Gammatonegram based triple classification of lung sounds using deep convolutional neural network with transfer learning

•A novel pre-processing technique has been proposed that de-noise respiratory sounds using variational mode decomposition(VMD) technique and fed these sound signals to gammatone filter bank to generate time frequency distribution in the form of Gammatonegram images. These Gammatonegram images are cl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomedical signal processing and control Ročník 70; s. 102947
Hlavní autoři: Gupta, Sonia, Agrawal, Monika, Deepak, Desh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.2021
Témata:
ISSN:1746-8094, 1746-8108
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A novel pre-processing technique has been proposed that de-noise respiratory sounds using variational mode decomposition(VMD) technique and fed these sound signals to gammatone filter bank to generate time frequency distribution in the form of Gammatonegram images. These Gammatonegram images are classified using different deep convolutional neural network architecture based transfer learning models.•Classification results obtained using the proposed method having accuracy 98.8% are superior than other baseline methods proposed in literature Respiratory diseases are the leading cause of death worldwide; their timely diagnosis is essential. The primary tool for diagnosis of respiratory disorder is auscultation using a stethoscope. This conventional technique is subjective and relies on doctor’s experience. An efficient clinical support system by converting subjective listening process of auscultation into computerized proficient auscultation is the need of time. In practical environment auscultation sounds are overlapped by different noises therefore in order to classify them, we need an efficient de-noising technique followed by a classification model. In this paper, a novel pre-processing technique has been proposed that de-noise respiratory sounds using variational mode decomposition(VMD) technique and fed these sound signals to gammatone filter bank to generate time frequency distribution in the form of Gammatonegram images. These Gammatonegram images are classified using different deep convolutional neural network architecture based transfer learning models. Large data set for respiratory sounds are unavailable, CNN model over-fit if the size of data set is small, Therefore transfer learning like AlexNet, GoogLeNet, ResNet-50 and Inceptionv3 have been used for lung sound classification. The proposed method can classify lung sounds into three classes with accuracy, precision, sensitivity and specificity of 98.8%, 97.7%,100% and 97.6%.
AbstractList •A novel pre-processing technique has been proposed that de-noise respiratory sounds using variational mode decomposition(VMD) technique and fed these sound signals to gammatone filter bank to generate time frequency distribution in the form of Gammatonegram images. These Gammatonegram images are classified using different deep convolutional neural network architecture based transfer learning models.•Classification results obtained using the proposed method having accuracy 98.8% are superior than other baseline methods proposed in literature Respiratory diseases are the leading cause of death worldwide; their timely diagnosis is essential. The primary tool for diagnosis of respiratory disorder is auscultation using a stethoscope. This conventional technique is subjective and relies on doctor’s experience. An efficient clinical support system by converting subjective listening process of auscultation into computerized proficient auscultation is the need of time. In practical environment auscultation sounds are overlapped by different noises therefore in order to classify them, we need an efficient de-noising technique followed by a classification model. In this paper, a novel pre-processing technique has been proposed that de-noise respiratory sounds using variational mode decomposition(VMD) technique and fed these sound signals to gammatone filter bank to generate time frequency distribution in the form of Gammatonegram images. These Gammatonegram images are classified using different deep convolutional neural network architecture based transfer learning models. Large data set for respiratory sounds are unavailable, CNN model over-fit if the size of data set is small, Therefore transfer learning like AlexNet, GoogLeNet, ResNet-50 and Inceptionv3 have been used for lung sound classification. The proposed method can classify lung sounds into three classes with accuracy, precision, sensitivity and specificity of 98.8%, 97.7%,100% and 97.6%.
ArticleNumber 102947
Author Gupta, Sonia
Agrawal, Monika
Deepak, Desh
Author_xml – sequence: 1
  givenname: Sonia
  surname: Gupta
  fullname: Gupta, Sonia
  email: sonia.gupta@dbst.iitd.ac.in
  organization: Bharti School of Telecommunication Technology and Management, Indian Institute of Technology, Delhi, India
– sequence: 2
  givenname: Monika
  surname: Agrawal
  fullname: Agrawal, Monika
  email: maggarwal@care.iitd.ernet.in
  organization: Centre of Applied Research in Electronics, Indian Institute of Technology, Delhi, India
– sequence: 3
  givenname: Desh
  surname: Deepak
  fullname: Deepak, Desh
  email: deshdeepak@rmlh.nic.in
  organization: Department of Respiratory Medicine, Dr RML Hospital Delhi, India
BookMark eNp9kMtOwzAQRS1UJNrCD7DyD7Q4jzqOxAZVUJCQ2MDamownxSW1Kztpxd-TtLBh0dU8NOdKcyZs5Lwjxm4TMU9EIu828yrucJ6KNOkXaZkXF2ycFLmcqUSo0V8vyvyKTWLcCJGrIsnH7LCC7RbaPm0dYMsriGR4G-yuIY4NxGhri9Ba77ivedO5NY--cybyLtp-MEQ7jt7tfdMNV9BwR104lvbgwxc_2PazTwQXawq8IQiuB6_ZZQ1NpJvfOmUfT4_vy-fZ69vqZfnwOsNMiHYmpSBEA1AUJRRlJYVMczAEsFhQplQOhAtUi0pRnRohpJJYpyUalacoiyybsvSUi8HHGKjWu2C3EL51IvSgTm_0oE4P6vRJXQ-pfxDa9iih_8M259H7E0r9U3tLQUe05JCMDYStNt6ew38AS-WQRQ
CitedBy_id crossref_primary_10_1007_s12559_023_10228_2
crossref_primary_10_1016_j_bspc_2025_108232
crossref_primary_10_3390_s25113351
crossref_primary_10_1016_j_bspc_2024_106170
crossref_primary_10_1016_j_micpro_2023_104844
crossref_primary_10_1186_s40779_023_00479_3
crossref_primary_10_1515_bmt_2025_0197
crossref_primary_10_1016_j_bspc_2023_104695
crossref_primary_10_1109_JBHI_2025_3545156
crossref_primary_10_1016_j_bspc_2023_105347
crossref_primary_10_1007_s11042_023_17186_9
crossref_primary_10_3389_fbuil_2025_1627643
crossref_primary_10_1016_j_bspc_2023_105239
crossref_primary_10_1016_j_bspc_2023_104805
crossref_primary_10_1016_j_bspc_2025_108491
crossref_primary_10_1007_s00500_024_09866_x
crossref_primary_10_1016_j_compbiomed_2024_108190
crossref_primary_10_3390_electronics14142794
crossref_primary_10_1007_s10489_025_06452_y
crossref_primary_10_1109_JSEN_2025_3567733
crossref_primary_10_1515_bmt_2022_0180
crossref_primary_10_1007_s11831_025_10344_2
crossref_primary_10_1016_j_bspc_2024_106009
crossref_primary_10_1016_j_compbiomed_2023_106928
crossref_primary_10_1515_bmt_2022_0421
crossref_primary_10_1007_s11042_024_19984_1
crossref_primary_10_1016_j_bspc_2024_106841
crossref_primary_10_1016_j_medengphy_2025_104302
crossref_primary_10_1016_j_bspc_2022_104338
crossref_primary_10_1016_j_engappai_2024_108382
crossref_primary_10_1121_10_0014176
crossref_primary_10_1016_j_jksuci_2024_102200
crossref_primary_10_3390_app15105313
crossref_primary_10_3390_app15179361
Cites_doi 10.1109/ACCESS.2020.3000111
10.1016/0169-2607(93)90045-M
10.1109/TSP.2013.2288675
10.1109/TMI.2016.2528162
10.1109/TIM.2007.907967
10.1109/EMBC46164.2021.9629857
10.1186/s13640-017-0213-2
10.7717/peerj-cs.369
10.1109/ACCESS.2019.2903587
10.1109/TMI.2016.2535865
10.1109/TMM.2012.2199972
10.1016/j.eswa.2017.11.007
10.1007/s11263-015-0816-y
10.1109/BID.2017.8336567
10.1002/ppul.23930
10.1016/j.dsp.2014.02.001
10.1109/ACCESS.2019.2903859
10.7150/ijbs.29863
10.1016/S0010-4825(03)00092-1
10.1016/j.compbiomed.2009.06.011
10.1016/j.artmed.2018.04.008
10.1109/ACCESS.2020.2971566
10.3109/15412555.2014.908832
10.1098/rspa.1998.0193
10.21437/Interspeech.2019-2680
10.1142/9789814508247_0003
10.1056/NEJMra1302901
10.3390/s19081798
10.1109/JSEN.2019.2912790
10.1109/TNSRE.2012.2229296
10.1016/j.cmpb.2018.03.016
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2021.102947
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2021_102947
S1746809421005449
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-660eccdaa779a79b60624adeaa55e3884aec5c85b8ef2d00686cf29cd842c6733
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000697764000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Sat Nov 29 07:04:20 EST 2025
Tue Nov 18 21:15:35 EST 2025
Fri Feb 23 02:40:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Variational mode decomposition
Gammatonegram
Respiratory
Auscultation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-660eccdaa779a79b60624adeaa55e3884aec5c85b8ef2d00686cf29cd842c6733
ParticipantIDs crossref_primary_10_1016_j_bspc_2021_102947
crossref_citationtrail_10_1016_j_bspc_2021_102947
elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102947
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Valero, Alias (b0180) 2012; 14
RALE: A Computer-assisted instructional package.RespirCare 1990;35:1006.
Bahoura (b0030) 2009; 39
Park, Cheolsoo, David Looney, Naveed ur Rehman, Alireza Ahrabian, and Danilo P. Mandic. Classification of motor imagery BCI using multivariate empirical mode decomposition. IEEE Transactions on neural systems and rehabilitation engineering 21, no. 1 (2012): 10–22.
Pasterkamp (b0020) 2018; 53
Gupta, Agrawal, Deepak (b0050) 2019
Gaur, Pachori, Wang, Prasad (b0160) 2019; 19
Aykanat, Kiliç, Kurt, Saryal (b0040) 2017; 2017
Íçer, Gengeç (b0035) 2014; 28
Chen (b0220) 2019; 7
Gaur, Kaushik, Pachori, Wang, Prasad (b0165) 2019
Gonçalves, Cortez, Moro (b0245) 2019
Huang, Norden E., Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih, Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung, and Henry H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences 454, no. 1971 (1998): 903–995.
Shin, Roth, Gao, Le, Ziyue, Nogues, Yao, Mollura, Summers (b0225) 2016; 35
Bardou, Dalal, Kun Zhang, and Sayed Mohammad Ahmad. Lung sounds classification using convolutional neural networks. Artificial intelligence in medicine 88 (2018): 58–69.
Jácome, Marques (b0015) 2015; 12
Zhao (b0070) 2018
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105. Lake Tahoe, NV (2012).
Dragomiretskiy, Zosso (b0175) 2013; 62
Rehman, Naveed ur, David Looney, Alireza Ahrabian, Cheolsoo Park, and Danilo P. Mandic. MULTIVARIATE EXTENSIONS OF EMPIRICAL MODE DECOMPOSITION. In Hilbert-Huang Transform and Its Applications, pp. 47–67. 2014.
Szegedy (b0210) 2015
Hattikatti, Pratiksha. Texture based interstitial lung disease detection using convolutional neural network. 2017 International Conference on Big Data, IoT and Data Science (BID). IEEE, 2017.
Bobrowski, Lukaszuk (b0235) 2009; 29
Liu (b0065) 2019
Boudraa, Cexus (b0120) 2007; 56
Gaur, Pachori, Wang, Prasad (b0155) 2016
Pham, Lam, Huy Phan, Ross King, Alfred Mertins, and Ian McLoughlin. Inception-Based Network and Multi-Spectrogram Ensemble Applied For Predicting Respiratory Anomalies and Lung Diseases. arXiv preprint arXiv:2012.13699 (2020).
Kristiani, Yang, Huang (b0215) 2020; 8
Nissan, Gavriely (b0005) 1993; 40
Anthimopoulos (b0095) 2016; 35
Kido, Hirano, Hashimoto (b0060) 2018
Srivastava, Jain, Miranda, Patil, Pandya, Kotecha (b0110) 2021; 7
Shi, Li, Cai, Zhang (b0135) 2019; 15
Rocha, Filos, Mendes, Vogiatzis, Perantoni, Kaimakamis, Natsiavas (b0240) 2018
Kandaswamy, A., C. Sathish Kumar, Rm Pl Ramanathan, S. Jayaraman, and N. Malmurugan. Neural classification of lung sounds using wavelet coefficients. Computers in biology and medicine 34, no. 6 (2004): 523–537.
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (b0190) 2015; 115
Bohadana, Izbicki, Kraman (b0010) 2014; 370
Strisciuglio, Vento, Petkov (b0185) 2015
Gaur, Pachori, Wang, Prasad (b0125) 2015
Shin (b0080) 2016; 35
Yan (b0075) 2019
Zuo (b0090) 2019; 7
Mondal, Banerjee, Tang (b0045) 2018; 159
Demir, Ismael, Sengur (b0105) 2020
Park, Daniel S., William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D. Cubuk, and Quoc V. Le. Specaugment: A simple data augmentation method for automatic speech recognition. arXiv preprint arXiv:1904.08779 (2019).
Syahputra, Situmeang, Rahmat, Budiarto (b0130) 2017; 190
Gross V, Hadjileontiadis L J, Penzel T, Koehler U, Vogelmeier. Multimedia DatabaseMarburg Respiratory Sounds(MARS), vol 451.2003;pp.456–7.
Jácome, Cristina, Johan Ravn, Einar Holsbo, Juan Carlos Aviles-Solis, Hasse Melbye, and Lars Ailo Bongo. Convolutional neural network for breathing phase detection in lung sounds. Sensors 19, no. 8 (2019): 1798.
Gaur, Pachori, Wang, Prasad (b0150) 2018; 95
Pasterkamp (10.1016/j.bspc.2021.102947_b0020) 2018; 53
Gupta (10.1016/j.bspc.2021.102947_b0050) 2019
Anthimopoulos (10.1016/j.bspc.2021.102947_b0095) 2016; 35
Bohadana (10.1016/j.bspc.2021.102947_b0010) 2014; 370
10.1016/j.bspc.2021.102947_b0195
Russakovsky (10.1016/j.bspc.2021.102947_b0190) 2015; 115
10.1016/j.bspc.2021.102947_b0230
10.1016/j.bspc.2021.102947_b0115
Srivastava (10.1016/j.bspc.2021.102947_b0110) 2021; 7
Syahputra (10.1016/j.bspc.2021.102947_b0130) 2017; 190
Gaur (10.1016/j.bspc.2021.102947_b0150) 2018; 95
Boudraa (10.1016/j.bspc.2021.102947_b0120) 2007; 56
Gaur (10.1016/j.bspc.2021.102947_b0155) 2016
Valero (10.1016/j.bspc.2021.102947_b0180) 2012; 14
Gonçalves (10.1016/j.bspc.2021.102947_b0245) 2019
Aykanat (10.1016/j.bspc.2021.102947_b0040) 2017; 2017
Shi (10.1016/j.bspc.2021.102947_b0135) 2019; 15
Liu (10.1016/j.bspc.2021.102947_b0065) 2019
10.1016/j.bspc.2021.102947_b0140
10.1016/j.bspc.2021.102947_b0100
10.1016/j.bspc.2021.102947_b0145
10.1016/j.bspc.2021.102947_b0025
Bobrowski (10.1016/j.bspc.2021.102947_b0235) 2009; 29
Jácome (10.1016/j.bspc.2021.102947_b0015) 2015; 12
Strisciuglio (10.1016/j.bspc.2021.102947_b0185) 2015
Szegedy (10.1016/j.bspc.2021.102947_b0210) 2015
Rocha (10.1016/j.bspc.2021.102947_b0240) 2018
Íçer (10.1016/j.bspc.2021.102947_b0035) 2014; 28
Demir (10.1016/j.bspc.2021.102947_b0105) 2020
10.1016/j.bspc.2021.102947_b0170
10.1016/j.bspc.2021.102947_b0055
Bahoura (10.1016/j.bspc.2021.102947_b0030) 2009; 39
Yan (10.1016/j.bspc.2021.102947_b0075) 2019
Shin (10.1016/j.bspc.2021.102947_b0225) 2016; 35
Zhao (10.1016/j.bspc.2021.102947_b0070) 2018
Gaur (10.1016/j.bspc.2021.102947_b0160) 2019; 19
Chen (10.1016/j.bspc.2021.102947_b0220) 2019; 7
Kristiani (10.1016/j.bspc.2021.102947_b0215) 2020; 8
Gaur (10.1016/j.bspc.2021.102947_b0125) 2015
Kido (10.1016/j.bspc.2021.102947_b0060) 2018
Zuo (10.1016/j.bspc.2021.102947_b0090) 2019; 7
Dragomiretskiy (10.1016/j.bspc.2021.102947_b0175) 2013; 62
10.1016/j.bspc.2021.102947_b0085
Nissan (10.1016/j.bspc.2021.102947_b0005) 1993; 40
Shin (10.1016/j.bspc.2021.102947_b0080) 2016; 35
10.1016/j.bspc.2021.102947_b0200
Mondal (10.1016/j.bspc.2021.102947_b0045) 2018; 159
10.1016/j.bspc.2021.102947_b0205
Gaur (10.1016/j.bspc.2021.102947_b0165) 2019
References_xml – volume: 29
  start-page: 4359
  year: 2009
  ident: b0235
  article-title: Feature selection based on relaxed linear separability
  publication-title: Bio Cybernetics Biomed. Eng.
– volume: 19
  start-page: 6938
  year: 2019
  end-page: 6947
  ident: b0160
  article-title: An automatic subject specific intrinsic mode function selection for enhancing two-class EEG-based motor imagery-brain computer interface
  publication-title: IEEE Sens. J.
– reference: Gross V, Hadjileontiadis L J, Penzel T, Koehler U, Vogelmeier. Multimedia DatabaseMarburg Respiratory Sounds(MARS), vol 451.2003;pp.456–7.
– volume: 35
  start-page: 1285
  year: 2016
  end-page: 1298
  ident: b0225
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1
  year: 2016
  end-page: 7
  ident: b0155
  article-title: A multivariate empirical mode decomposition based filtering for subject independent BCI
  publication-title: 2016 27th Irish Signals and Systems Conference (ISSC)
– year: 2019
  ident: b0065
  article-title: Reducing False Positives for Lung Nodule Detection in Chest X-rays using Cascading CNN
  publication-title: 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)
– start-page: 1
  year: 2019
  end-page: 15
  ident: b0245
  article-title: A deep learning classifier for sentence classification in biomedical and computer science abstracts
  publication-title: Neural Comput. Appl.
– reference: Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105. Lake Tahoe, NV (2012).
– volume: 7
  start-page: 32845
  year: 2019
  end-page: 32852
  ident: b0220
  article-title: Triple-classification of respiratory sounds using optimized s-transform and deep residual networks
  publication-title: IEEE Access
– volume: 159
  start-page: 199
  year: 2018
  end-page: 209
  ident: b0045
  article-title: A novel feature extraction technique for pulmonary sound analysis based on EMD
  publication-title: Computer Methods Programs Biomed.
– volume: 35
  start-page: 1285
  year: 2016
  end-page: 1298
  ident: b0080
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
– reference: Bardou, Dalal, Kun Zhang, and Sayed Mohammad Ahmad. Lung sounds classification using convolutional neural networks. Artificial intelligence in medicine 88 (2018): 58–69.
– reference: Pham, Lam, Huy Phan, Ross King, Alfred Mertins, and Ian McLoughlin. Inception-Based Network and Multi-Spectrogram Ensemble Applied For Predicting Respiratory Anomalies and Lung Diseases. arXiv preprint arXiv:2012.13699 (2020).
– volume: 62
  start-page: 531
  year: 2013
  end-page: 544
  ident: b0175
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Processing
– start-page: 33
  year: 2018
  end-page: 37
  ident: b0240
  article-title: A respiratory sound database for the development of automated classification
  publication-title: Precision Medicine Powered by pHealth and Connected Health
– reference: Hattikatti, Pratiksha. Texture based interstitial lung disease detection using convolutional neural network. 2017 International Conference on Big Data, IoT and Data Science (BID). IEEE, 2017.
– volume: 12
  start-page: 104
  year: 2015
  end-page: 112
  ident: b0015
  article-title: Computerized respiratory sounds in patients with COPD: a systematic review
  publication-title: COPD: J. Chronic Obstructive Pulmonary Disease
– year: 2018
  ident: b0060
  article-title: Detection and classification of lung abnormalities by use of convolutional neural network (CNN) and regions with CNN features (R-CNN)
  publication-title: 2018 International Workshop on Advanced Image Technology (IWAIT)
– volume: 7
  year: 2021
  ident: b0110
  article-title: Deep learning based respiratory sound analysis for detection of chronic obstructive pulmonary disease
  publication-title: PeerJ Computer Science
– volume: 7
  start-page: 32510
  year: 2019
  end-page: 32521
  ident: b0090
  article-title: Multi-resolution CNN and knowledge transfer for candidate classification in lung nodule detection
  publication-title: Ieee Access
– year: 2020
  ident: b0105
  article-title: Classification of lung sounds with CNN model using parallel pooling structure
  publication-title: IEEE Access
– start-page: 101
  year: 2015
  end-page: 115
  ident: b0185
  article-title: Bio-inspired filters for audio analysis
  publication-title: International Workshop on Brain-Inspired Computing
– reference: Park, Daniel S., William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D. Cubuk, and Quoc V. Le. Specaugment: A simple data augmentation method for automatic speech recognition. arXiv preprint arXiv:1904.08779 (2019).
– reference: RALE: A Computer-assisted instructional package.RespirCare 1990;35:1006.
– reference: Kandaswamy, A., C. Sathish Kumar, Rm Pl Ramanathan, S. Jayaraman, and N. Malmurugan. Neural classification of lung sounds using wavelet coefficients. Computers in biology and medicine 34, no. 6 (2004): 523–537.
– volume: 39
  start-page: 824
  year: 2009
  end-page: 843
  ident: b0030
  article-title: Pattern recognition methods applied to respiratory sounds classification into normal and wheeze classes
  publication-title: Computers Biol. Med.
– volume: 95
  start-page: 201
  year: 2018
  end-page: 211
  ident: b0150
  article-title: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry
  publication-title: Expert Syst. Appl.
– volume: 14
  start-page: 1684
  year: 2012
  end-page: 1689
  ident: b0180
  article-title: Gammatone cepstral coefficients: Biologically inspired features for non-speech audio classification
  publication-title: IEEE Trans. Multimedia
– volume: 40
  start-page: 7
  year: 1993
  end-page: 13
  ident: b0005
  article-title: A microcomputer based lung sounds analysis
  publication-title: Computer Methods Programs Biomed.
– volume: 28
  start-page: 18
  year: 2014
  end-page: 27
  ident: b0035
  article-title: Classification and analysis of non-stationary characteristics of crackle and rhonchus lung adventitious sounds
  publication-title: Digital Signal Processing
– year: 2015
  ident: b0210
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 56
  start-page: 2196
  year: 2007
  end-page: 2202
  ident: b0120
  article-title: EMD-based signal filtering
  publication-title: IEEE Tran. Instrumentation Measure.
– reference: Park, Cheolsoo, David Looney, Naveed ur Rehman, Alireza Ahrabian, and Danilo P. Mandic. Classification of motor imagery BCI using multivariate empirical mode decomposition. IEEE Transactions on neural systems and rehabilitation engineering 21, no. 1 (2012): 10–22.
– volume: 2017
  start-page: 65
  year: 2017
  ident: b0040
  article-title: Classification of lung sounds using convolutional neural networks
  publication-title: EURASIP J. Image Video Processing
– start-page: 107
  year: 2019
  end-page: 118
  ident: b0165
  article-title: Comparison analysis: single and multichannel EMD-based filtering with application to BCI
  publication-title: Machine intelligence and signal analysis
– reference: Jácome, Cristina, Johan Ravn, Einar Holsbo, Juan Carlos Aviles-Solis, Hasse Melbye, and Lars Ailo Bongo. Convolutional neural network for breathing phase detection in lung sounds. Sensors 19, no. 8 (2019): 1798.
– volume: 35
  start-page: 1207
  year: 2016
  end-page: 1216
  ident: b0095
  article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
  publication-title: IEEE Trans. Med. Imaging
– year: 2019
  ident: b0075
  article-title: Improved Mask R-CNN for Lung Nodule Segmentation
  publication-title: 2019 10th International Conference on Information Technology in Medicine and Education (ITME)
– reference: Huang, Norden E., Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih, Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung, and Henry H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences 454, no. 1971 (1998): 903–995.
– volume: 8
  start-page: 27267
  year: 2020
  end-page: 27276
  ident: b0215
  article-title: iSEC: An Optimized Deep Learning Model for Image Classification on Edge Computing
  publication-title: IEEE Access
– volume: 190
  start-page: 012040
  year: 2017
  ident: b0130
  article-title: Noise reduction in breath sound files using wavelet transform based filter
  publication-title: IOP Conference Series: Materials Science and Engineering
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: b0190
  article-title: others: imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– start-page: 1
  year: 2015
  end-page: 7
  ident: b0125
  article-title: An empirical mode decomposition based filtering method for classification of motor-imagery EEG signals for enhancing brain-computer interface
  publication-title: 2015 International Joint Conference on Neural Networks (IJCNN)
– reference: Rehman, Naveed ur, David Looney, Alireza Ahrabian, Cheolsoo Park, and Danilo P. Mandic. MULTIVARIATE EXTENSIONS OF EMPIRICAL MODE DECOMPOSITION. In Hilbert-Huang Transform and Its Applications, pp. 47–67. 2014.
– volume: 53
  start-page: 243
  year: 2018
  end-page: 254
  ident: b0020
  article-title: The highs and lows of wheezing: a review of the most popular adventitious lung sound
  publication-title: Pediatric Pulmonology
– volume: 370
  start-page: 744
  year: 2014
  end-page: 751
  ident: b0010
  article-title: Fundamentals of lung auscultation
  publication-title: N. Engl. J. Med.
– volume: 15
  start-page: 195
  year: 2019
  ident: b0135
  article-title: A lung sound category recognition method based on wavelet decomposition and BP neural network
  publication-title: Int. J. Bbiolog. Sci.
– year: 2019
  ident: b0050
  article-title: Extraction of Adventitious Sounds from Noisy Lung Sound using VMD-KLD and VMD-JSD
  publication-title: TENCON 2019–2019 IEEE Region 10 Conference (TENCON)
– year: 2018
  ident: b0070
  article-title: Lung nodule detection via 3D U-Net and contextual convolutional neural network
  publication-title: 2018 International Conference on Networking and Network Applications (NaNA)
– year: 2020
  ident: 10.1016/j.bspc.2021.102947_b0105
  article-title: Classification of lung sounds with CNN model using parallel pooling structure
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3000111
– volume: 40
  start-page: 7
  issue: 1
  year: 1993
  ident: 10.1016/j.bspc.2021.102947_b0005
  article-title: A microcomputer based lung sounds analysis
  publication-title: Computer Methods Programs Biomed.
  doi: 10.1016/0169-2607(93)90045-M
– volume: 190
  start-page: 012040
  year: 2017
  ident: 10.1016/j.bspc.2021.102947_b0130
  article-title: Noise reduction in breath sound files using wavelet transform based filter
– year: 2019
  ident: 10.1016/j.bspc.2021.102947_b0075
  article-title: Improved Mask R-CNN for Lung Nodule Segmentation
– volume: 62
  start-page: 531
  issue: 3
  year: 2013
  ident: 10.1016/j.bspc.2021.102947_b0175
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Processing
  doi: 10.1109/TSP.2013.2288675
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  ident: 10.1016/j.bspc.2021.102947_b0225
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– volume: 56
  start-page: 2196
  issue: 6
  year: 2007
  ident: 10.1016/j.bspc.2021.102947_b0120
  article-title: EMD-based signal filtering
  publication-title: IEEE Tran. Instrumentation Measure.
  doi: 10.1109/TIM.2007.907967
– start-page: 1
  year: 2015
  ident: 10.1016/j.bspc.2021.102947_b0125
  article-title: An empirical mode decomposition based filtering method for classification of motor-imagery EEG signals for enhancing brain-computer interface
– ident: 10.1016/j.bspc.2021.102947_b0200
– start-page: 1
  year: 2016
  ident: 10.1016/j.bspc.2021.102947_b0155
  article-title: A multivariate empirical mode decomposition based filtering for subject independent BCI
– ident: 10.1016/j.bspc.2021.102947_b0100
  doi: 10.1109/EMBC46164.2021.9629857
– year: 2018
  ident: 10.1016/j.bspc.2021.102947_b0060
  article-title: Detection and classification of lung abnormalities by use of convolutional neural network (CNN) and regions with CNN features (R-CNN)
– volume: 2017
  start-page: 65
  issue: 1
  year: 2017
  ident: 10.1016/j.bspc.2021.102947_b0040
  article-title: Classification of lung sounds using convolutional neural networks
  publication-title: EURASIP J. Image Video Processing
  doi: 10.1186/s13640-017-0213-2
– volume: 7
  year: 2021
  ident: 10.1016/j.bspc.2021.102947_b0110
  article-title: Deep learning based respiratory sound analysis for detection of chronic obstructive pulmonary disease
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.369
– volume: 7
  start-page: 32510
  year: 2019
  ident: 10.1016/j.bspc.2021.102947_b0090
  article-title: Multi-resolution CNN and knowledge transfer for candidate classification in lung nodule detection
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2903587
– volume: 35
  start-page: 1207
  issue: 5
  year: 2016
  ident: 10.1016/j.bspc.2021.102947_b0095
  article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2535865
– volume: 14
  start-page: 1684
  issue: 6
  year: 2012
  ident: 10.1016/j.bspc.2021.102947_b0180
  article-title: Gammatone cepstral coefficients: Biologically inspired features for non-speech audio classification
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2012.2199972
– ident: 10.1016/j.bspc.2021.102947_b0205
– year: 2015
  ident: 10.1016/j.bspc.2021.102947_b0210
  article-title: Going deeper with convolutions
– start-page: 1
  year: 2019
  ident: 10.1016/j.bspc.2021.102947_b0245
  article-title: A deep learning classifier for sentence classification in biomedical and computer science abstracts
  publication-title: Neural Comput. Appl.
– volume: 95
  start-page: 201
  year: 2018
  ident: 10.1016/j.bspc.2021.102947_b0150
  article-title: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.11.007
– volume: 115
  start-page: 211
  year: 2015
  ident: 10.1016/j.bspc.2021.102947_b0190
  article-title: others: imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– ident: 10.1016/j.bspc.2021.102947_b0085
  doi: 10.1109/BID.2017.8336567
– start-page: 107
  year: 2019
  ident: 10.1016/j.bspc.2021.102947_b0165
  article-title: Comparison analysis: single and multichannel EMD-based filtering with application to BCI
– year: 2019
  ident: 10.1016/j.bspc.2021.102947_b0050
  article-title: Extraction of Adventitious Sounds from Noisy Lung Sound using VMD-KLD and VMD-JSD
– volume: 53
  start-page: 243
  issue: 2
  year: 2018
  ident: 10.1016/j.bspc.2021.102947_b0020
  article-title: The highs and lows of wheezing: a review of the most popular adventitious lung sound
  publication-title: Pediatric Pulmonology
  doi: 10.1002/ppul.23930
– start-page: 33
  year: 2018
  ident: 10.1016/j.bspc.2021.102947_b0240
  article-title: A respiratory sound database for the development of automated classification
– volume: 28
  start-page: 18
  year: 2014
  ident: 10.1016/j.bspc.2021.102947_b0035
  article-title: Classification and analysis of non-stationary characteristics of crackle and rhonchus lung adventitious sounds
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2014.02.001
– volume: 7
  start-page: 32845
  year: 2019
  ident: 10.1016/j.bspc.2021.102947_b0220
  article-title: Triple-classification of respiratory sounds using optimized s-transform and deep residual networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2903859
– volume: 29
  start-page: 4359
  issue: 2
  year: 2009
  ident: 10.1016/j.bspc.2021.102947_b0235
  article-title: Feature selection based on relaxed linear separability
  publication-title: Bio Cybernetics Biomed. Eng.
– start-page: 101
  year: 2015
  ident: 10.1016/j.bspc.2021.102947_b0185
  article-title: Bio-inspired filters for audio analysis
– volume: 15
  start-page: 195
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2021.102947_b0135
  article-title: A lung sound category recognition method based on wavelet decomposition and BP neural network
  publication-title: Int. J. Bbiolog. Sci.
  doi: 10.7150/ijbs.29863
– ident: 10.1016/j.bspc.2021.102947_b0025
  doi: 10.1016/S0010-4825(03)00092-1
– volume: 39
  start-page: 824
  issue: 9
  year: 2009
  ident: 10.1016/j.bspc.2021.102947_b0030
  article-title: Pattern recognition methods applied to respiratory sounds classification into normal and wheeze classes
  publication-title: Computers Biol. Med.
  doi: 10.1016/j.compbiomed.2009.06.011
– ident: 10.1016/j.bspc.2021.102947_b0055
  doi: 10.1016/j.artmed.2018.04.008
– volume: 8
  start-page: 27267
  year: 2020
  ident: 10.1016/j.bspc.2021.102947_b0215
  article-title: iSEC: An Optimized Deep Learning Model for Image Classification on Edge Computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2971566
– volume: 12
  start-page: 104
  issue: 1
  year: 2015
  ident: 10.1016/j.bspc.2021.102947_b0015
  article-title: Computerized respiratory sounds in patients with COPD: a systematic review
  publication-title: COPD: J. Chronic Obstructive Pulmonary Disease
  doi: 10.3109/15412555.2014.908832
– year: 2019
  ident: 10.1016/j.bspc.2021.102947_b0065
  article-title: Reducing False Positives for Lung Nodule Detection in Chest X-rays using Cascading CNN
– year: 2018
  ident: 10.1016/j.bspc.2021.102947_b0070
  article-title: Lung nodule detection via 3D U-Net and contextual convolutional neural network
– ident: 10.1016/j.bspc.2021.102947_b0140
  doi: 10.1098/rspa.1998.0193
– ident: 10.1016/j.bspc.2021.102947_b0195
  doi: 10.21437/Interspeech.2019-2680
– ident: 10.1016/j.bspc.2021.102947_b0145
  doi: 10.1142/9789814508247_0003
– volume: 370
  start-page: 744
  issue: 8
  year: 2014
  ident: 10.1016/j.bspc.2021.102947_b0010
  article-title: Fundamentals of lung auscultation
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1302901
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  ident: 10.1016/j.bspc.2021.102947_b0080
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– ident: 10.1016/j.bspc.2021.102947_b0115
  doi: 10.3390/s19081798
– ident: 10.1016/j.bspc.2021.102947_b0230
– volume: 19
  start-page: 6938
  issue: 16
  year: 2019
  ident: 10.1016/j.bspc.2021.102947_b0160
  article-title: An automatic subject specific intrinsic mode function selection for enhancing two-class EEG-based motor imagery-brain computer interface
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2912790
– ident: 10.1016/j.bspc.2021.102947_b0170
  doi: 10.1109/TNSRE.2012.2229296
– volume: 159
  start-page: 199
  year: 2018
  ident: 10.1016/j.bspc.2021.102947_b0045
  article-title: A novel feature extraction technique for pulmonary sound analysis based on EMD
  publication-title: Computer Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.03.016
SSID ssj0048714
Score 2.4248161
Snippet •A novel pre-processing technique has been proposed that de-noise respiratory sounds using variational mode decomposition(VMD) technique and fed these sound...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102947
SubjectTerms Auscultation
Gammatonegram
Respiratory
Variational mode decomposition
Title Gammatonegram based triple classification of lung sounds using deep convolutional neural network with transfer learning
URI https://dx.doi.org/10.1016/j.bspc.2021.102947
Volume 70
WOSCitedRecordID wos000697764000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa2Sw_toaIvlbYgH3pbBSVOsnaOK0pfB1SpVNpb5DgOBZYQ7QP4D_3TzPjFhhZUDt1DNsomjrPzeWbszHxDyAcY_mBUUhUpnakoa3gWiUaqKEk0DMtxpRmvTbEJfnAgptPi-2Dw2-fCXMx424qrq6L7r6KGYyBsTJ19gLhDo3AA9kHosAWxw_afBP9ZnoEXet4iC8TZCK1UPVrOTdCgQlcZY4OCnzhb4XICllZajFZm2aDWujOx6K6TIELkvDRfJmLcLd0ah1fPfdmJo97bYZPTbxMuj4-wic7mI_iMSBcgH4J_Vp11Yn-Ahgl2YgIPcGnqERjNcxp--AhdlKdWWy5-ra9bsCQEZnlVyzOkQrYljr0utkVEnDIF36ewdJx_6Hm75HCyWy065KFkye7NyX1S7VvGLoQg-ui2kxLbKLGN0rbxiGwwnhdiSDYmX_en37xhh6mdoYoPHXc5WDZc8HZP_u7nrPkuh5vkmZt00IkFy3My0O0L8nSNivIluezBhhrYUAsb2ocNPW8owoZa2FADG4qwoT3YUAsb6mBDETbUw4Z62LwiPz_tH-59iVxRjkilcbyMxuMYRn0tJeeF5EUFE2CWyVpLmec6FSKTWuVK5JXQDatNBpJqWKFqkTE15mn6mgxbeJg3hPKqYTmL0zpFlkIpJHzSvMlk3FRFlaRbJPF_YakcYz0WTpmVdwtvi4zCNZ3la7n37NxLpnQep_UkSwDaPde9fdBd3pEnNwPgPRku5yu9TR6ri-XxYr7jUHYNJJ6qFQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gammatonegram+based+triple+classification+of+lung+sounds+using+deep+convolutional+neural+network+with+transfer+learning&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Gupta%2C+Sonia&rft.au=Agrawal%2C+Monika&rft.au=Deepak%2C+Desh&rft.date=2021-09-01&rft.issn=1746-8094&rft.volume=70&rft.spage=102947&rft_id=info:doi/10.1016%2Fj.bspc.2021.102947&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_102947
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon