A fast distributed algorithm for (Δ + 1)-edge-coloring

We present a deterministic distributed algorithm in the LOCAL model that finds a proper (Δ+1)-edge-coloring of an n-vertex graph of maximum degree Δ in poly(Δ,log⁡n) rounds. This is the first nontrivial distributed edge-coloring algorithm that uses only Δ+1 colors (matching the bound given by Vizing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series B Jg. 152; S. 319 - 352
1. Verfasser: Bernshteyn, Anton
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.01.2022
Schlagworte:
ISSN:0095-8956, 1096-0902
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a deterministic distributed algorithm in the LOCAL model that finds a proper (Δ+1)-edge-coloring of an n-vertex graph of maximum degree Δ in poly(Δ,log⁡n) rounds. This is the first nontrivial distributed edge-coloring algorithm that uses only Δ+1 colors (matching the bound given by Vizing's theorem). Our approach is inspired by the recent proof of the measurable version of Vizing's theorem due to Grebík and Pikhurko.
ISSN:0095-8956
1096-0902
DOI:10.1016/j.jctb.2021.10.004