756891.2015.1017377
10.1109/ChinaGrid.2009.39
10.1016/j.adhoc.2012.02.016
10.1109/CSCWD.2015.7230970
10.1109/3477.764879
10.1007/s10586-017-0838-z
10.1145/331499.331504
10.1109/TII.2014.2306384
10.1007/978-3-642-10665-1_71
10.1007/s11036-016-0803-8
10.1109/TII.2014.2299233
10.1109/ICNN.1995.488968
10.1145/2020408.2020515
10.1109/CBD.2016.016
10.1145/2396761.2396776
10.1109/ICBNMT.2013.6823956
10.1109/ICDM.2008.142
10.1145/2809890.2809893
10.1109/CC.2014.6969789
10.1109/CEC.2007.4424448
10.1109/SURV.2013.103013.00206
10.1109/eScience.2008.78
10.1007/s10586-015-0477-1
10.1109/JSYST.2013.2256731
10.1109/JIOT.2014.2306328
10.1109/HONET.2015.7395434
10.1016/j.jnca.2011.10.015
10.1109/IPDPSW.2014.192
10.1145/2020408.2020516
10.1007/s11277-011-0288-5
10.1109/BigData.2015.7363907
10.1016/j.comnet.2010.05.010
10.1016/j.future.2013.01.010
10.1109/BigDataCongress.2015.12
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright_xml – notice: 2017 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jpdc.2017.10.020
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1096-0848
EndPage 49
ExternalDocumentID 10_1016_j_jpdc_2017_10_020
S0743731517302964
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADHUB
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
E.L
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
TWZ
WUQ
XJT
XOL
XPP
ZMT
ZU3
ZY4
~G-
~G0
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-6620e10c1235f6c6ae2a05a8933646fcb01635ca11253b8532d0d54de40adbfc3
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430372200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0743-7315
IngestDate Sat Nov 29 07:13:18 EST 2025
Tue Nov 18 22:48:39 EST 2025
Fri Feb 23 02:31:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Metaheuristic algorithm
Internet of things
Data clustering problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-6620e10c1235f6c6ae2a05a8933646fcb01635ca11253b8532d0d54de40adbfc3
ORCID 0000-0003-0128-4052
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_jpdc_2017_10_020
crossref_primary_10_1016_j_jpdc_2017_10_020
elsevier_sciencedirect_doi_10_1016_j_jpdc_2017_10_020
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationTitle Journal of parallel and distributed computing
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References W. Zhao, H. Ma, Q. He, Parallel k-means clustering based on mapreduce, in: Proceedings of the International Conference Cloud Computing, 2009,pp. 674–679.
Zanella, Bui, Castellani, Vangelista, Zorzi (b78) 2014; 1
A. Grilo, H. Sarmento, M. Nunes1, J. Gona̧lves, P. Pereira, A. Casaca, C. Fortunato, A Wireless Sensors Suite for Smart Grid Applications, in: Proceedings of the International Workshop on Information Technology for Energy Applications, 2012, pp. 1–10.
C.W. Tsai, C.H. Hsieh, M.C. Chiang, Parallel black hole clustering based on mapreduce, in: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, 2015, pp. 2543–2548.
Xie, Lv, Qin, Du, Huang (b74) 2017
Keller (b27) 2011
Y. Ma, J. Rao, W. Hu, X. Meng, X. Han, Y. Zhang, Y. Chai, C. Liu, An efficient index for massive IOT data in cloud environment, in: Proceedings of the ACM International Conference on Information and Knowledge Management, 2012, pp. 2129–2133.
Gubbi, Buyya, Marusic, Palaniswami (b18) 2013; 29
Auto-ID Labs, Massachusetts Institute of Technology, 2012, available at
A.K. Koliopoulos, P. Yiapanis, F. Tekiner, G. Nenadic, J. Keane, A parallel distributed weka framework for big data mining using spark, in: 2015 IEEE International Congress on Big Data, 2015, pp. 9–16.
Atzori, Iera, Morabito (b3) 2010; 54
A. Ene, S. Im, B. Moseley, Fast clustering using mapreduce, in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011, pp. 681–689.
T. Li, Y. Liu, Y. Tian, S. Shen, W. Mao, A storage solution for massive IoT data based on NoSQL, in: Proceedings of the IEEE International Conference on Green Computing and Communications, 2012, pp. 50–57.
Piccialli, Jung (b49) 2017; 22
Qi, Wang, Li (b51) 2016; 31
User-locations-Finland_N13467-D2, 2017, available at
Zhang, Liu, Gui, Shen, Shami, Ma (b79) 2015; 18
Fan, Chen, Xiong, Chen (b12) 2012; 6
A.W. McNabb, C.K. Monson, K.D. Seppi, Parallel PSO using mapreduce, in: Proceedings of the IEEE Congress on Evolutionary Computation, 2007,pp. 7–14.
S. Papadimitriou, J. Sun, DisCo: Distributed co-clustering with map-reduce: A case study towards petabyte-scale end-to-end mining, in: Proceedings of the IEEE International Conference on Data Mining, 2008, pp. 512–521.
J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, 1995, pp. 1942–1948.
Perera, Zaslavsky, Christen, Georgakopoulos (b48) 2014; 16
Krishna, Narasimha Murty (b30) 1999; 29
Mahout, 2011, available at
Chen, Li, Tang, Bilal, Yu, Weng, Li (b7) 2017; 28
He, Yan, Xu (b20) 2014; 10
Wan, Tang, Li, Wang, Liu, Abbas, Vasilakos (b69) 2017; 13
M.-Y. Lin, P.-Y. Lee, S.-C. Hsueh, Apriori-based frequent itemset mining algorithms on mapreduce, in: Proceedings of the 6th International Conference on Ubiquitous Information Management and Communication, 2012,pp. 76:1–76:8.
Shuttle, 2017, available at
R.Z. Qi, Pairwise test generation based on parallel genetic algorithm with spark, in: Proceedings of the International Conference on Computer Information Systems and Industrial Applications, 2015, pp. 67–70.
Three misunderstandings of Spark, 2017, available at
Yang, Wang, Li, Liu, Sun (b77) 2014; 11
Chen, Deng, Wan, Zhang, Vasilakos, Rong (b6) 2015
G. Wu, H. Li, X. Hu, Y. Bi, J. Zhang, X. Wu, MReC4.5: C4.5 ensemble classification with mapreduce, in: 2009 Fourth ChinaGrid Annual Conference, 2009,pp. 249–255.
S. Misbahuddin, J.A. Zubairi, A. Saggaf, J. Basuni, S. A-Wadany, A. Al-Sofi, IoT based dynamic road traffic management for smart cities, in: Proceedings of the International Conference on High-capacity Optical Networks and Enabling/Emerging Technologies, 2015, pp. 1–5.
Tsai, Rodrigues (b65) 2014; 8
Zhou, Hu, Wang, Lu, Zhao (b81) 2013; 18
Jain, Murty, Flynn (b24) 1999; 31
S. Cuomo, P.D. Michele, A. Galletti, F. Piccialli, A cultural heritage case study of visitor experiences shared on a social network, in: Proceedings of the International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 2015, pp. 539–544.
Bandyopadhyay, Sen (b5) 2011; 58
S. Rathee, M. Kaul, A. Kashyap, R-Apriori: An efficient apriori based algorithm on spark, in: Proceedings of the Workshop on Ph.D. Workshop in Information and Knowledge Management, 2015, pp. 27–34.
.
D. Laney, 3D Data Management: Controlling Data Volume, Velocity, and Variety, Tech. Rep., META Group, 2001
X.Y. Yang, Z. Liu, Y. Fu, MapReduce as a programming model for association rules algorithm on Hadoop, in: Proceedings of the International Conference on Information Sciences and Interaction Sciences, 2010, pp. 99–102.
Reyes-Ortiz, Oneto, Anguita (b53) 2015; 53
R.L. Ferreira Cordeiro, C. Traina, JuniorA. J. Machado Traina, J. López, U. Kang, C. Faloutsos, Clustering very large multi-dimensional datasets with mapreduce, in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011, pp. 690–698.
C. Jin, C. Vecchiola, R. Buyya, MRPGA: An extension of mapreduce for parallelizing genetic algorithms, in: Proceedings of the IEEE Fourth International Conference on eScience, 2008, pp. 214–221.
Robert L. Mitchell, The Internet of Things at home: 14 smart products that could change your life, computerworld, 2014. Available at
G. Motta, L. You, D. Sacco, T. Ma, G. Miceli, Mobility Service Systems: Guidelines for a possible paradigm and a case study, in: Proceedings of IEEE International Conference on Service Operations and Logistics, and Informatics, 2014,pp. 48–53.
Wine, 2017, available at
K. Govindarajan, D. Boulanger, V.S. Kumar, . Kinshuk, Parallel particle swarm optimization (PPSO) clustering for learning analytics, in: Proceedings of the IEEE International Conference on Big Data, 2015, pp. 1461–1465.
Iris, 2017, available at
Gaifang, Xueliang, Honghui, Pengfei (b14) 2017; 60
Online News Popularity, 2017, available at
G. Santucci, From Internet of Data to Internet of Things, in: Proceedings of the International Conference on Future Trends of the Internet, 2009, pp. 1–19.
D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra, A. Kapoor, S. Sinha,M. Sudarshan, S. Stratman, FarmBeats: An IoT platform for data-driven agriculture, in: Proceedings of the USENIX Symposium on Networked Systems Design and Implementation, 2017, pp. 515–529.
Domingo (b10) 2012; 35
Wang, Wang, Xie (b70) 2015; 8
Jiang, Xu, Cai, Jiang, Bu, Xu (b25) 2014; 10
I. Triguero, M. Galar, D. Merino, J. Maillo, H. Bustince, F. Herrera, Evolutionary undersampling for extremely imbalanced big data classification under apache spark, in: Proceedings of the IEEE Congress on Evolutionary Computation, CEC, 2016, pp. 640–647.
Tuning Spark, 2017, available at
B. Wang, J. Yin, Q. Hua, Z. Wu, J. Cao, Parallelizing k-means-based clustering on spark, in: Proceedings of the International Conference on Advanced Cloud and Big Data, 2016, pp. 31–36.
del Río, López, Benítez, Herrera (b9) 2015; 8
Ashton (b2) 2009; 22
Gopalani, Arora (b15) 2015; 113
D. Teijeiro, X.C. Pardo, P. González, J.R. Banga, R. Doallo, Implementing parallel differential evolution on spark, in: Proceedings of the European Conference on Applications of Evolutionary Computation, 2016, pp. 75–90.
Xu, Xu, Cai, Xie, Hu, Bu (b75) 2014; 10
Meng, Bradley, Yavuz, Sparks, Venkataraman, Liu, Freeman, Tsai, Amde, Owen, Xin, Xin, Franklin, Zadeh, Zaharia, Talwalkar (b41) 2016; 17
Ashton (b1) 2009
T. Sarazin, H. Azzag, M. Lebbah, SOM clustering using spark-mapreduce, in: Proceedings of the IEEE International Parallel Distributed Processing Symposium Workshops, 2014, pp. 1727–1734.
M. Riondato, J.A. DeBrabant, R. Fonseca, E. Upfal, PARMA: A parallel randomized algorithm for approximate association rules mining in mapreduce, in: Proceedings of the ACM International Conference on Information and Knowledge Management, 2012, pp. 85–94.
C.-W. Tsai, H.-C. Chang, K.-C. Hu, M.-C. Chiang, Parallel coral reef algorithm for solving JSP on Spark, in: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, SMC, 2016, pp. 1872–1877.
Miorandi, Sicari, De Pellegrini, Chlamtac (b42) 2012; 10
Tsai, Lai, Chiang, Yang (b64) 2014; 16
N. Li, L. Zeng, Q. He, Z. Shi, Parallel implementation of apriori algorithm based on mapreduce, in: Proceedings of the ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 2012, pp. 236–241.
Spark, 2014, available at
X. Lin, P. Wang, B. Wu, Log analysis in cloud computing environment with Hadoop and Spark, in: Proceedings of the IEEE International Conference on Broadband Network Multimedia Technology, 2013, pp. 273–276.
Hu, Ren, Liu, Li, Jie (b21) 2017; 20
J.B. McQueen, Some methods of classification and analysis of multivariate observations, in: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297.
Zhou, Wang, Wang (b82) 2012; 10
F. Gui, Y. Ma, F. Zhang, M. Liu, F. Li, W. Shen, H. Bai, A distributed frequent itemset mining algorithm based on Spark, in: Proceedings of the IEEE International Conference on Computer Supported Cooperative Work in Design, 2015, pp. 271–275.
Internet of Things Technology Market by Hardware (Processor. Sensor, Connectivity Technology), Platform (Device Management Platform, Application Management Platform, Network Management Platform) Software Solutions, and Services, Application, and Geography - Forecast to 2022, 2016. URL
López, del Río, Benítez, Herrera (b36) 2015; 258
del Río (10.1016/j.jpdc.2017.10.020_b9) 2015; 8
10.1016/j.jpdc.2017.10.020_b23
10.1016/j.jpdc.2017.10.020_b67
Wang (10.1016/j.jpdc.2017.10.020_b70) 2015; 8
10.1016/j.jpdc.2017.10.020_b68
10.1016/j.jpdc.2017.10.020_b26
10.1016/j.jpdc.2017.10.020_b63
10.1016/j.jpdc.2017.10.020_b22
Perera (10.1016/j.jpdc.2017.10.020_b48) 2014; 16
10.1016/j.jpdc.2017.10.020_b66
Meng (10.1016/j.jpdc.2017.10.020_b41) 2016; 17
Jiang (10.1016/j.jpdc.2017.10.020_b25) 2014; 10
10.1016/j.jpdc.2017.10.020_b28
10.1016/j.jpdc.2017.10.020_b29
Zhang (10.1016/j.jpdc.2017.10.020_b79) 2015; 18
López (10.1016/j.jpdc.2017.10.020_b36) 2015; 258
10.1016/j.jpdc.2017.10.020_b71
10.1016/j.jpdc.2017.10.020_b72
Krishna (10.1016/j.jpdc.2017.10.020_b30) 1999; 29
10.1016/j.jpdc.2017.10.020_b73
Qi (10.1016/j.jpdc.2017.10.020_b51) 2016; 31
10.1016/j.jpdc.2017.10.020_b34
10.1016/j.jpdc.2017.10.020_b35
10.1016/j.jpdc.2017.10.020_b37
Piccialli (10.1016/j.jpdc.2017.10.020_b49) 2017; 22
10.1016/j.jpdc.2017.10.020_b31
10.1016/j.jpdc.2017.10.020_b32
10.1016/j.jpdc.2017.10.020_b76
10.1016/j.jpdc.2017.10.020_b33
Yang (10.1016/j.jpdc.2017.10.020_b77) 2014; 11
10.1016/j.jpdc.2017.10.020_b38
10.1016/j.jpdc.2017.10.020_b39
Zhou (10.1016/j.jpdc.2017.10.020_b82) 2012; 10
Tsai (10.1016/j.jpdc.2017.10.020_b64) 2014; 16
Atzori (10.1016/j.jpdc.2017.10.020_b3) 2010; 54
Zanella (10.1016/j.jpdc.2017.10.020_b78) 2014; 1
Chen (10.1016/j.jpdc.2017.10.020_b7) 2017; 28
Gaifang (10.1016/j.jpdc.2017.10.020_b14) 2017; 60
Keller (10.1016/j.jpdc.2017.10.020_b27) 2011
10.1016/j.jpdc.2017.10.020_b40
Xie (10.1016/j.jpdc.2017.10.020_b74) 2017
Zhou (10.1016/j.jpdc.2017.10.020_b81) 2013; 18
10.1016/j.jpdc.2017.10.020_b80
10.1016/j.jpdc.2017.10.020_b45
Chen (10.1016/j.jpdc.2017.10.020_b6) 2015
10.1016/j.jpdc.2017.10.020_b46
Wan (10.1016/j.jpdc.2017.10.020_b69) 2017; 13
10.1016/j.jpdc.2017.10.020_b47
Ashton (10.1016/j.jpdc.2017.10.020_b1) 2009
10.1016/j.jpdc.2017.10.020_b43
10.1016/j.jpdc.2017.10.020_b44
Miorandi (10.1016/j.jpdc.2017.10.020_b42) 2012; 10
Bandyopadhyay (10.1016/j.jpdc.2017.10.020_b5) 2011; 58
10.1016/j.jpdc.2017.10.020_b50
Gopalani (10.1016/j.jpdc.2017.10.020_b15) 2015; 113
Jain (10.1016/j.jpdc.2017.10.020_b24) 1999; 31
10.1016/j.jpdc.2017.10.020_b56
Xu (10.1016/j.jpdc.2017.10.020_b75) 2014; 10
10.1016/j.jpdc.2017.10.020_b13
10.1016/j.jpdc.2017.10.020_b57
Gubbi (10.1016/j.jpdc.2017.10.020_b18) 2013; 29
10.1016/j.jpdc.2017.10.020_b58
10.1016/j.jpdc.2017.10.020_b59
10.1016/j.jpdc.2017.10.020_b52
10.1016/j.jpdc.2017.10.020_b54
10.1016/j.jpdc.2017.10.020_b11
10.1016/j.jpdc.2017.10.020_b55
Domingo (10.1016/j.jpdc.2017.10.020_b10) 2012; 35
Ashton (10.1016/j.jpdc.2017.10.020_b2) 2009; 22
Reyes-Ortiz (10.1016/j.jpdc.2017.10.020_b53) 2015; 53
10.1016/j.jpdc.2017.10.020_b16
10.1016/j.jpdc.2017.10.020_b17
Hu (10.1016/j.jpdc.2017.10.020_b21) 2017; 20
10.1016/j.jpdc.2017.10.020_b19
10.1016/j.jpdc.2017.10.020_b8
Fan (10.1016/j.jpdc.2017.10.020_b12) 2012; 6
10.1016/j.jpdc.2017.10.020_b4
He (10.1016/j.jpdc.2017.10.020_b20) 2014; 10
Tsai (10.1016/j.jpdc.2017.10.020_b65) 2014; 8
10.1016/j.jpdc.2017.10.020_b60
10.1016/j.jpdc.2017.10.020_b61
10.1016/j.jpdc.2017.10.020_b62
References_xml – volume: 35
  start-page: 584
  year: 2012
  end-page: 596
  ident: b10
  article-title: An overview of the internet of things for people with disabilities
  publication-title: J. Netw. Comput. Appl.
– reference: I. Triguero, M. Galar, D. Merino, J. Maillo, H. Bustince, F. Herrera, Evolutionary undersampling for extremely imbalanced big data classification under apache spark, in: Proceedings of the IEEE Congress on Evolutionary Computation, CEC, 2016, pp. 640–647.
– reference: A. Grilo, H. Sarmento, M. Nunes1, J. Gona̧lves, P. Pereira, A. Casaca, C. Fortunato, A Wireless Sensors Suite for Smart Grid Applications, in: Proceedings of the International Workshop on Information Technology for Energy Applications, 2012, pp. 1–10.
– reference: S. Cuomo, P.D. Michele, A. Galletti, F. Piccialli, A cultural heritage case study of visitor experiences shared on a social network, in: Proceedings of the International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 2015, pp. 539–544.
– year: 2015
  ident: b6
  article-title: Data mining for the internet of things: Literature review and challenges
  publication-title: Int. J. Distrib. Sens. Netw.
– reference: Wine, 2017, available at
– volume: 113
  start-page: 8
  year: 2015
  end-page: 11
  ident: b15
  article-title: Comparing apache spark and map reduce with performance analysis using k-means
  publication-title: Int. J. Comput. Appl.
– volume: 58
  start-page: 49
  year: 2011
  end-page: 69
  ident: b5
  article-title: Internet of things: Applications and challenges in technology and standardization
  publication-title: Wirel. Pers. Commun.
– reference: User-locations-Finland_N13467-D2, 2017, available at
– reference: C.-W. Tsai, H.-C. Chang, K.-C. Hu, M.-C. Chiang, Parallel coral reef algorithm for solving JSP on Spark, in: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, SMC, 2016, pp. 1872–1877.
– volume: 18
  start-page: 369
  year: 2013
  end-page: 378
  ident: b81
  article-title: An efficient multidimensional fusion algorithm for IoT data based on partitioning
  publication-title: Tsinghua Sci. Technol.
– reference: Online News Popularity, 2017, available at
– reference: T. Sarazin, H. Azzag, M. Lebbah, SOM clustering using spark-mapreduce, in: Proceedings of the IEEE International Parallel Distributed Processing Symposium Workshops, 2014, pp. 1727–1734.
– volume: 53
  start-page: 121
  year: 2015
  end-page: 130
  ident: b53
  article-title: Big data analytics in the cloud: Spark on Hadoop vs MPI/OpenMP on beowulf
  publication-title: Procedia Comput. Sci.
– reference: J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, 1995, pp. 1942–1948.
– volume: 60
  start-page: 66
  year: 2017
  end-page: 75
  ident: b14
  article-title: Cooperative ant colony-genetic algorithm based on spark
  publication-title: Comput. Electr. Eng.
– volume: 17
  start-page: 1235
  year: 2016
  end-page: 1241
  ident: b41
  article-title: MLlib: Machine learning in apache spark
  publication-title: J. Mach. Learn. Res.
– reference: Iris, 2017, available at
– reference: Y. Ma, J. Rao, W. Hu, X. Meng, X. Han, Y. Zhang, Y. Chai, C. Liu, An efficient index for massive IOT data in cloud environment, in: Proceedings of the ACM International Conference on Information and Knowledge Management, 2012, pp. 2129–2133.
– volume: 54
  start-page: 2787
  year: 2010
  end-page: 2805
  ident: b3
  article-title: The Internet of Things: A survey
  publication-title: Comput. Netw.
– reference: Auto-ID Labs, Massachusetts Institute of Technology, 2012, available at
– reference: A.W. McNabb, C.K. Monson, K.D. Seppi, Parallel PSO using mapreduce, in: Proceedings of the IEEE Congress on Evolutionary Computation, 2007,pp. 7–14.
– reference: A. Ene, S. Im, B. Moseley, Fast clustering using mapreduce, in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011, pp. 681–689.
– reference: G. Santucci, From Internet of Data to Internet of Things, in: Proceedings of the International Conference on Future Trends of the Internet, 2009, pp. 1–19.
– reference: R.Z. Qi, Pairwise test generation based on parallel genetic algorithm with spark, in: Proceedings of the International Conference on Computer Information Systems and Industrial Applications, 2015, pp. 67–70.
– volume: 13
  start-page: 2039
  year: 2017
  end-page: 2047
  ident: b69
  article-title: A manufacturing big data solution for active preventive maintenance
  publication-title: IEEE Trans. Ind. Inf.
– volume: 8
  start-page: 279
  year: 2014
  end-page: 291
  ident: b65
  article-title: Metaheuristic scheduling for cloud: A survey
  publication-title: IEEE Syst. J.
– volume: 10
  start-page: 1087
  year: 2012
  end-page: 1092
  ident: b82
  article-title: Parallel implementation of classification algorithms based on cloud computing environment
  publication-title: TELKOMNIKA
– reference: S. Misbahuddin, J.A. Zubairi, A. Saggaf, J. Basuni, S. A-Wadany, A. Al-Sofi, IoT based dynamic road traffic management for smart cities, in: Proceedings of the International Conference on High-capacity Optical Networks and Enabling/Emerging Technologies, 2015, pp. 1–5.
– reference: Three misunderstandings of Spark, 2017, available at
– volume: 1
  start-page: 22
  year: 2014
  end-page: 32
  ident: b78
  article-title: Internet of Things for smart cities
  publication-title: IEEE Internet Things J.
– volume: 20
  start-page: 1089
  year: 2017
  end-page: 1099
  ident: b21
  article-title: A Spark-based genetic algorithm for sensor placement in large scale drinking water distribution systems
  publication-title: Cluster Comput.
– reference: Robert L. Mitchell, The Internet of Things at home: 14 smart products that could change your life, computerworld, 2014. Available at
– volume: 16
  start-page: 77
  year: 2014
  end-page: 97
  ident: b64
  article-title: Data mining for Internet of Things: A survey
  publication-title: IEEE Commun. Surv. Tutor.
– reference: C.W. Tsai, C.H. Hsieh, M.C. Chiang, Parallel black hole clustering based on mapreduce, in: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, 2015, pp. 2543–2548.
– reference: D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra, A. Kapoor, S. Sinha,M. Sudarshan, S. Stratman, FarmBeats: An IoT platform for data-driven agriculture, in: Proceedings of the USENIX Symposium on Networked Systems Design and Implementation, 2017, pp. 515–529.
– volume: 18
  start-page: 1493
  year: 2015
  end-page: 1501
  ident: b79
  article-title: A distributed frequent itemset mining algorithm using Spark for Big Data analytics
  publication-title: Cluster Comput.
– year: 2011
  ident: b27
  publication-title: Mining the Internet of Things: Detection of False-Positive RFID Tag Reads using Low-Level Reader Data
– reference: S. Rathee, M. Kaul, A. Kashyap, R-Apriori: An efficient apriori based algorithm on spark, in: Proceedings of the Workshop on Ph.D. Workshop in Information and Knowledge Management, 2015, pp. 27–34.
– reference: M. Riondato, J.A. DeBrabant, R. Fonseca, E. Upfal, PARMA: A parallel randomized algorithm for approximate association rules mining in mapreduce, in: Proceedings of the ACM International Conference on Information and Knowledge Management, 2012, pp. 85–94.
– reference: X. Lin, P. Wang, B. Wu, Log analysis in cloud computing environment with Hadoop and Spark, in: Proceedings of the IEEE International Conference on Broadband Network Multimedia Technology, 2013, pp. 273–276.
– volume: 10
  start-page: 1587
  year: 2014
  end-page: 1595
  ident: b20
  article-title: Developing vehicular data cloud services in the IoT environment
  publication-title: IEEE Trans. Ind. Inf.
– volume: 8
  start-page: 407
  year: 2015
  end-page: 414
  ident: b70
  article-title: Implementation of a parallel algorithm based on a spark cloud computing platform
  publication-title: Algorithms
– year: 2009
  ident: b1
  article-title: That ‘Internet of Things’ thing
  publication-title: RFID J.
– volume: 29
  start-page: 1645
  year: 2013
  end-page: 1660
  ident: b18
  article-title: Internet of Things (IoT): A vision, architectural elements, and future directions
  publication-title: Future Gener. Comput. Syst.
– reference: M.-Y. Lin, P.-Y. Lee, S.-C. Hsueh, Apriori-based frequent itemset mining algorithms on mapreduce, in: Proceedings of the 6th International Conference on Ubiquitous Information Management and Communication, 2012,pp. 76:1–76:8.
– reference: Internet of Things Technology Market by Hardware (Processor. Sensor, Connectivity Technology), Platform (Device Management Platform, Application Management Platform, Network Management Platform) Software Solutions, and Services, Application, and Geography - Forecast to 2022, 2016. URL
– reference: S. Papadimitriou, J. Sun, DisCo: Distributed co-clustering with map-reduce: A case study towards petabyte-scale end-to-end mining, in: Proceedings of the IEEE International Conference on Data Mining, 2008, pp. 512–521.
– reference: K. Govindarajan, D. Boulanger, V.S. Kumar, . Kinshuk, Parallel particle swarm optimization (PPSO) clustering for learning analytics, in: Proceedings of the IEEE International Conference on Big Data, 2015, pp. 1461–1465.
– reference: J.B. McQueen, Some methods of classification and analysis of multivariate observations, in: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297.
– volume: 10
  start-page: 1578
  year: 2014
  end-page: 1586
  ident: b75
  article-title: Ubiquitous data accessing method in IoT-based information system for emergency medical services
  publication-title: IEEE Trans. Ind. Inf.
– start-page: 1
  year: 2017
  end-page: 14
  ident: b74
  article-title: An evolvable and transparent data as a service framework for multisource data integration and fusion
  publication-title: Peer-To-Peer Netw. Appl.
– volume: 8
  start-page: 422
  year: 2015
  end-page: 437
  ident: b9
  article-title: A mapreduce approach to address big data classification problems based on the fusion of linguistic fuzzy rules
  publication-title: Int. J. Comput. Intell. Syst.
– reference: W. Zhao, H. Ma, Q. He, Parallel k-means clustering based on mapreduce, in: Proceedings of the International Conference Cloud Computing, 2009,pp. 674–679.
– reference: R.L. Ferreira Cordeiro, C. Traina, JuniorA. J. Machado Traina, J. López, U. Kang, C. Faloutsos, Clustering very large multi-dimensional datasets with mapreduce, in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011, pp. 690–698.
– reference: N. Li, L. Zeng, Q. He, Z. Shi, Parallel implementation of apriori algorithm based on mapreduce, in: Proceedings of the ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 2012, pp. 236–241.
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: b24
  article-title: Data clustering: A review
  publication-title: ACM Comput. Surv.
– reference: Spark, 2014, available at
– volume: 6
  start-page: 660
  year: 2012
  end-page: 667
  ident: b12
  article-title: The Internet of data: A new idea to extend the IOT in the digital world
  publication-title: Front. Comput. Sci.
– reference: B. Wang, J. Yin, Q. Hua, Z. Wu, J. Cao, Parallelizing k-means-based clustering on spark, in: Proceedings of the International Conference on Advanced Cloud and Big Data, 2016, pp. 31–36.
– reference: X.Y. Yang, Z. Liu, Y. Fu, MapReduce as a programming model for association rules algorithm on Hadoop, in: Proceedings of the International Conference on Information Sciences and Interaction Sciences, 2010, pp. 99–102.
– reference: Shuttle, 2017, available at
– volume: 31
  start-page: 417
  year: 2016
  end-page: 427
  ident: b51
  article-title: A parallel genetic algorithm based on spark for pairwise test suite generation
  publication-title: J. Comput. Sci. Tech.
– volume: 22
  start-page: 97
  year: 2009
  end-page: 114
  ident: b2
  article-title: That internet of things thing
  publication-title: RFID J.
– reference: .
– reference: Tuning Spark, 2017, available at
– volume: 11
  start-page: 1
  year: 2014
  end-page: 15
  ident: b77
  article-title: An overview of Internet of Vehicles
  publication-title: China Commun.
– reference: G. Wu, H. Li, X. Hu, Y. Bi, J. Zhang, X. Wu, MReC4.5: C4.5 ensemble classification with mapreduce, in: 2009 Fourth ChinaGrid Annual Conference, 2009,pp. 249–255.
– reference: F. Gui, Y. Ma, F. Zhang, M. Liu, F. Li, W. Shen, H. Bai, A distributed frequent itemset mining algorithm based on Spark, in: Proceedings of the IEEE International Conference on Computer Supported Cooperative Work in Design, 2015, pp. 271–275.
– reference: D. Laney, 3D Data Management: Controlling Data Volume, Velocity, and Variety, Tech. Rep., META Group, 2001,
– volume: 16
  start-page: 414
  year: 2014
  end-page: 454
  ident: b48
  article-title: Context aware computing for the internet of things: A survey
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 10
  start-page: 1497
  year: 2012
  end-page: 1516
  ident: b42
  article-title: Internet of things: Vision, applications and research challenges
  publication-title: Ad Hoc Networks
– reference: .
– reference: C. Jin, C. Vecchiola, R. Buyya, MRPGA: An extension of mapreduce for parallelizing genetic algorithms, in: Proceedings of the IEEE Fourth International Conference on eScience, 2008, pp. 214–221.
– volume: 22
  start-page: 605
  year: 2017
  end-page: 612
  ident: b49
  article-title: Understanding customer experience diffusion on social networking services by big data analytics
  publication-title: Mob. Netw. Appl.
– volume: 10
  start-page: 1443
  year: 2014
  end-page: 1451
  ident: b25
  article-title: An IoT-oriented data storage framework in cloud computing platform
  publication-title: IEEE Trans. Ind. Inf.
– reference: A.K. Koliopoulos, P. Yiapanis, F. Tekiner, G. Nenadic, J. Keane, A parallel distributed weka framework for big data mining using spark, in: 2015 IEEE International Congress on Big Data, 2015, pp. 9–16.
– volume: 29
  start-page: 433
  year: 1999
  end-page: 439
  ident: b30
  article-title: Genetic K-means algorithm
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 258
  start-page: 5
  year: 2015
  end-page: 38
  ident: b36
  article-title: Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data
  publication-title: Fuzzy Sets and Systems
– reference: D. Teijeiro, X.C. Pardo, P. González, J.R. Banga, R. Doallo, Implementing parallel differential evolution on spark, in: Proceedings of the European Conference on Applications of Evolutionary Computation, 2016, pp. 75–90.
– reference: T. Li, Y. Liu, Y. Tian, S. Shen, W. Mao, A storage solution for massive IoT data based on NoSQL, in: Proceedings of the IEEE International Conference on Green Computing and Communications, 2012, pp. 50–57.
– reference: Mahout, 2011, available at
– reference: G. Motta, L. You, D. Sacco, T. Ma, G. Miceli, Mobility Service Systems: Guidelines for a possible paradigm and a case study, in: Proceedings of IEEE International Conference on Service Operations and Logistics, and Informatics, 2014,pp. 48–53.
– volume: 28
  start-page: 919
  year: 2017
  end-page: 933
  ident: b7
  article-title: A Parallel random forest algorithm for big data in a spark cloud computing environment
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– ident: 10.1016/j.jpdc.2017.10.020_b33
  doi: 10.1109/SNPD.2012.31
– ident: 10.1016/j.jpdc.2017.10.020_b37
  doi: 10.1145/2396761.2398587
– ident: 10.1016/j.jpdc.2017.10.020_b62
– ident: 10.1016/j.jpdc.2017.10.020_b59
  doi: 10.1007/978-3-319-31153-1_6
– ident: 10.1016/j.jpdc.2017.10.020_b66
– volume: 53
  start-page: 121
  year: 2015
  ident: 10.1016/j.jpdc.2017.10.020_b53
  article-title: Big data analytics in the cloud: Spark on Hadoop vs MPI/OpenMP on beowulf
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.07.286
– volume: 6
  start-page: 660
  issue: 6
  year: 2012
  ident: 10.1016/j.jpdc.2017.10.020_b12
  article-title: The Internet of data: A new idea to extend the IOT in the digital world
  publication-title: Front. Comput. Sci.
– ident: 10.1016/j.jpdc.2017.10.020_b4
– year: 2011
  ident: 10.1016/j.jpdc.2017.10.020_b27
– volume: 10
  start-page: 1578
  issue: 2
  year: 2014
  ident: 10.1016/j.jpdc.2017.10.020_b75
  article-title: Ubiquitous data accessing method in IoT-based information system for emergency medical services
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2014.2306382
– volume: 31
  start-page: 417
  issue: 2
  year: 2016
  ident: 10.1016/j.jpdc.2017.10.020_b51
  article-title: A parallel genetic algorithm based on spark for pairwise test suite generation
  publication-title: J. Comput. Sci. Tech.
  doi: 10.1007/s11390-016-1635-5
– volume: 10
  start-page: 1087
  issue: 5
  year: 2012
  ident: 10.1016/j.jpdc.2017.10.020_b82
  article-title: Parallel implementation of classification algorithms based on cloud computing environment
  publication-title: TELKOMNIKA
  doi: 10.11591/telkomnika.v10i5.1353
– volume: 258
  start-page: 5
  year: 2015
  ident: 10.1016/j.jpdc.2017.10.020_b36
  article-title: Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2014.01.015
– year: 2015
  ident: 10.1016/j.jpdc.2017.10.020_b6
  article-title: Data mining for the internet of things: Literature review and challenges
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1155/2015/431047
– ident: 10.1016/j.jpdc.2017.10.020_b72
– volume: 28
  start-page: 919
  issue: 4
  year: 2017
  ident: 10.1016/j.jpdc.2017.10.020_b7
  article-title: A Parallel random forest algorithm for big data in a spark cloud computing environment
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2016.2603511
– ident: 10.1016/j.jpdc.2017.10.020_b76
  doi: 10.1109/ICICIS.2010.5534718
– ident: 10.1016/j.jpdc.2017.10.020_b63
  doi: 10.1109/SMC.2015.445
– ident: 10.1016/j.jpdc.2017.10.020_b8
  doi: 10.1109/3PGCIC.2015.55
– ident: 10.1016/j.jpdc.2017.10.020_b34
  doi: 10.1145/2184751.2184842
– volume: 16
  start-page: 414
  issue: 1
  year: 2014
  ident: 10.1016/j.jpdc.2017.10.020_b48
  article-title: Context aware computing for the internet of things: A survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2013.042313.00197
– ident: 10.1016/j.jpdc.2017.10.020_b38
– ident: 10.1016/j.jpdc.2017.10.020_b40
– ident: 10.1016/j.jpdc.2017.10.020_b61
  doi: 10.1109/CEC.2016.7743853
– ident: 10.1016/j.jpdc.2017.10.020_b32
  doi: 10.1109/GreenCom.2012.18
– volume: 8
  start-page: 407
  issue: 3
  year: 2015
  ident: 10.1016/j.jpdc.2017.10.020_b70
  article-title: Implementation of a parallel algorithm based on a spark cloud computing platform
  publication-title: Algorithms
  doi: 10.3390/a8030407
– volume: 60
  start-page: 66
  year: 2017
  ident: 10.1016/j.jpdc.2017.10.020_b14
  article-title: Cooperative ant colony-genetic algorithm based on spark
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2016.09.035
– ident: 10.1016/j.jpdc.2017.10.020_b55
– volume: 18
  start-page: 369
  issue: 4
  year: 2013
  ident: 10.1016/j.jpdc.2017.10.020_b81
  article-title: An efficient multidimensional fusion algorithm for IoT data based on partitioning
  publication-title: Tsinghua Sci. Technol.
  doi: 10.1109/TST.2013.6574675
– ident: 10.1016/j.jpdc.2017.10.020_b17
– ident: 10.1016/j.jpdc.2017.10.020_b45
  doi: 10.1109/SOLI.2014.6960692
– ident: 10.1016/j.jpdc.2017.10.020_b50
– ident: 10.1016/j.jpdc.2017.10.020_b44
– volume: 13
  start-page: 2039
  issue: 4
  year: 2017
  ident: 10.1016/j.jpdc.2017.10.020_b69
  article-title: A manufacturing big data solution for active preventive maintenance
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2017.2670505
– ident: 10.1016/j.jpdc.2017.10.020_b23
– volume: 8
  start-page: 422
  issue: 3
  year: 2015
  ident: 10.1016/j.jpdc.2017.10.020_b9
  article-title: A mapreduce approach to address big data classification problems based on the fusion of linguistic fuzzy rules
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.1080/18756891.2015.1017377
– ident: 10.1016/j.jpdc.2017.10.020_b73
  doi: 10.1109/ChinaGrid.2009.39
– volume: 10
  start-page: 1497
  issue: 7
  year: 2012
  ident: 10.1016/j.jpdc.2017.10.020_b42
  article-title: Internet of things: Vision, applications and research challenges
  publication-title: Ad Hoc Networks
  doi: 10.1016/j.adhoc.2012.02.016
– ident: 10.1016/j.jpdc.2017.10.020_b19
  doi: 10.1109/CSCWD.2015.7230970
– volume: 29
  start-page: 433
  issue: 3
  year: 1999
  ident: 10.1016/j.jpdc.2017.10.020_b30
  article-title: Genetic K-means algorithm
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/3477.764879
– year: 2009
  ident: 10.1016/j.jpdc.2017.10.020_b1
  article-title: That ‘Internet of Things’ thing
  publication-title: RFID J.
– volume: 20
  start-page: 1089
  issue: 2
  year: 2017
  ident: 10.1016/j.jpdc.2017.10.020_b21
  article-title: A Spark-based genetic algorithm for sensor placement in large scale drinking water distribution systems
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-017-0838-z
– volume: 31
  start-page: 264
  issue: 3
  year: 1999
  ident: 10.1016/j.jpdc.2017.10.020_b24
  article-title: Data clustering: A review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/331499.331504
– ident: 10.1016/j.jpdc.2017.10.020_b58
– ident: 10.1016/j.jpdc.2017.10.020_b68
– start-page: 1
  year: 2017
  ident: 10.1016/j.jpdc.2017.10.020_b74
  article-title: An evolvable and transparent data as a service framework for multisource data integration and fusion
  publication-title: Peer-To-Peer Netw. Appl.
– volume: 10
  start-page: 1443
  issue: 2
  year: 2014
  ident: 10.1016/j.jpdc.2017.10.020_b25
  article-title: An IoT-oriented data storage framework in cloud computing platform
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2014.2306384
– ident: 10.1016/j.jpdc.2017.10.020_b80
  doi: 10.1007/978-3-642-10665-1_71
– volume: 22
  start-page: 605
  issue: 4
  year: 2017
  ident: 10.1016/j.jpdc.2017.10.020_b49
  article-title: Understanding customer experience diffusion on social networking services by big data analytics
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-016-0803-8
– ident: 10.1016/j.jpdc.2017.10.020_b31
– volume: 10
  start-page: 1587
  issue: 2
  year: 2014
  ident: 10.1016/j.jpdc.2017.10.020_b20
  article-title: Developing vehicular data cloud services in the IoT environment
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2014.2299233
– ident: 10.1016/j.jpdc.2017.10.020_b28
  doi: 10.1109/ICNN.1995.488968
– volume: 17
  start-page: 1235
  issue: 1
  year: 2016
  ident: 10.1016/j.jpdc.2017.10.020_b41
  article-title: MLlib: Machine learning in apache spark
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.jpdc.2017.10.020_b11
  doi: 10.1145/2020408.2020515
– ident: 10.1016/j.jpdc.2017.10.020_b71
  doi: 10.1109/CBD.2016.016
– ident: 10.1016/j.jpdc.2017.10.020_b60
– ident: 10.1016/j.jpdc.2017.10.020_b22
– ident: 10.1016/j.jpdc.2017.10.020_b54
  doi: 10.1145/2396761.2396776
– ident: 10.1016/j.jpdc.2017.10.020_b35
  doi: 10.1109/ICBNMT.2013.6823956
– ident: 10.1016/j.jpdc.2017.10.020_b47
  doi: 10.1109/ICDM.2008.142
– ident: 10.1016/j.jpdc.2017.10.020_b52
  doi: 10.1145/2809890.2809893
– volume: 11
  start-page: 1
  issue: 10
  year: 2014
  ident: 10.1016/j.jpdc.2017.10.020_b77
  article-title: An overview of Internet of Vehicles
  publication-title: China Commun.
  doi: 10.1109/CC.2014.6969789
– ident: 10.1016/j.jpdc.2017.10.020_b39
  doi: 10.1109/CEC.2007.4424448
– volume: 16
  start-page: 77
  issue: 1
  year: 2014
  ident: 10.1016/j.jpdc.2017.10.020_b64
  article-title: Data mining for Internet of Things: A survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2013.103013.00206
– ident: 10.1016/j.jpdc.2017.10.020_b67
– ident: 10.1016/j.jpdc.2017.10.020_b57
– ident: 10.1016/j.jpdc.2017.10.020_b26
  doi: 10.1109/eScience.2008.78
– volume: 18
  start-page: 1493
  issue: 4
  year: 2015
  ident: 10.1016/j.jpdc.2017.10.020_b79
  article-title: A distributed frequent itemset mining algorithm using Spark for Big Data analytics
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-015-0477-1
– volume: 8
  start-page: 279
  issue: 1
  year: 2014
  ident: 10.1016/j.jpdc.2017.10.020_b65
  article-title: Metaheuristic scheduling for cloud: A survey
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2013.2256731
– volume: 1
  start-page: 22
  issue: 1
  year: 2014
  ident: 10.1016/j.jpdc.2017.10.020_b78
  article-title: Internet of Things for smart cities
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2014.2306328
– ident: 10.1016/j.jpdc.2017.10.020_b43
  doi: 10.1109/HONET.2015.7395434
– volume: 113
  start-page: 8
  issue: 1
  year: 2015
  ident: 10.1016/j.jpdc.2017.10.020_b15
  article-title: Comparing apache spark and map reduce with performance analysis using k-means
  publication-title: Int. J. Comput. Appl.
– volume: 22
  start-page: 97
  issue: 7
  year: 2009
  ident: 10.1016/j.jpdc.2017.10.020_b2
  article-title: That internet of things thing
  publication-title: RFID J.
– volume: 35
  start-page: 584
  issue: 2
  year: 2012
  ident: 10.1016/j.jpdc.2017.10.020_b10
  article-title: An overview of the internet of things for people with disabilities
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2011.10.015
– ident: 10.1016/j.jpdc.2017.10.020_b56
  doi: 10.1109/IPDPSW.2014.192
– ident: 10.1016/j.jpdc.2017.10.020_b13
  doi: 10.1145/2020408.2020516
– ident: 10.1016/j.jpdc.2017.10.020_b46
– volume: 58
  start-page: 49
  issue: 1
  year: 2011
  ident: 10.1016/j.jpdc.2017.10.020_b5
  article-title: Internet of things: Applications and challenges in technology and standardization
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-011-0288-5
– ident: 10.1016/j.jpdc.2017.10.020_b16
  doi: 10.1109/BigData.2015.7363907
– volume: 54
  start-page: 2787
  issue: 15
  year: 2010
  ident: 10.1016/j.jpdc.2017.10.020_b3
  article-title: The Internet of Things: A survey
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2010.05.010
– volume: 29
  start-page: 1645
  issue: 7
  year: 2013
  ident: 10.1016/j.jpdc.2017.10.020_b18
  article-title: Internet of Things (IoT): A vision, architectural elements, and future directions
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2013.01.010
– ident: 10.1016/j.jpdc.2017.10.020_b29
  doi: 10.1109/BigDataCongress.2015.12
SSID ssj0011578
Score 2.3395948
Snippet A high performance data analytics for internet of things (IoT) has been a promising research subject in recent years because traditional data mining algorithms...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 39
SubjectTerms Data clustering problem
Internet of things
Metaheuristic algorithm
Title A parallel metaheuristic data clustering framework for cloud
URI https://dx.doi.org/10.1016/j.jpdc.2017.10.020
Volume 116
WOSCitedRecordID wos000430372200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0848
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011578
  issn: 0743-7315
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBa2dodd1q7bsL4GHXYLHEh-G-glKFq0PfSyDs1Ohi3JiwPDDRq76M8vaT2SbEWxDdjFMITIUUiGoqmPHwn5KvxAMhVC5KbAgsOAFV4J-6AXF7FMK1lxFepmE8n1dTqdZvZEdzm0E0jaNn18zBb_VdUwBsrG0tm_ULd7KAzAPSgdrqB2uP6R4icjpPNuGoVlIV0xU70mYx4hGHQkmh6pEQb8pMVlDVBD0dz1G00710JV90DMskuk2sUuWWooiFv0nd39MAGw1O2tT2d9692q2uF96n7Is85q76p3o7cmWf2j9nDCz_UUBE9XUCmdF7O1MRvQzYH8NAl0seZYaffKEPKcam5N53_5ugfV1EZmL9Zspr95eZ1wmI_nC4kslDwZI0DPZ6s9zSENv-EycBUcXBkeMb8m234SZeAAtyeXZ9Mrd-TEI71t22WbCisNBvz1m56PYtYik5td8s7oiU60Kbwnr1S7R3Zsuw5qvPcHcjKhVpF0wzIoWgZdWQZ1lkHBMuhgGR_J9_Ozm9MLzzTP8ETAWOfFsc8UZwJroatYxIXyCxYVEJ4GcRhXooQfFkSigHg7CkoI2nzJZBRKFbJClpUIPpGt9q5VnwkVkUzhn6vgVVmGXOCdYlmVlfBukEnG9gm3wsiFYZbHBidNbiGE8xwFmKMAcQwEuE9Gbs5C86q8-OnIyjg3kaGO-HIwiRfmHfzjvEPydmXnR2Sru-_VMXkjHrp6ef_FWM4TTLGHkg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+metaheuristic+data+clustering+framework+for+cloud&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Tsai%2C+Chun-Wei&rft.au=Liu%2C+Shi-Jui&rft.au=Wang%2C+Yi-Chung&rft.date=2018-06-01&rft.pub=Elsevier+Inc&rft.issn=0743-7315&rft.eissn=1096-0848&rft.volume=116&rft.spage=39&rft.epage=49&rft_id=info:doi/10.1016%2Fj.jpdc.2017.10.020&rft.externalDocID=S0743731517302964
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon