Gammatonegram based triple classification of lung sounds using deep convolutional neural network with transfer learning
•A novel pre-processing technique has been proposed that de-noise respiratory sounds using variational mode decomposition(VMD) technique and fed these sound signals to gammatone filter bank to generate time frequency distribution in the form of Gammatonegram images. These Gammatonegram images are cl...
Saved in:
| Published in: | Biomedical signal processing and control Vol. 70; p. 102947 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.09.2021
|
| Subjects: | |
| ISSN: | 1746-8094, 1746-8108 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A novel pre-processing technique has been proposed that de-noise respiratory sounds using variational mode decomposition(VMD) technique and fed these sound signals to gammatone filter bank to generate time frequency distribution in the form of Gammatonegram images. These Gammatonegram images are classified using different deep convolutional neural network architecture based transfer learning models.•Classification results obtained using the proposed method having accuracy 98.8% are superior than other baseline methods proposed in literature
Respiratory diseases are the leading cause of death worldwide; their timely diagnosis is essential. The primary tool for diagnosis of respiratory disorder is auscultation using a stethoscope. This conventional technique is subjective and relies on doctor’s experience. An efficient clinical support system by converting subjective listening process of auscultation into computerized proficient auscultation is the need of time. In practical environment auscultation sounds are overlapped by different noises therefore in order to classify them, we need an efficient de-noising technique followed by a classification model. In this paper, a novel pre-processing technique has been proposed that de-noise respiratory sounds using variational mode decomposition(VMD) technique and fed these sound signals to gammatone filter bank to generate time frequency distribution in the form of Gammatonegram images. These Gammatonegram images are classified using different deep convolutional neural network architecture based transfer learning models. Large data set for respiratory sounds are unavailable, CNN model over-fit if the size of data set is small, Therefore transfer learning like AlexNet, GoogLeNet, ResNet-50 and Inceptionv3 have been used for lung sound classification. The proposed method can classify lung sounds into three classes with accuracy, precision, sensitivity and specificity of 98.8%, 97.7%,100% and 97.6%. |
|---|---|
| AbstractList | •A novel pre-processing technique has been proposed that de-noise respiratory sounds using variational mode decomposition(VMD) technique and fed these sound signals to gammatone filter bank to generate time frequency distribution in the form of Gammatonegram images. These Gammatonegram images are classified using different deep convolutional neural network architecture based transfer learning models.•Classification results obtained using the proposed method having accuracy 98.8% are superior than other baseline methods proposed in literature
Respiratory diseases are the leading cause of death worldwide; their timely diagnosis is essential. The primary tool for diagnosis of respiratory disorder is auscultation using a stethoscope. This conventional technique is subjective and relies on doctor’s experience. An efficient clinical support system by converting subjective listening process of auscultation into computerized proficient auscultation is the need of time. In practical environment auscultation sounds are overlapped by different noises therefore in order to classify them, we need an efficient de-noising technique followed by a classification model. In this paper, a novel pre-processing technique has been proposed that de-noise respiratory sounds using variational mode decomposition(VMD) technique and fed these sound signals to gammatone filter bank to generate time frequency distribution in the form of Gammatonegram images. These Gammatonegram images are classified using different deep convolutional neural network architecture based transfer learning models. Large data set for respiratory sounds are unavailable, CNN model over-fit if the size of data set is small, Therefore transfer learning like AlexNet, GoogLeNet, ResNet-50 and Inceptionv3 have been used for lung sound classification. The proposed method can classify lung sounds into three classes with accuracy, precision, sensitivity and specificity of 98.8%, 97.7%,100% and 97.6%. |
| ArticleNumber | 102947 |
| Author | Gupta, Sonia Agrawal, Monika Deepak, Desh |
| Author_xml | – sequence: 1 givenname: Sonia surname: Gupta fullname: Gupta, Sonia email: sonia.gupta@dbst.iitd.ac.in organization: Bharti School of Telecommunication Technology and Management, Indian Institute of Technology, Delhi, India – sequence: 2 givenname: Monika surname: Agrawal fullname: Agrawal, Monika email: maggarwal@care.iitd.ernet.in organization: Centre of Applied Research in Electronics, Indian Institute of Technology, Delhi, India – sequence: 3 givenname: Desh surname: Deepak fullname: Deepak, Desh email: deshdeepak@rmlh.nic.in organization: Department of Respiratory Medicine, Dr RML Hospital Delhi, India |
| BookMark | eNp9kMtOwzAQRS1UJNrCD7DyD7Q4jzqOxAZVUJCQ2MDamownxSW1Kztpxd-TtLBh0dU8NOdKcyZs5Lwjxm4TMU9EIu828yrucJ6KNOkXaZkXF2ycFLmcqUSo0V8vyvyKTWLcCJGrIsnH7LCC7RbaPm0dYMsriGR4G-yuIY4NxGhri9Ba77ivedO5NY--cybyLtp-MEQ7jt7tfdMNV9BwR104lvbgwxc_2PazTwQXawq8IQiuB6_ZZQ1NpJvfOmUfT4_vy-fZ69vqZfnwOsNMiHYmpSBEA1AUJRRlJYVMczAEsFhQplQOhAtUi0pRnRohpJJYpyUalacoiyybsvSUi8HHGKjWu2C3EL51IvSgTm_0oE4P6vRJXQ-pfxDa9iih_8M259H7E0r9U3tLQUe05JCMDYStNt6ew38AS-WQRQ |
| CitedBy_id | crossref_primary_10_1007_s12559_023_10228_2 crossref_primary_10_1016_j_bspc_2025_108232 crossref_primary_10_3390_s25113351 crossref_primary_10_1016_j_bspc_2024_106170 crossref_primary_10_1016_j_micpro_2023_104844 crossref_primary_10_1186_s40779_023_00479_3 crossref_primary_10_1515_bmt_2025_0197 crossref_primary_10_1016_j_bspc_2023_104695 crossref_primary_10_1109_JBHI_2025_3545156 crossref_primary_10_1016_j_bspc_2023_105347 crossref_primary_10_1007_s11042_023_17186_9 crossref_primary_10_3389_fbuil_2025_1627643 crossref_primary_10_1016_j_bspc_2023_105239 crossref_primary_10_1016_j_bspc_2023_104805 crossref_primary_10_1016_j_bspc_2025_108491 crossref_primary_10_1007_s00500_024_09866_x crossref_primary_10_1016_j_compbiomed_2024_108190 crossref_primary_10_3390_electronics14142794 crossref_primary_10_1007_s10489_025_06452_y crossref_primary_10_1109_JSEN_2025_3567733 crossref_primary_10_1515_bmt_2022_0180 crossref_primary_10_1007_s11831_025_10344_2 crossref_primary_10_1016_j_bspc_2024_106009 crossref_primary_10_1016_j_compbiomed_2023_106928 crossref_primary_10_1515_bmt_2022_0421 crossref_primary_10_1007_s11042_024_19984_1 crossref_primary_10_1016_j_bspc_2024_106841 crossref_primary_10_1016_j_medengphy_2025_104302 crossref_primary_10_1016_j_bspc_2022_104338 crossref_primary_10_1016_j_engappai_2024_108382 crossref_primary_10_1121_10_0014176 crossref_primary_10_1016_j_jksuci_2024_102200 crossref_primary_10_3390_app15105313 crossref_primary_10_3390_app15179361 |
| Cites_doi | 10.1109/ACCESS.2020.3000111 10.1016/0169-2607(93)90045-M 10.1109/TSP.2013.2288675 10.1109/TMI.2016.2528162 10.1109/TIM.2007.907967 10.1109/EMBC46164.2021.9629857 10.1186/s13640-017-0213-2 10.7717/peerj-cs.369 10.1109/ACCESS.2019.2903587 10.1109/TMI.2016.2535865 10.1109/TMM.2012.2199972 10.1016/j.eswa.2017.11.007 10.1007/s11263-015-0816-y 10.1109/BID.2017.8336567 10.1002/ppul.23930 10.1016/j.dsp.2014.02.001 10.1109/ACCESS.2019.2903859 10.7150/ijbs.29863 10.1016/S0010-4825(03)00092-1 10.1016/j.compbiomed.2009.06.011 10.1016/j.artmed.2018.04.008 10.1109/ACCESS.2020.2971566 10.3109/15412555.2014.908832 10.1098/rspa.1998.0193 10.21437/Interspeech.2019-2680 10.1142/9789814508247_0003 10.1056/NEJMra1302901 10.3390/s19081798 10.1109/JSEN.2019.2912790 10.1109/TNSRE.2012.2229296 10.1016/j.cmpb.2018.03.016 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2021.102947 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| ExternalDocumentID | 10_1016_j_bspc_2021_102947 S1746809421005449 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-660eccdaa779a79b60624adeaa55e3884aec5c85b8ef2d00686cf29cd842c6733 |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000697764000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1746-8094 |
| IngestDate | Sat Nov 29 07:04:20 EST 2025 Tue Nov 18 21:15:35 EST 2025 Fri Feb 23 02:40:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Variational mode decomposition Gammatonegram Respiratory Auscultation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-660eccdaa779a79b60624adeaa55e3884aec5c85b8ef2d00686cf29cd842c6733 |
| ParticipantIDs | crossref_primary_10_1016_j_bspc_2021_102947 crossref_citationtrail_10_1016_j_bspc_2021_102947 elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102947 |
| PublicationCentury | 2000 |
| PublicationDate | September 2021 2021-09-00 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Valero, Alias (b0180) 2012; 14 RALE: A Computer-assisted instructional package.RespirCare 1990;35:1006. Bahoura (b0030) 2009; 39 Park, Cheolsoo, David Looney, Naveed ur Rehman, Alireza Ahrabian, and Danilo P. Mandic. Classification of motor imagery BCI using multivariate empirical mode decomposition. IEEE Transactions on neural systems and rehabilitation engineering 21, no. 1 (2012): 10–22. Pasterkamp (b0020) 2018; 53 Gupta, Agrawal, Deepak (b0050) 2019 Gaur, Pachori, Wang, Prasad (b0160) 2019; 19 Aykanat, Kiliç, Kurt, Saryal (b0040) 2017; 2017 Íçer, Gengeç (b0035) 2014; 28 Chen (b0220) 2019; 7 Gaur, Kaushik, Pachori, Wang, Prasad (b0165) 2019 Gonçalves, Cortez, Moro (b0245) 2019 Huang, Norden E., Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih, Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung, and Henry H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences 454, no. 1971 (1998): 903–995. Shin, Roth, Gao, Le, Ziyue, Nogues, Yao, Mollura, Summers (b0225) 2016; 35 Bardou, Dalal, Kun Zhang, and Sayed Mohammad Ahmad. Lung sounds classification using convolutional neural networks. Artificial intelligence in medicine 88 (2018): 58–69. Jácome, Marques (b0015) 2015; 12 Zhao (b0070) 2018 Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105. Lake Tahoe, NV (2012). Dragomiretskiy, Zosso (b0175) 2013; 62 Rehman, Naveed ur, David Looney, Alireza Ahrabian, Cheolsoo Park, and Danilo P. Mandic. MULTIVARIATE EXTENSIONS OF EMPIRICAL MODE DECOMPOSITION. In Hilbert-Huang Transform and Its Applications, pp. 47–67. 2014. Szegedy (b0210) 2015 Hattikatti, Pratiksha. Texture based interstitial lung disease detection using convolutional neural network. 2017 International Conference on Big Data, IoT and Data Science (BID). IEEE, 2017. Bobrowski, Lukaszuk (b0235) 2009; 29 Liu (b0065) 2019 Boudraa, Cexus (b0120) 2007; 56 Gaur, Pachori, Wang, Prasad (b0155) 2016 Pham, Lam, Huy Phan, Ross King, Alfred Mertins, and Ian McLoughlin. Inception-Based Network and Multi-Spectrogram Ensemble Applied For Predicting Respiratory Anomalies and Lung Diseases. arXiv preprint arXiv:2012.13699 (2020). Kristiani, Yang, Huang (b0215) 2020; 8 Nissan, Gavriely (b0005) 1993; 40 Anthimopoulos (b0095) 2016; 35 Kido, Hirano, Hashimoto (b0060) 2018 Srivastava, Jain, Miranda, Patil, Pandya, Kotecha (b0110) 2021; 7 Shi, Li, Cai, Zhang (b0135) 2019; 15 Rocha, Filos, Mendes, Vogiatzis, Perantoni, Kaimakamis, Natsiavas (b0240) 2018 Kandaswamy, A., C. Sathish Kumar, Rm Pl Ramanathan, S. Jayaraman, and N. Malmurugan. Neural classification of lung sounds using wavelet coefficients. Computers in biology and medicine 34, no. 6 (2004): 523–537. Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (b0190) 2015; 115 Bohadana, Izbicki, Kraman (b0010) 2014; 370 Strisciuglio, Vento, Petkov (b0185) 2015 Gaur, Pachori, Wang, Prasad (b0125) 2015 Shin (b0080) 2016; 35 Yan (b0075) 2019 Zuo (b0090) 2019; 7 Mondal, Banerjee, Tang (b0045) 2018; 159 Demir, Ismael, Sengur (b0105) 2020 Park, Daniel S., William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D. Cubuk, and Quoc V. Le. Specaugment: A simple data augmentation method for automatic speech recognition. arXiv preprint arXiv:1904.08779 (2019). Syahputra, Situmeang, Rahmat, Budiarto (b0130) 2017; 190 Gross V, Hadjileontiadis L J, Penzel T, Koehler U, Vogelmeier. Multimedia DatabaseMarburg Respiratory Sounds(MARS), vol 451.2003;pp.456–7. Jácome, Cristina, Johan Ravn, Einar Holsbo, Juan Carlos Aviles-Solis, Hasse Melbye, and Lars Ailo Bongo. Convolutional neural network for breathing phase detection in lung sounds. Sensors 19, no. 8 (2019): 1798. Gaur, Pachori, Wang, Prasad (b0150) 2018; 95 Pasterkamp (10.1016/j.bspc.2021.102947_b0020) 2018; 53 Gupta (10.1016/j.bspc.2021.102947_b0050) 2019 Anthimopoulos (10.1016/j.bspc.2021.102947_b0095) 2016; 35 Bohadana (10.1016/j.bspc.2021.102947_b0010) 2014; 370 10.1016/j.bspc.2021.102947_b0195 Russakovsky (10.1016/j.bspc.2021.102947_b0190) 2015; 115 10.1016/j.bspc.2021.102947_b0230 10.1016/j.bspc.2021.102947_b0115 Srivastava (10.1016/j.bspc.2021.102947_b0110) 2021; 7 Syahputra (10.1016/j.bspc.2021.102947_b0130) 2017; 190 Gaur (10.1016/j.bspc.2021.102947_b0150) 2018; 95 Boudraa (10.1016/j.bspc.2021.102947_b0120) 2007; 56 Gaur (10.1016/j.bspc.2021.102947_b0155) 2016 Valero (10.1016/j.bspc.2021.102947_b0180) 2012; 14 Gonçalves (10.1016/j.bspc.2021.102947_b0245) 2019 Aykanat (10.1016/j.bspc.2021.102947_b0040) 2017; 2017 Shi (10.1016/j.bspc.2021.102947_b0135) 2019; 15 Liu (10.1016/j.bspc.2021.102947_b0065) 2019 10.1016/j.bspc.2021.102947_b0140 10.1016/j.bspc.2021.102947_b0100 10.1016/j.bspc.2021.102947_b0145 10.1016/j.bspc.2021.102947_b0025 Bobrowski (10.1016/j.bspc.2021.102947_b0235) 2009; 29 Jácome (10.1016/j.bspc.2021.102947_b0015) 2015; 12 Strisciuglio (10.1016/j.bspc.2021.102947_b0185) 2015 Szegedy (10.1016/j.bspc.2021.102947_b0210) 2015 Rocha (10.1016/j.bspc.2021.102947_b0240) 2018 Íçer (10.1016/j.bspc.2021.102947_b0035) 2014; 28 Demir (10.1016/j.bspc.2021.102947_b0105) 2020 10.1016/j.bspc.2021.102947_b0170 10.1016/j.bspc.2021.102947_b0055 Bahoura (10.1016/j.bspc.2021.102947_b0030) 2009; 39 Yan (10.1016/j.bspc.2021.102947_b0075) 2019 Shin (10.1016/j.bspc.2021.102947_b0225) 2016; 35 Zhao (10.1016/j.bspc.2021.102947_b0070) 2018 Gaur (10.1016/j.bspc.2021.102947_b0160) 2019; 19 Chen (10.1016/j.bspc.2021.102947_b0220) 2019; 7 Kristiani (10.1016/j.bspc.2021.102947_b0215) 2020; 8 Gaur (10.1016/j.bspc.2021.102947_b0125) 2015 Kido (10.1016/j.bspc.2021.102947_b0060) 2018 Zuo (10.1016/j.bspc.2021.102947_b0090) 2019; 7 Dragomiretskiy (10.1016/j.bspc.2021.102947_b0175) 2013; 62 10.1016/j.bspc.2021.102947_b0085 Nissan (10.1016/j.bspc.2021.102947_b0005) 1993; 40 Shin (10.1016/j.bspc.2021.102947_b0080) 2016; 35 10.1016/j.bspc.2021.102947_b0200 Mondal (10.1016/j.bspc.2021.102947_b0045) 2018; 159 10.1016/j.bspc.2021.102947_b0205 Gaur (10.1016/j.bspc.2021.102947_b0165) 2019 |
| References_xml | – volume: 29 start-page: 4359 year: 2009 ident: b0235 article-title: Feature selection based on relaxed linear separability publication-title: Bio Cybernetics Biomed. Eng. – volume: 19 start-page: 6938 year: 2019 end-page: 6947 ident: b0160 article-title: An automatic subject specific intrinsic mode function selection for enhancing two-class EEG-based motor imagery-brain computer interface publication-title: IEEE Sens. J. – reference: Gross V, Hadjileontiadis L J, Penzel T, Koehler U, Vogelmeier. Multimedia DatabaseMarburg Respiratory Sounds(MARS), vol 451.2003;pp.456–7. – volume: 35 start-page: 1285 year: 2016 end-page: 1298 ident: b0225 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging – start-page: 1 year: 2016 end-page: 7 ident: b0155 article-title: A multivariate empirical mode decomposition based filtering for subject independent BCI publication-title: 2016 27th Irish Signals and Systems Conference (ISSC) – year: 2019 ident: b0065 article-title: Reducing False Positives for Lung Nodule Detection in Chest X-rays using Cascading CNN publication-title: 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA) – start-page: 1 year: 2019 end-page: 15 ident: b0245 article-title: A deep learning classifier for sentence classification in biomedical and computer science abstracts publication-title: Neural Comput. Appl. – reference: Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105. Lake Tahoe, NV (2012). – volume: 7 start-page: 32845 year: 2019 end-page: 32852 ident: b0220 article-title: Triple-classification of respiratory sounds using optimized s-transform and deep residual networks publication-title: IEEE Access – volume: 159 start-page: 199 year: 2018 end-page: 209 ident: b0045 article-title: A novel feature extraction technique for pulmonary sound analysis based on EMD publication-title: Computer Methods Programs Biomed. – volume: 35 start-page: 1285 year: 2016 end-page: 1298 ident: b0080 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging – reference: Bardou, Dalal, Kun Zhang, and Sayed Mohammad Ahmad. Lung sounds classification using convolutional neural networks. Artificial intelligence in medicine 88 (2018): 58–69. – reference: Pham, Lam, Huy Phan, Ross King, Alfred Mertins, and Ian McLoughlin. Inception-Based Network and Multi-Spectrogram Ensemble Applied For Predicting Respiratory Anomalies and Lung Diseases. arXiv preprint arXiv:2012.13699 (2020). – volume: 62 start-page: 531 year: 2013 end-page: 544 ident: b0175 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Processing – start-page: 33 year: 2018 end-page: 37 ident: b0240 article-title: A respiratory sound database for the development of automated classification publication-title: Precision Medicine Powered by pHealth and Connected Health – reference: Hattikatti, Pratiksha. Texture based interstitial lung disease detection using convolutional neural network. 2017 International Conference on Big Data, IoT and Data Science (BID). IEEE, 2017. – volume: 12 start-page: 104 year: 2015 end-page: 112 ident: b0015 article-title: Computerized respiratory sounds in patients with COPD: a systematic review publication-title: COPD: J. Chronic Obstructive Pulmonary Disease – year: 2018 ident: b0060 article-title: Detection and classification of lung abnormalities by use of convolutional neural network (CNN) and regions with CNN features (R-CNN) publication-title: 2018 International Workshop on Advanced Image Technology (IWAIT) – volume: 7 year: 2021 ident: b0110 article-title: Deep learning based respiratory sound analysis for detection of chronic obstructive pulmonary disease publication-title: PeerJ Computer Science – volume: 7 start-page: 32510 year: 2019 end-page: 32521 ident: b0090 article-title: Multi-resolution CNN and knowledge transfer for candidate classification in lung nodule detection publication-title: Ieee Access – year: 2020 ident: b0105 article-title: Classification of lung sounds with CNN model using parallel pooling structure publication-title: IEEE Access – start-page: 101 year: 2015 end-page: 115 ident: b0185 article-title: Bio-inspired filters for audio analysis publication-title: International Workshop on Brain-Inspired Computing – reference: Park, Daniel S., William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D. Cubuk, and Quoc V. Le. Specaugment: A simple data augmentation method for automatic speech recognition. arXiv preprint arXiv:1904.08779 (2019). – reference: RALE: A Computer-assisted instructional package.RespirCare 1990;35:1006. – reference: Kandaswamy, A., C. Sathish Kumar, Rm Pl Ramanathan, S. Jayaraman, and N. Malmurugan. Neural classification of lung sounds using wavelet coefficients. Computers in biology and medicine 34, no. 6 (2004): 523–537. – volume: 39 start-page: 824 year: 2009 end-page: 843 ident: b0030 article-title: Pattern recognition methods applied to respiratory sounds classification into normal and wheeze classes publication-title: Computers Biol. Med. – volume: 95 start-page: 201 year: 2018 end-page: 211 ident: b0150 article-title: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry publication-title: Expert Syst. Appl. – volume: 14 start-page: 1684 year: 2012 end-page: 1689 ident: b0180 article-title: Gammatone cepstral coefficients: Biologically inspired features for non-speech audio classification publication-title: IEEE Trans. Multimedia – volume: 40 start-page: 7 year: 1993 end-page: 13 ident: b0005 article-title: A microcomputer based lung sounds analysis publication-title: Computer Methods Programs Biomed. – volume: 28 start-page: 18 year: 2014 end-page: 27 ident: b0035 article-title: Classification and analysis of non-stationary characteristics of crackle and rhonchus lung adventitious sounds publication-title: Digital Signal Processing – year: 2015 ident: b0210 article-title: Going deeper with convolutions publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 56 start-page: 2196 year: 2007 end-page: 2202 ident: b0120 article-title: EMD-based signal filtering publication-title: IEEE Tran. Instrumentation Measure. – reference: Park, Cheolsoo, David Looney, Naveed ur Rehman, Alireza Ahrabian, and Danilo P. Mandic. Classification of motor imagery BCI using multivariate empirical mode decomposition. IEEE Transactions on neural systems and rehabilitation engineering 21, no. 1 (2012): 10–22. – volume: 2017 start-page: 65 year: 2017 ident: b0040 article-title: Classification of lung sounds using convolutional neural networks publication-title: EURASIP J. Image Video Processing – start-page: 107 year: 2019 end-page: 118 ident: b0165 article-title: Comparison analysis: single and multichannel EMD-based filtering with application to BCI publication-title: Machine intelligence and signal analysis – reference: Jácome, Cristina, Johan Ravn, Einar Holsbo, Juan Carlos Aviles-Solis, Hasse Melbye, and Lars Ailo Bongo. Convolutional neural network for breathing phase detection in lung sounds. Sensors 19, no. 8 (2019): 1798. – volume: 35 start-page: 1207 year: 2016 end-page: 1216 ident: b0095 article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network publication-title: IEEE Trans. Med. Imaging – year: 2019 ident: b0075 article-title: Improved Mask R-CNN for Lung Nodule Segmentation publication-title: 2019 10th International Conference on Information Technology in Medicine and Education (ITME) – reference: Huang, Norden E., Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih, Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung, and Henry H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences 454, no. 1971 (1998): 903–995. – volume: 8 start-page: 27267 year: 2020 end-page: 27276 ident: b0215 article-title: iSEC: An Optimized Deep Learning Model for Image Classification on Edge Computing publication-title: IEEE Access – volume: 190 start-page: 012040 year: 2017 ident: b0130 article-title: Noise reduction in breath sound files using wavelet transform based filter publication-title: IOP Conference Series: Materials Science and Engineering – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: b0190 article-title: others: imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. – start-page: 1 year: 2015 end-page: 7 ident: b0125 article-title: An empirical mode decomposition based filtering method for classification of motor-imagery EEG signals for enhancing brain-computer interface publication-title: 2015 International Joint Conference on Neural Networks (IJCNN) – reference: Rehman, Naveed ur, David Looney, Alireza Ahrabian, Cheolsoo Park, and Danilo P. Mandic. MULTIVARIATE EXTENSIONS OF EMPIRICAL MODE DECOMPOSITION. In Hilbert-Huang Transform and Its Applications, pp. 47–67. 2014. – volume: 53 start-page: 243 year: 2018 end-page: 254 ident: b0020 article-title: The highs and lows of wheezing: a review of the most popular adventitious lung sound publication-title: Pediatric Pulmonology – volume: 370 start-page: 744 year: 2014 end-page: 751 ident: b0010 article-title: Fundamentals of lung auscultation publication-title: N. Engl. J. Med. – volume: 15 start-page: 195 year: 2019 ident: b0135 article-title: A lung sound category recognition method based on wavelet decomposition and BP neural network publication-title: Int. J. Bbiolog. Sci. – year: 2019 ident: b0050 article-title: Extraction of Adventitious Sounds from Noisy Lung Sound using VMD-KLD and VMD-JSD publication-title: TENCON 2019–2019 IEEE Region 10 Conference (TENCON) – year: 2018 ident: b0070 article-title: Lung nodule detection via 3D U-Net and contextual convolutional neural network publication-title: 2018 International Conference on Networking and Network Applications (NaNA) – year: 2020 ident: 10.1016/j.bspc.2021.102947_b0105 article-title: Classification of lung sounds with CNN model using parallel pooling structure publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3000111 – volume: 40 start-page: 7 issue: 1 year: 1993 ident: 10.1016/j.bspc.2021.102947_b0005 article-title: A microcomputer based lung sounds analysis publication-title: Computer Methods Programs Biomed. doi: 10.1016/0169-2607(93)90045-M – volume: 190 start-page: 012040 year: 2017 ident: 10.1016/j.bspc.2021.102947_b0130 article-title: Noise reduction in breath sound files using wavelet transform based filter – year: 2019 ident: 10.1016/j.bspc.2021.102947_b0075 article-title: Improved Mask R-CNN for Lung Nodule Segmentation – volume: 62 start-page: 531 issue: 3 year: 2013 ident: 10.1016/j.bspc.2021.102947_b0175 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Processing doi: 10.1109/TSP.2013.2288675 – volume: 35 start-page: 1285 issue: 5 year: 2016 ident: 10.1016/j.bspc.2021.102947_b0225 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 – volume: 56 start-page: 2196 issue: 6 year: 2007 ident: 10.1016/j.bspc.2021.102947_b0120 article-title: EMD-based signal filtering publication-title: IEEE Tran. Instrumentation Measure. doi: 10.1109/TIM.2007.907967 – start-page: 1 year: 2015 ident: 10.1016/j.bspc.2021.102947_b0125 article-title: An empirical mode decomposition based filtering method for classification of motor-imagery EEG signals for enhancing brain-computer interface – ident: 10.1016/j.bspc.2021.102947_b0200 – start-page: 1 year: 2016 ident: 10.1016/j.bspc.2021.102947_b0155 article-title: A multivariate empirical mode decomposition based filtering for subject independent BCI – ident: 10.1016/j.bspc.2021.102947_b0100 doi: 10.1109/EMBC46164.2021.9629857 – year: 2018 ident: 10.1016/j.bspc.2021.102947_b0060 article-title: Detection and classification of lung abnormalities by use of convolutional neural network (CNN) and regions with CNN features (R-CNN) – volume: 2017 start-page: 65 issue: 1 year: 2017 ident: 10.1016/j.bspc.2021.102947_b0040 article-title: Classification of lung sounds using convolutional neural networks publication-title: EURASIP J. Image Video Processing doi: 10.1186/s13640-017-0213-2 – volume: 7 year: 2021 ident: 10.1016/j.bspc.2021.102947_b0110 article-title: Deep learning based respiratory sound analysis for detection of chronic obstructive pulmonary disease publication-title: PeerJ Computer Science doi: 10.7717/peerj-cs.369 – volume: 7 start-page: 32510 year: 2019 ident: 10.1016/j.bspc.2021.102947_b0090 article-title: Multi-resolution CNN and knowledge transfer for candidate classification in lung nodule detection publication-title: Ieee Access doi: 10.1109/ACCESS.2019.2903587 – volume: 35 start-page: 1207 issue: 5 year: 2016 ident: 10.1016/j.bspc.2021.102947_b0095 article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2535865 – volume: 14 start-page: 1684 issue: 6 year: 2012 ident: 10.1016/j.bspc.2021.102947_b0180 article-title: Gammatone cepstral coefficients: Biologically inspired features for non-speech audio classification publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2012.2199972 – ident: 10.1016/j.bspc.2021.102947_b0205 – year: 2015 ident: 10.1016/j.bspc.2021.102947_b0210 article-title: Going deeper with convolutions – start-page: 1 year: 2019 ident: 10.1016/j.bspc.2021.102947_b0245 article-title: A deep learning classifier for sentence classification in biomedical and computer science abstracts publication-title: Neural Comput. Appl. – volume: 95 start-page: 201 year: 2018 ident: 10.1016/j.bspc.2021.102947_b0150 article-title: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.11.007 – volume: 115 start-page: 211 year: 2015 ident: 10.1016/j.bspc.2021.102947_b0190 article-title: others: imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – ident: 10.1016/j.bspc.2021.102947_b0085 doi: 10.1109/BID.2017.8336567 – start-page: 107 year: 2019 ident: 10.1016/j.bspc.2021.102947_b0165 article-title: Comparison analysis: single and multichannel EMD-based filtering with application to BCI – year: 2019 ident: 10.1016/j.bspc.2021.102947_b0050 article-title: Extraction of Adventitious Sounds from Noisy Lung Sound using VMD-KLD and VMD-JSD – volume: 53 start-page: 243 issue: 2 year: 2018 ident: 10.1016/j.bspc.2021.102947_b0020 article-title: The highs and lows of wheezing: a review of the most popular adventitious lung sound publication-title: Pediatric Pulmonology doi: 10.1002/ppul.23930 – start-page: 33 year: 2018 ident: 10.1016/j.bspc.2021.102947_b0240 article-title: A respiratory sound database for the development of automated classification – volume: 28 start-page: 18 year: 2014 ident: 10.1016/j.bspc.2021.102947_b0035 article-title: Classification and analysis of non-stationary characteristics of crackle and rhonchus lung adventitious sounds publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2014.02.001 – volume: 7 start-page: 32845 year: 2019 ident: 10.1016/j.bspc.2021.102947_b0220 article-title: Triple-classification of respiratory sounds using optimized s-transform and deep residual networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2903859 – volume: 29 start-page: 4359 issue: 2 year: 2009 ident: 10.1016/j.bspc.2021.102947_b0235 article-title: Feature selection based on relaxed linear separability publication-title: Bio Cybernetics Biomed. Eng. – start-page: 101 year: 2015 ident: 10.1016/j.bspc.2021.102947_b0185 article-title: Bio-inspired filters for audio analysis – volume: 15 start-page: 195 issue: 1 year: 2019 ident: 10.1016/j.bspc.2021.102947_b0135 article-title: A lung sound category recognition method based on wavelet decomposition and BP neural network publication-title: Int. J. Bbiolog. Sci. doi: 10.7150/ijbs.29863 – ident: 10.1016/j.bspc.2021.102947_b0025 doi: 10.1016/S0010-4825(03)00092-1 – volume: 39 start-page: 824 issue: 9 year: 2009 ident: 10.1016/j.bspc.2021.102947_b0030 article-title: Pattern recognition methods applied to respiratory sounds classification into normal and wheeze classes publication-title: Computers Biol. Med. doi: 10.1016/j.compbiomed.2009.06.011 – ident: 10.1016/j.bspc.2021.102947_b0055 doi: 10.1016/j.artmed.2018.04.008 – volume: 8 start-page: 27267 year: 2020 ident: 10.1016/j.bspc.2021.102947_b0215 article-title: iSEC: An Optimized Deep Learning Model for Image Classification on Edge Computing publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2971566 – volume: 12 start-page: 104 issue: 1 year: 2015 ident: 10.1016/j.bspc.2021.102947_b0015 article-title: Computerized respiratory sounds in patients with COPD: a systematic review publication-title: COPD: J. Chronic Obstructive Pulmonary Disease doi: 10.3109/15412555.2014.908832 – year: 2019 ident: 10.1016/j.bspc.2021.102947_b0065 article-title: Reducing False Positives for Lung Nodule Detection in Chest X-rays using Cascading CNN – year: 2018 ident: 10.1016/j.bspc.2021.102947_b0070 article-title: Lung nodule detection via 3D U-Net and contextual convolutional neural network – ident: 10.1016/j.bspc.2021.102947_b0140 doi: 10.1098/rspa.1998.0193 – ident: 10.1016/j.bspc.2021.102947_b0195 doi: 10.21437/Interspeech.2019-2680 – ident: 10.1016/j.bspc.2021.102947_b0145 doi: 10.1142/9789814508247_0003 – volume: 370 start-page: 744 issue: 8 year: 2014 ident: 10.1016/j.bspc.2021.102947_b0010 article-title: Fundamentals of lung auscultation publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1302901 – volume: 35 start-page: 1285 issue: 5 year: 2016 ident: 10.1016/j.bspc.2021.102947_b0080 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 – ident: 10.1016/j.bspc.2021.102947_b0115 doi: 10.3390/s19081798 – ident: 10.1016/j.bspc.2021.102947_b0230 – volume: 19 start-page: 6938 issue: 16 year: 2019 ident: 10.1016/j.bspc.2021.102947_b0160 article-title: An automatic subject specific intrinsic mode function selection for enhancing two-class EEG-based motor imagery-brain computer interface publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2912790 – ident: 10.1016/j.bspc.2021.102947_b0170 doi: 10.1109/TNSRE.2012.2229296 – volume: 159 start-page: 199 year: 2018 ident: 10.1016/j.bspc.2021.102947_b0045 article-title: A novel feature extraction technique for pulmonary sound analysis based on EMD publication-title: Computer Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.03.016 |
| SSID | ssj0048714 |
| Score | 2.4247334 |
| Snippet | •A novel pre-processing technique has been proposed that de-noise respiratory sounds using variational mode decomposition(VMD) technique and fed these sound... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 102947 |
| SubjectTerms | Auscultation Gammatonegram Respiratory Variational mode decomposition |
| Title | Gammatonegram based triple classification of lung sounds using deep convolutional neural network with transfer learning |
| URI | https://dx.doi.org/10.1016/j.bspc.2021.102947 |
| Volume | 70 |
| WOSCitedRecordID | wos000697764000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIEXJ dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa2Sw_toSp9qPQlH3pbBSXZJLaPKwq0HBASVNpb5NheCiwh2gdw7x9nxo-QhQoVpF6yK-_acTyfxzOTeRDyDfStpOKwvwujRZSlJo54JnWkJpmBE8_gqzJbbILt7_PxWBz0en9CLMzllNU1v74WzX8lNbQBsTF09hHkbgeFBvgORIcrkB2u_0T4XXkOUuhFjVkgzgd4SunBYmadBhWKyugb1MqJ0yWaE7C00nywtGYDbUxjfdH9JIGEmPPSfliPcW-6tQKvmYWyE8crb4dtTL8LuDw5xiEaF48QIiK9g3zr_LNsnBB7CBymPSdG8ABXth6B5Txn7Q_fYYryzHHL-e-u3SJNWscsb0wLATW33kvIf1mG-ZFd3eNN02lLYt5l2q7ayD3-70wRp5vVvMH8lGmCqSmEy-l5J6_2IY6LtwKlF-TWTDwjaynLBe-TtdHP7fFeONBBpbMp4tu5-dgr5yZ4905_l286MsvRa_LKKxt05ECyTnqmfkNedlJQviVXK3ChFi7UwYWuwoVeTCjChTq4UAsXinChK3ChDi7Uw4UiXGiACw1weUd-7Wwfbf2IfDGOSA3jeBEVRQy7XUvJmJBMVKD4prCpjZQ57GgOG9yoXPG84maSaht5pCapUJpnqSrYcPie9Gt4mA-EmqKSmhWKKQn6MmjwSSWGVaGkAWleFnqDJGEJS-Uz1WPBlGkZXBJPS1z2Epe9dMu-QQZtn8blaXnw33mgTOklTSdBlgCkB_p9fGK_T-TF7Rb4TPqL2dJ8Ic_V5eJkPvvq8XYDcoOqqA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gammatonegram+based+triple+classification+of+lung+sounds+using+deep+convolutional+neural+network+with+transfer+learning&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Gupta%2C+Sonia&rft.au=Agrawal%2C+Monika&rft.au=Deepak%2C+Desh&rft.date=2021-09-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=70&rft_id=info:doi/10.1016%2Fj.bspc.2021.102947&rft.externalDocID=S1746809421005449 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |