A fast distributed algorithm for (Δ + 1)-edge-coloring
We present a deterministic distributed algorithm in the LOCAL model that finds a proper (Δ+1)-edge-coloring of an n-vertex graph of maximum degree Δ in poly(Δ,logn) rounds. This is the first nontrivial distributed edge-coloring algorithm that uses only Δ+1 colors (matching the bound given by Vizing...
Uložené v:
| Vydané v: | Journal of combinatorial theory. Series B Ročník 152; s. 319 - 352 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.01.2022
|
| Predmet: | |
| ISSN: | 0095-8956, 1096-0902 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We present a deterministic distributed algorithm in the LOCAL model that finds a proper (Δ+1)-edge-coloring of an n-vertex graph of maximum degree Δ in poly(Δ,logn) rounds. This is the first nontrivial distributed edge-coloring algorithm that uses only Δ+1 colors (matching the bound given by Vizing's theorem). Our approach is inspired by the recent proof of the measurable version of Vizing's theorem due to Grebík and Pikhurko. |
|---|---|
| ISSN: | 0095-8956 1096-0902 |
| DOI: | 10.1016/j.jctb.2021.10.004 |