Multiobjective optimization algorithm with dynamic operator selection for feature selection in high-dimensional classification

Feature selection (FS) is an important technique in data preprocessing that aims to reduce the number of features for training while maintaining a high accuracy for classification. In recent studies, FS has been extended to optimize multiple objectives simultaneously in classification. To better sol...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied soft computing Ročník 143; s. 110360
Hlavní autori: Wei, Wenhong, Xuan, Manlin, Li, Lingjie, Lin, Qiuzhen, Ming, Zhong, Coello Coello, Carlos A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.08.2023
Predmet:
ISSN:1568-4946
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Feature selection (FS) is an important technique in data preprocessing that aims to reduce the number of features for training while maintaining a high accuracy for classification. In recent studies, FS has been extended to optimize multiple objectives simultaneously in classification. To better solve this problem, this paper proposes a new multiobjective optimization algorithm with dynamic operator selection for feature selection in high-dimensional classification, called FS-DOS. First, two complementary search operators with different characteristics are designed, where the first operator is a quick search (QS) operator aiming to accelerate the convergence speed, and the other operator is a modified binary differential evolution (BDE) operator that can prevent the algorithm from falling into a local optimum. In addition, a dynamic selection strategy based on the idea of resource allocation is also designed to dynamically select the most suitable operator for each solution according to its corresponding performance improvement on aggregated objective values. The simulation results on fifteen different real-world high-dimensional FS datasets show that FS-DOS can obtain a feature subset with higher quality than several state-of-the-art FS algorithms. Importantly, in terms of error rate, FS-DOS wins 55 out of 75 comparisons. In terms of dimensionality reduction, the number of features selected by FS-DOS is between one hundredth and one thousandth of the original dataset. •This paper proposes an effective evolutionary algorithm with dynamic operator selection strategy for high-dimensional feature selection.•The QS operator is used to select the most important features for accelerating the convergence, and the BDE operator with strong exploration ability is designed to avoid local optimum.•The proposed method presents is superior to state-of-the-art FS methods on 15 real-world medical high-dimensional datasets.
AbstractList Feature selection (FS) is an important technique in data preprocessing that aims to reduce the number of features for training while maintaining a high accuracy for classification. In recent studies, FS has been extended to optimize multiple objectives simultaneously in classification. To better solve this problem, this paper proposes a new multiobjective optimization algorithm with dynamic operator selection for feature selection in high-dimensional classification, called FS-DOS. First, two complementary search operators with different characteristics are designed, where the first operator is a quick search (QS) operator aiming to accelerate the convergence speed, and the other operator is a modified binary differential evolution (BDE) operator that can prevent the algorithm from falling into a local optimum. In addition, a dynamic selection strategy based on the idea of resource allocation is also designed to dynamically select the most suitable operator for each solution according to its corresponding performance improvement on aggregated objective values. The simulation results on fifteen different real-world high-dimensional FS datasets show that FS-DOS can obtain a feature subset with higher quality than several state-of-the-art FS algorithms. Importantly, in terms of error rate, FS-DOS wins 55 out of 75 comparisons. In terms of dimensionality reduction, the number of features selected by FS-DOS is between one hundredth and one thousandth of the original dataset. •This paper proposes an effective evolutionary algorithm with dynamic operator selection strategy for high-dimensional feature selection.•The QS operator is used to select the most important features for accelerating the convergence, and the BDE operator with strong exploration ability is designed to avoid local optimum.•The proposed method presents is superior to state-of-the-art FS methods on 15 real-world medical high-dimensional datasets.
ArticleNumber 110360
Author Coello Coello, Carlos A.
Wei, Wenhong
Xuan, Manlin
Li, Lingjie
Ming, Zhong
Lin, Qiuzhen
Author_xml – sequence: 1
  givenname: Wenhong
  surname: Wei
  fullname: Wei, Wenhong
  organization: School of Computer Science and Technology, Dongguan University of Technology, Dongguan, PR China
– sequence: 2
  givenname: Manlin
  surname: Xuan
  fullname: Xuan, Manlin
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, PR China
– sequence: 3
  givenname: Lingjie
  orcidid: 0000-0002-8289-2211
  surname: Li
  fullname: Li, Lingjie
  email: vilitejie@qq.com
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, PR China
– sequence: 4
  givenname: Qiuzhen
  surname: Lin
  fullname: Lin, Qiuzhen
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, PR China
– sequence: 5
  givenname: Zhong
  surname: Ming
  fullname: Ming, Zhong
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, PR China
– sequence: 6
  givenname: Carlos A.
  surname: Coello Coello
  fullname: Coello Coello, Carlos A.
  organization: CINVESTAV-IPN, Department of Computer Science, Mexico, D.F. 07360, Mexico
BookMark eNp9kE9PwyAYhznMxG36BTz1C7QCbWmbeDGL_5IZL3omlML6Nm1ZgM3Mg59dunkwHnaB8MvvgZdngWajGRVCNwQnBBN22yXCGZlQTNOEEJwyPENzkrMyzqqMXaKFcx0OxYqWc_T9uus9mLpT0sNeRWbrYYAvEbIxEv3GWPDtEH2GNWoOoxhAho6ywhsbOdVPWGjqcNJK-J1Vf1IYoxY2bdzAoEYXEtFHshfOgQZ5fOIKXWjRO3X9uy_Rx-PD--o5Xr89vazu17FMMfYxy-oiD9OXZd6wXBZZpglVumYUF1SUrEobQfKK1FIWqSa1prIoG51nuKYkpUW6RPR0r7TGOas031oYhD1wgvlkjXd8ssYna_xkLUDlP0iCP47trYD-PHp3QlX41B6U5U6CGqVqwAY5vDFwDv8B9QuQIA
CitedBy_id crossref_primary_10_1016_j_matcom_2025_01_007
crossref_primary_10_1016_j_eswa_2024_125300
crossref_primary_10_1016_j_eswa_2025_127227
crossref_primary_10_1007_s12530_024_09595_4
crossref_primary_10_1016_j_swevo_2023_101360
crossref_primary_10_1007_s40314_025_03408_3
crossref_primary_10_1016_j_asoc_2023_111141
crossref_primary_10_1007_s13042_024_02107_5
crossref_primary_10_1016_j_cor_2024_106821
crossref_primary_10_1016_j_asoc_2025_113698
crossref_primary_10_1016_j_ins_2024_120483
crossref_primary_10_1016_j_swevo_2025_101915
crossref_primary_10_1016_j_swevo_2024_101715
crossref_primary_10_1007_s11063_024_11440_3
crossref_primary_10_1016_j_buildenv_2024_111185
crossref_primary_10_1109_TPAMI_2024_3416196
Cites_doi 10.1109/TIP.2017.2733200
10.1016/j.eswa.2016.06.004
10.1109/TEVC.2019.2913831
10.1016/j.asoc.2023.110031
10.1109/MCI.2017.2708578
10.1016/j.asoc.2019.105957
10.1109/TCYB.2016.2586191
10.1016/j.compbiolchem.2007.09.005
10.1016/j.asoc.2021.108297
10.1016/j.asoc.2017.06.021
10.1016/j.eswa.2022.119080
10.1109/TEVC.2007.892759
10.1145/1656274.1656278
10.1016/j.ins.2019.08.040
10.1016/j.asoc.2023.109987
10.1162/evco_a_00269
10.1016/j.neucom.2020.02.028
10.1109/TCBB.2015.2476796
10.1016/j.asoc.2020.106255
10.1016/j.ins.2020.08.083
10.1109/TIT.1963.1057810
10.3233/IDA-1997-1302
10.1016/j.ins.2021.02.061
10.1016/j.neucom.2011.03.034
10.1109/TSMCB.2012.2227469
10.1109/TCYB.2021.3049712
10.1109/TEVC.2019.2949841
10.1109/21.97458
10.1016/j.asoc.2018.02.051
10.1109/TEVC.2018.2872453
10.1109/TEVC.2023.3254155
10.1007/s00500-016-2128-8
10.1016/j.asoc.2020.107002
10.1016/j.patcog.2020.107804
10.1109/CIDM.2009.4938668
10.1109/TCYB.2017.2714145
10.1109/T-C.1971.223410
10.1109/TSMC.2016.2605132
10.1109/TKDE.2011.181
10.1109/TCYB.2020.2979930
10.1109/TEVC.2018.2869405
10.1109/TEVC.2013.2281535
10.1109/TCYB.2018.2871673
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2023.110360
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2023_110360
S1568494623003782
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AAYXX
ACLOT
CITATION
EFLBG
~HD
ID FETCH-LOGICAL-c300t-64b75494885d65c744f12efb62072a8693da1591bcc73f1bf2c78df540b213273
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001053604200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 21:40:51 EST 2025
Sat Nov 29 06:56:33 EST 2025
Sat Aug 09 17:32:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Feature selection
High-dimensional classification
Multiobjective optimization
Evolutionary algorithm
Resource allocation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-64b75494885d65c744f12efb62072a8693da1591bcc73f1bf2c78df540b213273
ORCID 0000-0002-8289-2211
ParticipantIDs crossref_primary_10_1016_j_asoc_2023_110360
crossref_citationtrail_10_1016_j_asoc_2023_110360
elsevier_sciencedirect_doi_10_1016_j_asoc_2023_110360
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Li (b37) 2007; 11
Zhou, Zhang, Kang, Zhang, Wang (b26) 2021; 547
Safavian, Landgrebe (b13) 1991; 21
Zhang, Gong, Cheng (b18) 2017; 14
Bao, Gao, Gu, Xu, Goodman (b22) 2023; 213
Cheng, Chu, Xu, Zhang (b25) 2021
Zhang, Duan, Zhang, Cheng, Jin, Tang (b33) 2017; 12
Cheng, Chen, Qiu, Zhang (b32) 2020; 394
Xue, Zhu, Neri (b48) 2023; 134
Wang, Ong, Sun, Gupta, Zhang (b35) 2019; 23
U. Fayyad, K. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, in: Proc. 13th Int. Joint Conf. Artif. Intell. 2. Chambéry, France, 1993, pp. 1022–1027.
Hall (b53) 2009; 11
Maldonado, López (b8) 2018; 67
Na, Han, Ren, Zhong (b4) 2020; 52
Nguyen, Xue, Andreae, Ishibuchi, Zhang (b10) 2020; 24
Armina, Zain, Ali, Sallehuddin (b21) 2017; 892
M. Gutlein, E. Frank, M. Hall, A. Karwath, Large-scale attribute selection using wrappers, in: 2009 IEEE Symposium on Computational Intelligence and Data Mining. Presented at the 2009 IEEE Symposium on Computational Intelligence and Data Mining,, 2009, pp. 332–339
Tanabe, Ishibuchi (b39) 2020; 24
Tarkhaneh, Nguyen, Mazaheri (b44) 2021; 565
Deb, Jain (b20) 2014; 18
Nguyen, Xue, Liu, Andreae, Zhang (b17) 2016; 20
Li, Lin, Ming (b24) 2021; 101
Wang, Zhu (b7) 2018; 48
Chuang, Chang, Tu, Yang (b29) 2008; 32
Xue, Tang, Xu, Liang, Neri (b19) 2021; 6
.
Di Martino, Senatore (b2) 2021; 98
Tian, Lu, Zhang, Tan, Jin (b47) 2021; 51
Hua, Zhou, Hua, Zhang (b6) 2020; 87
Wang, Zhen, Deng, Zhang, Li, Yuan, Zeng (b31) 2022; 52
Mokhtia, Eftekhari, Saberi-Movahed (b3) 2020; 91
Kabir, Shahjahan, Murase (b14) 2011; 74
Marill, Green (b12) 1963; 9
Zhang, Zhou, Pan, Zhang, Zeng, Jin (b34) 2020; 50
Zhang, Gong, Gao, Tian, Sun (b45) 2020; 507
Patterson, Zhang (b51) 2007
Song, Zhang, Gong, Gao (b42) 2021
Song, Zhang, Gong, Sun (b43) 2021; 112
Xue, Zhang, Browne (b15) 2013; 43
Zhang, Wang, Gong, Sun (b27) 2021
Dash, Liu (b1) 1997; 1
Gastelum Chavira, Leyva Lopez, Solano Noriega, Ahumada Valenzuela, Alvarez Carrillo (b30) 2017; 60
Li, Yao (b38) 2020; 28
Tran, Xue, Zhang (b9) 2018; 48
Cliff (b54) 2014
Wang, Gong, Li, Gu, Tian (b23) 2022; 116
Yao, Liu, Jiang, Han, Han (b5) 2017; 26
Li, Xuan, Lin, Jiang, Ming, Tan (b50) 2023
Cai, Yang, Fan, Zhang (b40) 2017; 47
Song, Ni, Wang (b41) 2013; 25
Li, Lin, Ming, Wong, Gong, Coello Coello (b36) 2022
Pan, Chen, Xiong (b49) 2023; 135
Whitney (b11) 1971; C-20
Tran, Xue, Zhang (b46) 2019; 23
Zorarpacı, Özel (b16) 2016; 62
Zorarpacı (10.1016/j.asoc.2023.110360_b16) 2016; 62
Wang (10.1016/j.asoc.2023.110360_b35) 2019; 23
Wang (10.1016/j.asoc.2023.110360_b23) 2022; 116
Xue (10.1016/j.asoc.2023.110360_b19) 2021; 6
Xue (10.1016/j.asoc.2023.110360_b15) 2013; 43
Maldonado (10.1016/j.asoc.2023.110360_b8) 2018; 67
Safavian (10.1016/j.asoc.2023.110360_b13) 1991; 21
Di Martino (10.1016/j.asoc.2023.110360_b2) 2021; 98
Tanabe (10.1016/j.asoc.2023.110360_b39) 2020; 24
Song (10.1016/j.asoc.2023.110360_b42) 2021
Wang (10.1016/j.asoc.2023.110360_b7) 2018; 48
Zhou (10.1016/j.asoc.2023.110360_b26) 2021; 547
Deb (10.1016/j.asoc.2023.110360_b20) 2014; 18
Song (10.1016/j.asoc.2023.110360_b43) 2021; 112
Armina (10.1016/j.asoc.2023.110360_b21) 2017; 892
Nguyen (10.1016/j.asoc.2023.110360_b17) 2016; 20
Gastelum Chavira (10.1016/j.asoc.2023.110360_b30) 2017; 60
Li (10.1016/j.asoc.2023.110360_b36) 2022
Patterson (10.1016/j.asoc.2023.110360_b51) 2007
Hall (10.1016/j.asoc.2023.110360_b53) 2009; 11
Zhang (10.1016/j.asoc.2023.110360_b37) 2007; 11
Cliff (10.1016/j.asoc.2023.110360_b54) 2014
Zhang (10.1016/j.asoc.2023.110360_b27) 2021
10.1016/j.asoc.2023.110360_b28
Na (10.1016/j.asoc.2023.110360_b4) 2020; 52
Nguyen (10.1016/j.asoc.2023.110360_b10) 2020; 24
Tian (10.1016/j.asoc.2023.110360_b47) 2021; 51
Yao (10.1016/j.asoc.2023.110360_b5) 2017; 26
Cheng (10.1016/j.asoc.2023.110360_b25) 2021
Li (10.1016/j.asoc.2023.110360_b50) 2023
Marill (10.1016/j.asoc.2023.110360_b12) 1963; 9
Zhang (10.1016/j.asoc.2023.110360_b45) 2020; 507
Mokhtia (10.1016/j.asoc.2023.110360_b3) 2020; 91
Cheng (10.1016/j.asoc.2023.110360_b32) 2020; 394
Kabir (10.1016/j.asoc.2023.110360_b14) 2011; 74
Cai (10.1016/j.asoc.2023.110360_b40) 2017; 47
Zhang (10.1016/j.asoc.2023.110360_b18) 2017; 14
Pan (10.1016/j.asoc.2023.110360_b49) 2023; 135
10.1016/j.asoc.2023.110360_b52
Tran (10.1016/j.asoc.2023.110360_b9) 2018; 48
Song (10.1016/j.asoc.2023.110360_b41) 2013; 25
Zhang (10.1016/j.asoc.2023.110360_b33) 2017; 12
Xue (10.1016/j.asoc.2023.110360_b48) 2023; 134
Wang (10.1016/j.asoc.2023.110360_b31) 2022; 52
Li (10.1016/j.asoc.2023.110360_b24) 2021; 101
Bao (10.1016/j.asoc.2023.110360_b22) 2023; 213
Hua (10.1016/j.asoc.2023.110360_b6) 2020; 87
Li (10.1016/j.asoc.2023.110360_b38) 2020; 28
Tran (10.1016/j.asoc.2023.110360_b46) 2019; 23
Whitney (10.1016/j.asoc.2023.110360_b11) 1971; C-20
Zhang (10.1016/j.asoc.2023.110360_b34) 2020; 50
Tarkhaneh (10.1016/j.asoc.2023.110360_b44) 2021; 565
Chuang (10.1016/j.asoc.2023.110360_b29) 2008; 32
Dash (10.1016/j.asoc.2023.110360_b1) 1997; 1
References_xml – volume: 134
  year: 2023
  ident: b48
  article-title: A feature selection approach based on NSGA-II with relieff
  publication-title: Appl. Soft Comput.
– reference: M. Gutlein, E. Frank, M. Hall, A. Karwath, Large-scale attribute selection using wrappers, in: 2009 IEEE Symposium on Computational Intelligence and Data Mining. Presented at the 2009 IEEE Symposium on Computational Intelligence and Data Mining,, 2009, pp. 332–339,
– start-page: 769
  year: 2007
  end-page: 775
  ident: b51
  article-title: Fitness functions in genetic programming for classification with unbalanced data
  publication-title: AI 2007: Advances in Artificial Intelligence, Lecture Notes in Computer Science
– volume: 9
  start-page: 11
  year: 1963
  end-page: 17
  ident: b12
  article-title: On the effectiveness of receptors in recognition systems
  publication-title: IEEE Trans. Inform. Theory
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: b20
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach part I: solving problems with box constraints
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 394
  start-page: 70
  year: 2020
  end-page: 83
  ident: b32
  article-title: A subregion division based multi-objective evolutionary algorithm for SVM training set selection
  publication-title: Neurocomputing
– volume: 101
  year: 2021
  ident: b24
  article-title: Multi-objective optimization using self-organizing decomposition and its applications to crashworthiness design
  publication-title: Appl. Soft Comput.
– volume: 24
  start-page: 170
  year: 2020
  end-page: 184
  ident: b10
  article-title: Multiple reference points-based decomposition for multiobjective feature selection in classification: static and dynamic mechanisms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 43
  start-page: 1656
  year: 2013
  end-page: 1671
  ident: b15
  article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach
  publication-title: IEEE Trans. Cybern.
– volume: 892
  year: 2017
  ident: b21
  article-title: A review on missing value estimation using imputation algorithm
  publication-title: J. Phys.: Conf. Ser.
– year: 2014
  ident: b54
  article-title: Ordinal Methods for Behavioral Data Analysis
– volume: 28
  start-page: 227
  year: 2020
  end-page: 253
  ident: b38
  article-title: What weights work for you? adapting weights for any pareto front shape in decomposition-based evolutionary multiobjective optimisation
  publication-title: Evolut. Comput.
– reference: U. Fayyad, K. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, in: Proc. 13th Int. Joint Conf. Artif. Intell. 2. Chambéry, France, 1993, pp. 1022–1027.
– volume: 112
  year: 2021
  ident: b43
  article-title: Feature selection using bare-bones particle swarm optimization with mutual information
  publication-title: Pattern Recognit.
– volume: 1
  start-page: 131
  year: 1997
  end-page: 156
  ident: b1
  article-title: Feature selection for classification
  publication-title: Intell. Data Anal.
– volume: 74
  start-page: 2914
  year: 2011
  end-page: 2928
  ident: b14
  article-title: A new local search based hybrid genetic algorithm for feature selection
  publication-title: Neurocomputing
– volume: 52
  start-page: 1
  year: 2020
  end-page: 11
  ident: b4
  article-title: Modified BBO-Based multivariate time-series prediction system with feature subset selection and model parameter optimization
  publication-title: IEEE Trans. Cybern.
– start-page: 1
  year: 2021
  end-page: 14
  ident: b25
  article-title: A steering-matrix-based multiobjective evolutionary algorithm for high-dimensional feature selection
  publication-title: IEEE Trans. Cybern.
– volume: 48
  start-page: 1733
  year: 2018
  end-page: 1746
  ident: b9
  article-title: A new representation in PSO for discretization-based feature selection
  publication-title: IEEE Trans. Cybern.
– volume: C-20
  start-page: 1100
  year: 1971
  end-page: 1103
  ident: b11
  article-title: A direct method of nonparametric measurement selection
  publication-title: IEEE Trans. Comput.
– volume: 67
  start-page: 94
  year: 2018
  end-page: 105
  ident: b8
  article-title: Dealing with high-dimensional class-imbalanced datasets: embedded feature selection for SVM classification
  publication-title: Appl. Soft Comput.
– volume: 23
  start-page: 473
  year: 2019
  end-page: 487
  ident: b46
  article-title: Variable-length particle swarm optimization for feature selection on high-dimensional classification
  publication-title: IEEE Trans. Evol. Comput.
– volume: 507
  start-page: 67
  year: 2020
  end-page: 85
  ident: b45
  article-title: Binary differential evolution with self-learning for multi-objective feature selection
  publication-title: Inform. Sci.
– volume: 60
  start-page: 190
  year: 2017
  end-page: 201
  ident: b30
  article-title: A credit ranking model for a parafinancial company based on the ELECTRE-III method and a multiobjective evolutionary algorithm
  publication-title: Appl. Soft Comput.
– volume: 52
  start-page: 8326
  year: 2022
  end-page: 8339
  ident: b31
  article-title: Multiobjective optimization-aided decision-making system for large-scale manufacturing planning
  publication-title: IEEE Trans. Cybern.
– volume: 12
  start-page: 43
  year: 2017
  end-page: 53
  ident: b33
  article-title: Pattern recommendation in task-oriented applications: a multi-objective perspective [Application notes]
  publication-title: IEEE Comput. Intell. Mag.
– volume: 21
  start-page: 660
  year: 1991
  end-page: 674
  ident: b13
  article-title: A survey of decision tree classifier methodology
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: b53
  article-title: The WEKA data mining software: An update
  publication-title: CM SIGKDD Explorations Newslett
– volume: 565
  start-page: 278
  year: 2021
  end-page: 305
  ident: b44
  article-title: A novel wrapper-based feature subset selection method using modified binary differential evolution algorithm
  publication-title: Inform. Sci.
– volume: 87
  year: 2020
  ident: b6
  article-title: Strong approximate Markov blanket and its application on filter-based feature selection
  publication-title: Appl. Soft Comput.
– volume: 547
  start-page: 841
  year: 2021
  end-page: 859
  ident: b26
  article-title: A problem-specific non-dominated sorting genetic algorithm for supervised feature selection
  publication-title: Inform. Sci.
– start-page: 1
  year: 2021
  ident: b27
  article-title: Clustering-guided particle swarm feature selection algorithm for high-dimensional imbalanced data with missing values
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 14
  start-page: 64
  year: 2017
  end-page: 75
  ident: b18
  article-title: Multi-objective particle swarm optimization approach for cost-based feature selection in classification
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 25
  start-page: 1
  year: 2013
  end-page: 14
  ident: b41
  article-title: A fast clustering-based feature subset selection algorithm for high-dimensional data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 50
  start-page: 703
  year: 2020
  end-page: 716
  ident: b34
  article-title: A network reduction-based multiobjective evolutionary algorithm for community detection in large-scale complex networks
  publication-title: IEEE Trans. Cybern.
– volume: 6
  start-page: 1
  year: 2021
  end-page: 10
  ident: b19
  article-title: Multi-objective feature selection with missing data in classification
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– volume: 98
  year: 2021
  ident: b2
  article-title: Balancing the user-driven feature selection and their incidence in the clustering structure formation
  publication-title: Appl. Soft Comput.
– volume: 20
  start-page: 3927
  year: 2016
  end-page: 3946
  ident: b17
  article-title: New mechanism for archive maintenance in PSO-based multi-objective feature selection
  publication-title: Soft Comput
– volume: 51
  start-page: 3115
  year: 2021
  end-page: 3128
  ident: b47
  article-title: Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks
  publication-title: IEEE Trans. Cybern.
– volume: 62
  start-page: 91
  year: 2016
  end-page: 103
  ident: b16
  article-title: A hybrid approach of differential evolution and artificial bee colony for feature selection
  publication-title: Expert Syst. Appl.
– volume: 213
  year: 2023
  ident: b22
  article-title: A new adaptive decomsposition-based evolutionary algorithm for multi- and many-objective optimization
  publication-title: Expert Syst. Appl.
– volume: 48
  start-page: 329
  year: 2018
  end-page: 341
  ident: b7
  article-title: Sparse graph embedding unsupervised feature selection
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 116
  year: 2022
  ident: b23
  article-title: A hypervolume distribution entropy guided computation resource allocation mechanism for the multiobjective evolutionary algorithm based on decomposition
  publication-title: Appl. Soft Comput.
– volume: 135
  year: 2023
  ident: b49
  article-title: A high-dimensional feature selection method based on modified Gray Wolf Optimization
  publication-title: Appl. Soft Comput.
– volume: 91
  year: 2020
  ident: b3
  article-title: Feature selection based on regularization of sparsity based regression models by hesitant fuzzy correlation
  publication-title: Appl. Soft Comput.
– reference: .
– year: 2022
  ident: b36
  article-title: An immune-inspired resources allocation strategy for many-objective optimization
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– start-page: 1
  year: 2021
  end-page: 14
  ident: b42
  article-title: A fast hybrid feature selection based on correlation-guided clustering and particle swarm optimization for high-dimensional data
  publication-title: IEEE Trans. Cybern.
– year: 2023
  ident: b50
  article-title: An evolutionary multitasking algorithm with multiple filtering for high-dimensional feature selection
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b37
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 24
  start-page: 720
  year: 2020
  end-page: 734
  ident: b39
  article-title: A framework to handle multimodal multiobjective optimization in decomposition-based evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 26
  start-page: 5257
  year: 2017
  end-page: 5269
  ident: b5
  article-title: LLE score: A new filter-based unsupervised feature selection method based on nonlinear manifold embedding and its application to image recognition
  publication-title: IEEE Trans. Image Process.
– volume: 23
  start-page: 556
  year: 2019
  end-page: 571
  ident: b35
  article-title: A generator for multiobjective test problems with difficult-to-approximate Pareto front boundaries
  publication-title: IEEE Trans. Evol. Comput.
– volume: 32
  start-page: 29
  year: 2008
  end-page: 38
  ident: b29
  article-title: Improved binary PSO for feature selection using gene expression data
  publication-title: Comput. Biol. Chem.
– volume: 47
  start-page: 2824
  year: 2017
  end-page: 2837
  ident: b40
  article-title: Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 26
  start-page: 5257
  year: 2017
  ident: 10.1016/j.asoc.2023.110360_b5
  article-title: LLE score: A new filter-based unsupervised feature selection method based on nonlinear manifold embedding and its application to image recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2733200
– volume: 62
  start-page: 91
  year: 2016
  ident: 10.1016/j.asoc.2023.110360_b16
  article-title: A hybrid approach of differential evolution and artificial bee colony for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.06.004
– start-page: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110360_b25
  article-title: A steering-matrix-based multiobjective evolutionary algorithm for high-dimensional feature selection
  publication-title: IEEE Trans. Cybern.
– year: 2014
  ident: 10.1016/j.asoc.2023.110360_b54
– volume: 24
  start-page: 170
  year: 2020
  ident: 10.1016/j.asoc.2023.110360_b10
  article-title: Multiple reference points-based decomposition for multiobjective feature selection in classification: static and dynamic mechanisms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2913831
– volume: 135
  year: 2023
  ident: 10.1016/j.asoc.2023.110360_b49
  article-title: A high-dimensional feature selection method based on modified Gray Wolf Optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110031
– volume: 12
  start-page: 43
  year: 2017
  ident: 10.1016/j.asoc.2023.110360_b33
  article-title: Pattern recommendation in task-oriented applications: a multi-objective perspective [Application notes]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2708578
– volume: 87
  year: 2020
  ident: 10.1016/j.asoc.2023.110360_b6
  article-title: Strong approximate Markov blanket and its application on filter-based feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105957
– volume: 47
  start-page: 2824
  year: 2017
  ident: 10.1016/j.asoc.2023.110360_b40
  article-title: Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2586191
– start-page: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110360_b27
  article-title: Clustering-guided particle swarm feature selection algorithm for high-dimensional imbalanced data with missing values
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 32
  start-page: 29
  year: 2008
  ident: 10.1016/j.asoc.2023.110360_b29
  article-title: Improved binary PSO for feature selection using gene expression data
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2007.09.005
– start-page: 769
  year: 2007
  ident: 10.1016/j.asoc.2023.110360_b51
  article-title: Fitness functions in genetic programming for classification with unbalanced data
– volume: 116
  year: 2022
  ident: 10.1016/j.asoc.2023.110360_b23
  article-title: A hypervolume distribution entropy guided computation resource allocation mechanism for the multiobjective evolutionary algorithm based on decomposition
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108297
– volume: 60
  start-page: 190
  year: 2017
  ident: 10.1016/j.asoc.2023.110360_b30
  article-title: A credit ranking model for a parafinancial company based on the ELECTRE-III method and a multiobjective evolutionary algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.06.021
– volume: 213
  year: 2023
  ident: 10.1016/j.asoc.2023.110360_b22
  article-title: A new adaptive decomsposition-based evolutionary algorithm for multi- and many-objective optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119080
– volume: 11
  start-page: 712
  year: 2007
  ident: 10.1016/j.asoc.2023.110360_b37
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 11
  start-page: 10
  issue: 2009
  year: 2009
  ident: 10.1016/j.asoc.2023.110360_b53
  article-title: The WEKA data mining software: An update
  publication-title: CM SIGKDD Explorations Newslett
  doi: 10.1145/1656274.1656278
– volume: 507
  start-page: 67
  year: 2020
  ident: 10.1016/j.asoc.2023.110360_b45
  article-title: Binary differential evolution with self-learning for multi-objective feature selection
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.08.040
– volume: 134
  year: 2023
  ident: 10.1016/j.asoc.2023.110360_b48
  article-title: A feature selection approach based on NSGA-II with relieff
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.109987
– volume: 28
  start-page: 227
  year: 2020
  ident: 10.1016/j.asoc.2023.110360_b38
  article-title: What weights work for you? adapting weights for any pareto front shape in decomposition-based evolutionary multiobjective optimisation
  publication-title: Evolut. Comput.
  doi: 10.1162/evco_a_00269
– ident: 10.1016/j.asoc.2023.110360_b52
– volume: 394
  start-page: 70
  year: 2020
  ident: 10.1016/j.asoc.2023.110360_b32
  article-title: A subregion division based multi-objective evolutionary algorithm for SVM training set selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.02.028
– volume: 14
  start-page: 64
  year: 2017
  ident: 10.1016/j.asoc.2023.110360_b18
  article-title: Multi-objective particle swarm optimization approach for cost-based feature selection in classification
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2015.2476796
– volume: 91
  year: 2020
  ident: 10.1016/j.asoc.2023.110360_b3
  article-title: Feature selection based on regularization of sparsity based regression models by hesitant fuzzy correlation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106255
– volume: 547
  start-page: 841
  year: 2021
  ident: 10.1016/j.asoc.2023.110360_b26
  article-title: A problem-specific non-dominated sorting genetic algorithm for supervised feature selection
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.08.083
– volume: 9
  start-page: 11
  year: 1963
  ident: 10.1016/j.asoc.2023.110360_b12
  article-title: On the effectiveness of receptors in recognition systems
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1963.1057810
– volume: 1
  start-page: 131
  year: 1997
  ident: 10.1016/j.asoc.2023.110360_b1
  article-title: Feature selection for classification
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-1997-1302
– volume: 6
  start-page: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110360_b19
  article-title: Multi-objective feature selection with missing data in classification
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– volume: 565
  start-page: 278
  year: 2021
  ident: 10.1016/j.asoc.2023.110360_b44
  article-title: A novel wrapper-based feature subset selection method using modified binary differential evolution algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.02.061
– volume: 52
  start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2023.110360_b4
  article-title: Modified BBO-Based multivariate time-series prediction system with feature subset selection and model parameter optimization
  publication-title: IEEE Trans. Cybern.
– volume: 74
  start-page: 2914
  issue: 2011
  year: 2011
  ident: 10.1016/j.asoc.2023.110360_b14
  article-title: A new local search based hybrid genetic algorithm for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.03.034
– volume: 43
  start-page: 1656
  year: 2013
  ident: 10.1016/j.asoc.2023.110360_b15
  article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2227469
– volume: 52
  start-page: 8326
  year: 2022
  ident: 10.1016/j.asoc.2023.110360_b31
  article-title: Multiobjective optimization-aided decision-making system for large-scale manufacturing planning
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3049712
– volume: 24
  start-page: 720
  year: 2020
  ident: 10.1016/j.asoc.2023.110360_b39
  article-title: A framework to handle multimodal multiobjective optimization in decomposition-based evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2949841
– volume: 21
  start-page: 660
  year: 1991
  ident: 10.1016/j.asoc.2023.110360_b13
  article-title: A survey of decision tree classifier methodology
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.97458
– volume: 67
  start-page: 94
  year: 2018
  ident: 10.1016/j.asoc.2023.110360_b8
  article-title: Dealing with high-dimensional class-imbalanced datasets: embedded feature selection for SVM classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.02.051
– volume: 23
  start-page: 556
  year: 2019
  ident: 10.1016/j.asoc.2023.110360_b35
  article-title: A generator for multiobjective test problems with difficult-to-approximate Pareto front boundaries
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2872453
– year: 2023
  ident: 10.1016/j.asoc.2023.110360_b50
  article-title: An evolutionary multitasking algorithm with multiple filtering for high-dimensional feature selection
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2023.3254155
– volume: 20
  start-page: 3927
  year: 2016
  ident: 10.1016/j.asoc.2023.110360_b17
  article-title: New mechanism for archive maintenance in PSO-based multi-objective feature selection
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2128-8
– volume: 101
  year: 2021
  ident: 10.1016/j.asoc.2023.110360_b24
  article-title: Multi-objective optimization using self-organizing decomposition and its applications to crashworthiness design
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.107002
– volume: 112
  year: 2021
  ident: 10.1016/j.asoc.2023.110360_b43
  article-title: Feature selection using bare-bones particle swarm optimization with mutual information
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107804
– ident: 10.1016/j.asoc.2023.110360_b28
  doi: 10.1109/CIDM.2009.4938668
– start-page: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110360_b42
  article-title: A fast hybrid feature selection based on correlation-guided clustering and particle swarm optimization for high-dimensional data
  publication-title: IEEE Trans. Cybern.
– volume: 48
  start-page: 1733
  year: 2018
  ident: 10.1016/j.asoc.2023.110360_b9
  article-title: A new representation in PSO for discretization-based feature selection
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2714145
– volume: C-20
  start-page: 1100
  year: 1971
  ident: 10.1016/j.asoc.2023.110360_b11
  article-title: A direct method of nonparametric measurement selection
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/T-C.1971.223410
– volume: 48
  start-page: 329
  year: 2018
  ident: 10.1016/j.asoc.2023.110360_b7
  article-title: Sparse graph embedding unsupervised feature selection
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2016.2605132
– year: 2022
  ident: 10.1016/j.asoc.2023.110360_b36
  article-title: An immune-inspired resources allocation strategy for many-objective optimization
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 25
  start-page: 1
  year: 2013
  ident: 10.1016/j.asoc.2023.110360_b41
  article-title: A fast clustering-based feature subset selection algorithm for high-dimensional data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.181
– volume: 98
  year: 2021
  ident: 10.1016/j.asoc.2023.110360_b2
  article-title: Balancing the user-driven feature selection and their incidence in the clustering structure formation
  publication-title: Appl. Soft Comput.
– volume: 51
  start-page: 3115
  year: 2021
  ident: 10.1016/j.asoc.2023.110360_b47
  article-title: Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2979930
– volume: 23
  start-page: 473
  year: 2019
  ident: 10.1016/j.asoc.2023.110360_b46
  article-title: Variable-length particle swarm optimization for feature selection on high-dimensional classification
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2869405
– volume: 892
  year: 2017
  ident: 10.1016/j.asoc.2023.110360_b21
  article-title: A review on missing value estimation using imputation algorithm
  publication-title: J. Phys.: Conf. Ser.
– volume: 18
  start-page: 577
  year: 2014
  ident: 10.1016/j.asoc.2023.110360_b20
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach part I: solving problems with box constraints
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 50
  start-page: 703
  year: 2020
  ident: 10.1016/j.asoc.2023.110360_b34
  article-title: A network reduction-based multiobjective evolutionary algorithm for community detection in large-scale complex networks
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2871673
SSID ssj0016928
Score 2.482537
Snippet Feature selection (FS) is an important technique in data preprocessing that aims to reduce the number of features for training while maintaining a high...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110360
SubjectTerms Evolutionary algorithm
Feature selection
High-dimensional classification
Multiobjective optimization
Resource allocation
Title Multiobjective optimization algorithm with dynamic operator selection for feature selection in high-dimensional classification
URI https://dx.doi.org/10.1016/j.asoc.2023.110360
Volume 143
WOSCitedRecordID wos001053604200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016928
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMXKC9RoMgHblGqPJw4PlaoqEVQgSiwtyh-pJvVNql2s6XiwG9n_Mput6gCJC7RamQ7q3yfxuPxPBB6TWQepQkXIVjHNCSM16Gu-hTC1klqzjgXJr_i63t6clKMx-zjaPTd58JczmjbFldX7OK_Qg0yAFunzv4F3MOiIIDfADo8AXZ4_hHwJqW241OryYIOdMK5S7YMqtlZN2_6ybn1v0rbjh7GKHPbHixMVxwffVgrU_VzTdq0ga5vHErdE8DW8wiEtr91wNEKY1_V1lm4C1D1JnZ92fuN0twFmUCCb6qddCvpeGk9sh8qXcJjCBdqnP_gbNqoldCM_NQsf0xcQptzXyTpEDznfGo38mqsGs4LII5zTno9bes53dD51v0w3a-Azvv6FTq1IbVdCjZqaX_WC-t14eAVpWAc3UHbCc0YaPTtg-PD8bvhAipnpi3v8EdcvpUNDdx80-9tmjU75XQH3XcHDHxgifEQjVT7CD3wzTuw0-WP0c_rPMHrPMEDT7DmCXY8wZ4neGAEBp5gx5M1adPiTZ7g6zx5gr68PTx9cxS6ZhyhgG_VhznhNNO1hIpM5pmghNRxomqeJxFNqiJnqazANI65EDStY14nghayhgMBT-IUjOSnaKvtWvUMYUmKmEpS8UjEJCsiVieM51LvJkpIEe-i2H_OUrhK9bphyqz0IYnTUkNQaghKC8EuCoY5F7ZOy62jM49S6SxNa0GWQKpb5j3_x3kv0L0V91-irX6-VHvorrjsm8X8lePeL9drqdg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiobjective+optimization+algorithm+with+dynamic+operator+selection+for+feature+selection+in+high-dimensional+classification&rft.jtitle=Applied+soft+computing&rft.au=Wei%2C+Wenhong&rft.au=Xuan%2C+Manlin&rft.au=Li%2C+Lingjie&rft.au=Lin%2C+Qiuzhen&rft.date=2023-08-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.volume=143&rft_id=info:doi/10.1016%2Fj.asoc.2023.110360&rft.externalDocID=S1568494623003782
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon