Accounting for the role of long walks on networks via a new matrix function
We introduce a new matrix function for studying graphs and real-world networks based on a double-factorial penalization of walks between nodes in a graph. This new matrix function is based on the matrix error function. We find a very good approximation of this function using a matrix hyperbolic tang...
Gespeichert in:
| Veröffentlicht in: | Journal of mathematical analysis and applications Jg. 449; H. 2; S. 1581 - 1600 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
15.05.2017
|
| Schlagworte: | |
| ISSN: | 0022-247X, 1096-0813 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We introduce a new matrix function for studying graphs and real-world networks based on a double-factorial penalization of walks between nodes in a graph. This new matrix function is based on the matrix error function. We find a very good approximation of this function using a matrix hyperbolic tangent function. We derive a communicability function, a subgraph centrality and a double-factorial Estrada index based on this new matrix function. We obtain upper and lower bounds for the double-factorial Estrada index of graphs, showing that they are similar to those of the single-factorial Estrada index. We then compare these indices with the single-factorial one for simple graphs and real-world networks. We conclude that for networks containing chordless cycles—holes—the two penalization schemes produce significantly different results. In particular, we study two series of real-world networks representing urban street networks, and protein residue networks. We observe that the subgraph centrality based on both indices produces a significantly different ranking of the nodes. The use of the double-factorial penalization of walks opens new possibilities for studying important structural properties of real-world networks where long-walks play a fundamental role, such as the cases of networks containing chordless cycles. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2016.12.062 |