Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings
This paper proposes a new stacked pruning sparse denoising autoencoder (sPSDAE) model for intelligent fault diagnosis of rolling bearings. Different from the traditional autoencoder, the proposed sPSDAE model, including a fully connected autoencoder network, uses the superior features extracted in a...
Saved in:
| Published in: | Applied soft computing Vol. 88; p. 106060 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.03.2020
|
| Subjects: | |
| ISSN: | 1568-4946, 1872-9681 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes a new stacked pruning sparse denoising autoencoder (sPSDAE) model for intelligent fault diagnosis of rolling bearings. Different from the traditional autoencoder, the proposed sPSDAE model, including a fully connected autoencoder network, uses the superior features extracted in all the previous layers to participate in the subsequent layers. This means that some new channels are created to connect the front layers and the back layers, which reduces information loss. To improve the training efficiency and precision of the sPSDAE model, a pruning operation is added into the sPSDAE model so as to prohibit non-superior units from participating in all the subsequent layers. Meanwhile, a feature fusion mechanism is introduced to ensure the uniqueness of the feature dimensions. After that, the sparse expression of the sPSDAE model is strengthened, thereby improving the generalization ability. The proposed method is evaluated by using a public bearing dataset and is compared with other popular fault diagnosis models. The results show that the ability of the sPSDAE model to extract features is significantly enhanced and the phenomenon of gradient disappearance is further reduced. The proposed model achieves higher diagnostic accuracy than other popular fault diagnosis models.
•A new sPSDAE model is proposed to diagnose bearing faults.•Proposed fully connected network enhances information transfer efficiency significantly.•Pruning operation is designed to reduce the network redundancy.•Proposed feature fusion method shares feature information and guarantees the uniqueness of the feature dimensions.•A variety of methods are used to optimize the sparsity of the model. |
|---|---|
| AbstractList | This paper proposes a new stacked pruning sparse denoising autoencoder (sPSDAE) model for intelligent fault diagnosis of rolling bearings. Different from the traditional autoencoder, the proposed sPSDAE model, including a fully connected autoencoder network, uses the superior features extracted in all the previous layers to participate in the subsequent layers. This means that some new channels are created to connect the front layers and the back layers, which reduces information loss. To improve the training efficiency and precision of the sPSDAE model, a pruning operation is added into the sPSDAE model so as to prohibit non-superior units from participating in all the subsequent layers. Meanwhile, a feature fusion mechanism is introduced to ensure the uniqueness of the feature dimensions. After that, the sparse expression of the sPSDAE model is strengthened, thereby improving the generalization ability. The proposed method is evaluated by using a public bearing dataset and is compared with other popular fault diagnosis models. The results show that the ability of the sPSDAE model to extract features is significantly enhanced and the phenomenon of gradient disappearance is further reduced. The proposed model achieves higher diagnostic accuracy than other popular fault diagnosis models.
•A new sPSDAE model is proposed to diagnose bearing faults.•Proposed fully connected network enhances information transfer efficiency significantly.•Pruning operation is designed to reduce the network redundancy.•Proposed feature fusion method shares feature information and guarantees the uniqueness of the feature dimensions.•A variety of methods are used to optimize the sparsity of the model. |
| ArticleNumber | 106060 |
| Author | Wu, Jun Shao, Xinyu Zhang, Cong Cheng, Jiaxin Zhu, Haiping |
| Author_xml | – sequence: 1 givenname: Haiping orcidid: 0000-0002-5989-012X surname: Zhu fullname: Zhu, Haiping organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: Jiaxin surname: Cheng fullname: Cheng, Jiaxin organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China – sequence: 3 givenname: Cong surname: Zhang fullname: Zhang, Cong organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China – sequence: 4 givenname: Jun orcidid: 0000-0002-8657-5475 surname: Wu fullname: Wu, Jun email: wuj@hust.edu.cn organization: School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, China – sequence: 5 givenname: Xinyu surname: Shao fullname: Shao, Xinyu organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China |
| BookMark | eNp9kM9OAyEQh4mpibX6Ap54ga3AFhYSL6bxX9LEg3omLDs01BUaoCa-vWzqyUMzh5n84JvAd4lmIQZA6IaSJSVU3O6WJke7ZISqGohaZ2hOZccaJSSd1ZkL2azUSlygy5x3pEKKyTnq34qxnzDgfToEH7Y4703KgAcI0ecpMIcSIdg4QMK9yfWqDwXG0W8hFOzMYSx48GYbYvYZR4dTrIcV7MGk2vMVOndmzHD91xfo4_Hhff3cbF6fXtb3m8a2hJRG1BfJtuu7DlQrwIC1nFPZQ0eUci1RghPROgeUA2OuNVyumOEDd9IayqBdIHnca1PMOYHT1hdTfAwlGT9qSvTkSu_05EpPrvTRVUXZP3Sf_JdJP6ehuyME9VPfHpLO1ldTMPgEtugh-lP4L-eHhwo |
| CitedBy_id | crossref_primary_10_1155_2021_9927151 crossref_primary_10_3390_e25020242 crossref_primary_10_1016_j_chemolab_2025_105423 crossref_primary_10_1016_j_ymssp_2021_108765 crossref_primary_10_1109_ACCESS_2020_3024647 crossref_primary_10_1016_j_measurement_2020_108580 crossref_primary_10_1016_j_eswa_2023_122806 crossref_primary_10_1016_j_asoc_2021_107150 crossref_primary_10_1088_1361_6501_ad4bfc crossref_primary_10_1109_TIM_2022_3160533 crossref_primary_10_1109_TSMC_2021_3130232 crossref_primary_10_1016_j_eswa_2023_120066 crossref_primary_10_1088_1361_6501_ace7eb crossref_primary_10_3390_sym16111461 crossref_primary_10_1109_JSEN_2024_3449139 crossref_primary_10_1016_j_measurement_2022_112318 crossref_primary_10_32604_cmc_2021_014941 crossref_primary_10_1016_j_ymssp_2021_108653 crossref_primary_10_1109_ACCESS_2021_3084602 crossref_primary_10_1016_j_neucom_2023_126353 crossref_primary_10_1002_spe_70004 crossref_primary_10_1016_j_aei_2022_101552 crossref_primary_10_1007_s10489_024_05568_x crossref_primary_10_1186_s10033_021_00569_0 crossref_primary_10_1109_ACCESS_2020_2992692 crossref_primary_10_1007_s12206_025_0305_3 crossref_primary_10_1088_1361_6501_ace640 crossref_primary_10_1109_JSEN_2024_3382345 crossref_primary_10_1049_smt2_12143 crossref_primary_10_1007_s00521_022_06972_5 crossref_primary_10_1016_j_asoc_2022_108934 crossref_primary_10_3390_app131910994 crossref_primary_10_1109_TIM_2021_3116309 crossref_primary_10_1016_j_isatra_2024_06_009 crossref_primary_10_1016_j_renene_2022_11_064 crossref_primary_10_1088_1361_6501_ad0939 crossref_primary_10_1007_s00521_020_05345_0 crossref_primary_10_1016_j_asoc_2023_110459 crossref_primary_10_1016_j_jmsy_2021_03_022 crossref_primary_10_1007_s40684_025_00748_7 crossref_primary_10_1016_j_asoc_2023_110739 crossref_primary_10_1016_j_engfailanal_2025_109474 crossref_primary_10_1108_ILT_11_2019_0496 crossref_primary_10_1155_2022_5420478 crossref_primary_10_1016_j_measurement_2020_108601 crossref_primary_10_1109_JIOT_2025_3579006 crossref_primary_10_1016_j_asoc_2025_113138 crossref_primary_10_1016_j_ymssp_2023_110271 crossref_primary_10_3390_app12020818 crossref_primary_10_1016_j_asoc_2020_107003 crossref_primary_10_3390_s22155658 crossref_primary_10_1002_msd2_12019 crossref_primary_10_1016_j_aei_2022_101749 crossref_primary_10_1108_ILT_09_2020_0335 crossref_primary_10_1007_s42417_022_00498_9 crossref_primary_10_1016_j_mechmachtheory_2023_105292 crossref_primary_10_3233_JIFS_212873 crossref_primary_10_3390_app13127322 crossref_primary_10_1109_TITS_2021_3073557 crossref_primary_10_1016_j_asoc_2022_109772 crossref_primary_10_3390_machines13010071 crossref_primary_10_1016_j_asoc_2021_108207 crossref_primary_10_1016_j_asoc_2021_107755 crossref_primary_10_1016_j_engappai_2021_104279 crossref_primary_10_1016_j_asoc_2020_106525 crossref_primary_10_1007_s00354_022_00158_2 crossref_primary_10_1007_s00500_023_08140_w crossref_primary_10_1016_j_ces_2024_120466 crossref_primary_10_1177_09596518221125960 crossref_primary_10_1016_j_aei_2024_102445 crossref_primary_10_1038_s41598_024_59785_y crossref_primary_10_3390_s21175830 crossref_primary_10_1109_TNNLS_2022_3230458 crossref_primary_10_1007_s00521_022_07224_2 crossref_primary_10_1016_j_ress_2023_109850 crossref_primary_10_1016_j_asoc_2021_107400 crossref_primary_10_1007_s12204_021_2320_6 crossref_primary_10_1177_1748006X221108598 crossref_primary_10_3390_app14031212 crossref_primary_10_1002_qre_3597 crossref_primary_10_1016_j_engappai_2023_105970 crossref_primary_10_1109_TAI_2023_3266190 crossref_primary_10_3390_electronics12030768 crossref_primary_10_1016_j_aei_2021_101247 crossref_primary_10_1016_j_dsp_2022_103777 crossref_primary_10_1088_1361_6501_adb76f crossref_primary_10_32604_sdhm_2024_053998 crossref_primary_10_1016_j_measurement_2025_118456 crossref_primary_10_3390_en16010296 crossref_primary_10_1177_14759217251327760 crossref_primary_10_1016_j_neunet_2025_107843 crossref_primary_10_1109_JSEN_2020_3030910 crossref_primary_10_1007_s10489_021_02733_4 crossref_primary_10_1108_AEAT_10_2020_0234 crossref_primary_10_1016_j_ijepes_2020_106448 crossref_primary_10_1002_qre_3768 crossref_primary_10_1016_j_knosys_2022_109399 crossref_primary_10_1177_09544062211008464 crossref_primary_10_1016_j_asoc_2023_110784 crossref_primary_10_1016_j_asoc_2023_110669 crossref_primary_10_1016_j_measurement_2021_110460 crossref_primary_10_3390_app15126455 crossref_primary_10_1088_1361_6501_acc1f8 crossref_primary_10_1109_ACCESS_2024_3397184 |
| Cites_doi | 10.1016/j.eswa.2013.12.026 10.1007/BF00332918 10.1016/j.ymssp.2006.12.004 10.1016/j.measurement.2016.04.007 10.1109/2.53 10.1109/TFUZZ.2015.2446535 10.1016/j.ress.2013.02.022 10.1016/j.sigpro.2016.07.028 10.1109/TIE.2018.2815946 10.1023/A:1022627411411 10.1016/j.measurement.2019.06.029 10.1007/978-3-642-21735-7_7 10.1126/science.1127647 10.1109/TIE.2016.2582729 10.1109/TIE.2017.2774777 10.1108/IMDS-11-2016-0469 10.1016/j.asoc.2018.03.043 10.1109/CVPR.2016.90 10.1016/j.ymssp.2017.02.013 10.1016/j.isatra.2016.01.002 10.1109/TIE.2013.2261033 10.1109/CVPR.2017.243 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2019.106060 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2019_106060 S1568494619308439 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-6169837b77e936eaecc5518be7099f30965063ffe15e22f3a5842a5d5f8ca12e3 |
| ISICitedReferencesCount | 113 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000515094200053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Tue Nov 18 22:21:03 EST 2025 Sat Nov 29 07:01:35 EST 2025 Fri Feb 23 02:49:35 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Fault diagnosis Stacked pruning sparse denoising autoencoder Pruning operation Rolling bearing |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-6169837b77e936eaecc5518be7099f30965063ffe15e22f3a5842a5d5f8ca12e3 |
| ORCID | 0000-0002-8657-5475 0000-0002-5989-012X |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2019_106060 crossref_primary_10_1016_j_asoc_2019_106060 elsevier_sciencedirect_doi_10_1016_j_asoc_2019_106060 |
| PublicationCentury | 2000 |
| PublicationDate | March 2020 2020-03-00 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolutional neural networks, in: International Conference on Neural Information Processing Systems, 2012. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: IEEE Conference on Computer Vision & Pattern Recognition, 2016. Lu, Wang, Qin (b31) 2017; 130 Vincent, Larochelle, Lajoie, Bengio (b33) 2010; 11 Vincent, Larochelle, Bengio, Manzago, Cohen (b24) 2008 J. Masci, U. Meier, D. Ciresan, Jürgen Schmidhuber, Stacked convolutional auto-encoders for hierarchical feature extraction, in: International Conference on Artificial Neural Networks, 2011. Kingma, Diederik, Welling (b27) 2013 Faa-jeng, I-fan, Kai-jie (b14) 2016; 24 Bengio, Lamblin, Dan (b32) 2007; 19 Ince, Kiranyaz, Eren, Askar, Gabbouj (b15) 2016; 63 Marcin, Marcel, Marcin (b22) 2016; 61 Meidi, Hui, Ping (b34) 2019; 146 Hinton, Salakhutdinov (b11) 2006; 313 Srivastava, Rupesh, Greff, Schmidhuber (b16) 2015 Sun, Shao, Zhao, Yan, Zhang (b30) 2016; 89 Ming, Jiang, Feng (b1) 2017; 93 M. Chen, K. Weinberger, F. Sha, Marginalized denoising auto-encoders for nonlinear representations, in: International Conference on International Conference on Machine Learning, 2014. Zadeh, Lofti (b8) 2008; 21 G. Huang, Z. Liu, V.D.M. Laurens, Densely connected convolutional networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017. Rai, Mohanty (b3) 2007; 21 Bourlard, Kamp (b23) 1988; 59 Poultney, Sumit, Yann (b25) 2007 Cortes, Corinna, Vapnik (b10) 1995; 20 Van, Failsal, Andrew (b13) 2014; 41 Wu, Wu, Cao (b2) 2018; PP Huang, Shen, Long (b5) 1998; 454 Wen, Li, Gao (b20) 2018; 65 Sakurada, Mayu, Yairi (b29) 2014 Mohamed, Abdel, Hinton (b12) 2010 Cheng, Zhu, Wu, Shao (b21) 2019; PP He, Zhang, Ren (b36) 2015 Wu, Wu, Lv (b6) 2017; 117 Shatnawi, Yousef, Al-Khassaweneh (b7) 2013; 61 Wu, Su, Cheng (b9) 2018; 68 Tse Peter, Yang, Tam (b4) 2004; 277 Tamilselvan, Prasanna, Wang (b19) 2013; 115 Huang (10.1016/j.asoc.2019.106060_b5) 1998; 454 Wu (10.1016/j.asoc.2019.106060_b6) 2017; 117 Hinton (10.1016/j.asoc.2019.106060_b11) 2006; 313 10.1016/j.asoc.2019.106060_b18 10.1016/j.asoc.2019.106060_b17 Zadeh (10.1016/j.asoc.2019.106060_b8) 2008; 21 Van (10.1016/j.asoc.2019.106060_b13) 2014; 41 Bengio (10.1016/j.asoc.2019.106060_b32) 2007; 19 10.1016/j.asoc.2019.106060_b35 Bourlard (10.1016/j.asoc.2019.106060_b23) 1988; 59 Lu (10.1016/j.asoc.2019.106060_b31) 2017; 130 Cheng (10.1016/j.asoc.2019.106060_b21) 2019; PP Wu (10.1016/j.asoc.2019.106060_b9) 2018; 68 Vincent (10.1016/j.asoc.2019.106060_b33) 2010; 11 Rai (10.1016/j.asoc.2019.106060_b3) 2007; 21 Sakurada (10.1016/j.asoc.2019.106060_b29) 2014 Vincent (10.1016/j.asoc.2019.106060_b24) 2008 Meidi (10.1016/j.asoc.2019.106060_b34) 2019; 146 Mohamed (10.1016/j.asoc.2019.106060_b12) 2010 Faa-jeng (10.1016/j.asoc.2019.106060_b14) 2016; 24 Wu (10.1016/j.asoc.2019.106060_b2) 2018; PP Shatnawi (10.1016/j.asoc.2019.106060_b7) 2013; 61 Wen (10.1016/j.asoc.2019.106060_b20) 2018; 65 Tse Peter (10.1016/j.asoc.2019.106060_b4) 2004; 277 Srivastava (10.1016/j.asoc.2019.106060_b16) 2015 He (10.1016/j.asoc.2019.106060_b36) 2015 Ince (10.1016/j.asoc.2019.106060_b15) 2016; 63 10.1016/j.asoc.2019.106060_b28 Cortes (10.1016/j.asoc.2019.106060_b10) 1995; 20 Tamilselvan (10.1016/j.asoc.2019.106060_b19) 2013; 115 10.1016/j.asoc.2019.106060_b26 Ming (10.1016/j.asoc.2019.106060_b1) 2017; 93 Poultney (10.1016/j.asoc.2019.106060_b25) 2007 Kingma (10.1016/j.asoc.2019.106060_b27) 2013 Marcin (10.1016/j.asoc.2019.106060_b22) 2016; 61 Sun (10.1016/j.asoc.2019.106060_b30) 2016; 89 |
| References_xml | – volume: 89 start-page: 171 year: 2016 end-page: 178 ident: b30 article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification publication-title: Measurement – volume: 146 start-page: 305 year: 2019 end-page: 314 ident: b34 article-title: A sparse stacked denoising autoencoder with optimized transfer learning applied to the fault diagnosis of rolling bearings publication-title: Measurement – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b10 article-title: Support-vector networks publication-title: Mach. Learn. – reference: M. Chen, K. Weinberger, F. Sha, Marginalized denoising auto-encoders for nonlinear representations, in: International Conference on International Conference on Machine Learning, 2014. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b11 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 21 start-page: 83 year: 2008 end-page: 93 ident: b8 article-title: Fuzzy logic publication-title: Computer – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: b33 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 68 start-page: 13 year: 2018 end-page: 23 ident: b9 article-title: Multi-sensor information fusion for remaining useful life prediction of machining tools by adaptive network based fuzzy inference system publication-title: Appl. Soft Comput. – volume: 19 start-page: 153 year: 2007 end-page: 160 ident: b32 article-title: Greedy layer-wise training of deep networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 115 start-page: 124 year: 2013 end-page: 135 ident: b19 article-title: Failure diagnosis using deep belief learning based health state classification publication-title: Reliab. Eng. Syst. Saf. – year: 2014 ident: b29 article-title: Anomaly detection using autoencoders with nonlinear dimensionality reduction publication-title: Mlsda Workshop on Machine Learning for Sensory Data Analysis – year: 2015 ident: b16 article-title: Training very deep networks publication-title: Comput. Sci. – volume: 63 start-page: 7067 year: 2016 end-page: 7075 ident: b15 article-title: Real-time motor fault detection by 1-d convolutional neural networks publication-title: IEEE Trans. Ind. Electron. – volume: 65 start-page: 5990 year: 2018 end-page: 5998 ident: b20 article-title: A new convolutional neural network-based data-driven fault diagnosis method publication-title: IEEE Trans. Ind. Electron. – reference: G. Huang, Z. Liu, V.D.M. Laurens, Densely connected convolutional networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017. – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: b5 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. A – volume: 61 start-page: 318 year: 2016 end-page: 328 ident: b22 article-title: Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system publication-title: ISA Trans. – start-page: 4354 year: 2010 end-page: 4357 ident: b12 article-title: Phone recognition using restricted Boltzmann machines publication-title: IEEE International Conference on Acoustics Speech and Signal Processing – volume: 41 start-page: 4113 year: 2014 end-page: 4122 ident: b13 article-title: An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks publication-title: Expert Syst. Appl. – volume: 21 start-page: 2607 year: 2007 end-page: 2615 ident: b3 article-title: Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert–Huang transform publication-title: Mech. Syst. Signal Process. – volume: 24 start-page: 153 year: 2016 end-page: 167 ident: b14 article-title: Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive publication-title: IEEE Trans. Fuzzy Syst. – reference: A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolutional neural networks, in: International Conference on Neural Information Processing Systems, 2012. – year: 2013 ident: b27 article-title: Auto-Encoding Variational Bayes – volume: 117 year: 2017 ident: b6 article-title: Design a degradation condition monitoring system scheme for rolling bearing using EMD and PCA publication-title: Ind. Manag. Data Syst. – volume: 93 start-page: 460 year: 2017 end-page: 493 ident: b1 article-title: Research on variational mode decomposition in rolling bearings fault diagnosis of the multistage centrifugal pump publication-title: Mech. Syst. Signal Process. – volume: 130 start-page: 377 year: 2017 end-page: 388 ident: b31 article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification publication-title: Signal Process. – volume: PP start-page: 1 year: 2018 ident: b2 article-title: Degradation data-driven time-to-failure prognostics approach for rolling element bearings in electrical machines publication-title: IEEE Trans. Ind. Electron. – volume: PP start-page: 1 year: 2019 ident: b21 article-title: Machine health monitoring using adaptive kernel spectral clustering and deep long short-term memory recurrent neural networks publication-title: IEEE Trans. Ind. Inf. – volume: 59 start-page: 291 year: 1988 end-page: 294 ident: b23 article-title: Auto-association by multilayer perceptrons and singular value decomposition publication-title: Biol. Cybernet. – year: 2015 ident: b36 article-title: Delving Deep Into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification – volume: 277 start-page: 1005 year: 2004 end-page: 1024 ident: b4 article-title: Machine fault diagnosis through an effective exact wavelet analysis publication-title: J. Sound Vib. – start-page: 1137 year: 2007 end-page: 1144 ident: b25 article-title: Efficient learning of sparse representations with an energy-based model publication-title: Adv. Neural Inf. Process. Syst. – year: 2008 ident: b24 article-title: Extracting and composing robust features with denoising autoencoders publication-title: International Conference on Machine Learning – volume: 61 start-page: 1434 year: 2013 end-page: 1443 ident: b7 article-title: Fault diagnosis in internal combustion engines using extension neural network publication-title: IEEE Trans. Ind. Electron. – reference: J. Masci, U. Meier, D. Ciresan, Jürgen Schmidhuber, Stacked convolutional auto-encoders for hierarchical feature extraction, in: International Conference on Artificial Neural Networks, 2011. – reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: IEEE Conference on Computer Vision & Pattern Recognition, 2016. – volume: 41 start-page: 4113 issue: 9 year: 2014 ident: 10.1016/j.asoc.2019.106060_b13 article-title: An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.12.026 – volume: 59 start-page: 291 issue: 4–5 year: 1988 ident: 10.1016/j.asoc.2019.106060_b23 article-title: Auto-association by multilayer perceptrons and singular value decomposition publication-title: Biol. Cybernet. doi: 10.1007/BF00332918 – year: 2015 ident: 10.1016/j.asoc.2019.106060_b16 article-title: Training very deep networks publication-title: Comput. Sci. – volume: 277 start-page: 1005 issue: 4–5 year: 2004 ident: 10.1016/j.asoc.2019.106060_b4 article-title: Machine fault diagnosis through an effective exact wavelet analysis publication-title: J. Sound Vib. – volume: 21 start-page: 2607 issue: 6 year: 2007 ident: 10.1016/j.asoc.2019.106060_b3 article-title: Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert–Huang transform publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2006.12.004 – volume: 89 start-page: 171 issue: ISFA year: 2016 ident: 10.1016/j.asoc.2019.106060_b30 article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification publication-title: Measurement doi: 10.1016/j.measurement.2016.04.007 – volume: 21 start-page: 83 issue: 4 year: 2008 ident: 10.1016/j.asoc.2019.106060_b8 article-title: Fuzzy logic publication-title: Computer doi: 10.1109/2.53 – volume: 24 start-page: 153 issue: 1 year: 2016 ident: 10.1016/j.asoc.2019.106060_b14 article-title: Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2015.2446535 – volume: 115 start-page: 124 issue: 7 year: 2013 ident: 10.1016/j.asoc.2019.106060_b19 article-title: Failure diagnosis using deep belief learning based health state classification publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2013.02.022 – volume: 130 start-page: 377 issue: C year: 2017 ident: 10.1016/j.asoc.2019.106060_b31 article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.07.028 – ident: 10.1016/j.asoc.2019.106060_b28 – volume: PP start-page: 1 issue: 99 year: 2018 ident: 10.1016/j.asoc.2019.106060_b2 article-title: Degradation data-driven time-to-failure prognostics approach for rolling element bearings in electrical machines publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2815946 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.asoc.2019.106060_b10 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1023/A:1022627411411 – volume: 146 start-page: 305 year: 2019 ident: 10.1016/j.asoc.2019.106060_b34 article-title: A sparse stacked denoising autoencoder with optimized transfer learning applied to the fault diagnosis of rolling bearings publication-title: Measurement doi: 10.1016/j.measurement.2019.06.029 – ident: 10.1016/j.asoc.2019.106060_b26 doi: 10.1007/978-3-642-21735-7_7 – year: 2014 ident: 10.1016/j.asoc.2019.106060_b29 article-title: Anomaly detection using autoencoders with nonlinear dimensionality reduction – start-page: 1137 year: 2007 ident: 10.1016/j.asoc.2019.106060_b25 article-title: Efficient learning of sparse representations with an energy-based model publication-title: Adv. Neural Inf. Process. Syst. – volume: 19 start-page: 153 year: 2007 ident: 10.1016/j.asoc.2019.106060_b32 article-title: Greedy layer-wise training of deep networks publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.asoc.2019.106060_b35 – volume: PP start-page: 1 issue: 99 year: 2019 ident: 10.1016/j.asoc.2019.106060_b21 article-title: Machine health monitoring using adaptive kernel spectral clustering and deep long short-term memory recurrent neural networks publication-title: IEEE Trans. Ind. Inf. – year: 2015 ident: 10.1016/j.asoc.2019.106060_b36 – year: 2013 ident: 10.1016/j.asoc.2019.106060_b27 – volume: 11 start-page: 3371 issue: 12 year: 2010 ident: 10.1016/j.asoc.2019.106060_b33 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.asoc.2019.106060_b11 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 63 start-page: 7067 issue: 11 year: 2016 ident: 10.1016/j.asoc.2019.106060_b15 article-title: Real-time motor fault detection by 1-d convolutional neural networks publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2582729 – volume: 65 start-page: 5990 issue: 7 year: 2018 ident: 10.1016/j.asoc.2019.106060_b20 article-title: A new convolutional neural network-based data-driven fault diagnosis method publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2774777 – volume: 117 issue: 4 year: 2017 ident: 10.1016/j.asoc.2019.106060_b6 article-title: Design a degradation condition monitoring system scheme for rolling bearing using EMD and PCA publication-title: Ind. Manag. Data Syst. doi: 10.1108/IMDS-11-2016-0469 – volume: 68 start-page: 13 year: 2018 ident: 10.1016/j.asoc.2019.106060_b9 article-title: Multi-sensor information fusion for remaining useful life prediction of machining tools by adaptive network based fuzzy inference system publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.03.043 – ident: 10.1016/j.asoc.2019.106060_b17 doi: 10.1109/CVPR.2016.90 – volume: 93 start-page: 460 year: 2017 ident: 10.1016/j.asoc.2019.106060_b1 article-title: Research on variational mode decomposition in rolling bearings fault diagnosis of the multistage centrifugal pump publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.02.013 – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 10.1016/j.asoc.2019.106060_b5 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. A – volume: 61 start-page: 318 year: 2016 ident: 10.1016/j.asoc.2019.106060_b22 article-title: Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system publication-title: ISA Trans. doi: 10.1016/j.isatra.2016.01.002 – volume: 61 start-page: 1434 issue: 3 year: 2013 ident: 10.1016/j.asoc.2019.106060_b7 article-title: Fault diagnosis in internal combustion engines using extension neural network publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2013.2261033 – start-page: 4354 year: 2010 ident: 10.1016/j.asoc.2019.106060_b12 article-title: Phone recognition using restricted Boltzmann machines – year: 2008 ident: 10.1016/j.asoc.2019.106060_b24 article-title: Extracting and composing robust features with denoising autoencoders – ident: 10.1016/j.asoc.2019.106060_b18 doi: 10.1109/CVPR.2017.243 |
| SSID | ssj0016928 |
| Score | 2.578736 |
| Snippet | This paper proposes a new stacked pruning sparse denoising autoencoder (sPSDAE) model for intelligent fault diagnosis of rolling bearings. Different from the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106060 |
| SubjectTerms | Deep learning Fault diagnosis Pruning operation Rolling bearing Stacked pruning sparse denoising autoencoder |
| Title | Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings |
| URI | https://dx.doi.org/10.1016/j.asoc.2019.106060 |
| Volume | 88 |
| WOSCitedRecordID | wos000515094200053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYo9MCFlj4E9CEfuKGgrOPE9hGtqAAhVInX3iIncdRFKEG7Cdqfz4zteFelQi1SL9HKsjdZz5fxN7PzIGS_TFXMS24iaTAlR3Ie6UrzqEiyBKwHFnPrcLs5FxcXcjJRP31I0Ny2ExBNIxcL9fBfRQ1jIGxMnf0HcYcvhQH4DEKHK4gdrn8leKCP8GZi9n9vfR6gMmZzzI5q2ql1DOi-a7F8JVaRwEOssjUjXF3O7qDW_X2HLlmMwHPFSma-cHcBWxUc60PlWs9i56DObXx63w2HoXVH9_Zs09ghO4yOfxkfBzzVi2mznOx91-N2Ofe2d7kjzap7AmzREJ_lfGbP8macms1kxJV3Pho3JgWLVOYauAy62bX8e6bmncfh7lADgjE8T8EQWGLx8lALoYaXeC-8FTDVWAL9ekM2mEgVaMCNo9PjyVn4zylTthNveDafYuWiAX-_059pzAo1uXpPtrxNQY8cFrbJmmk-kHdDvw7q1fdHUnhoUA8N6qBBAzToCjSohQZdgQa10KABGrStqYcGHaDxiVz_OL4an0S-x0ZUJnHcRRn8bJmIQgijksxoeKOxRl9hBJgOdYK1gYDE1rUZpYaxOtFAWJlOq7SWpR4xk3wm603bmB1CBZDZVAMjzKqaF5VQwL-4ZmhB8JgVxS4ZDVuWl74APfZBuc-HSMO7HLc5x23O3TbvkoOw5sGVX3lxdjpIIvcE0hHDHIDzwrq9V677QjaXkP9K1rtZb76Rt-VjN53Pvnt8PQEPc5ba |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacked+pruning+sparse+denoising+autoencoder+based+intelligent+fault+diagnosis+of+rolling+bearings&rft.jtitle=Applied+soft+computing&rft.au=Zhu%2C+Haiping&rft.au=Cheng%2C+Jiaxin&rft.au=Zhang%2C+Cong&rft.au=Wu%2C+Jun&rft.date=2020-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=88&rft_id=info:doi/10.1016%2Fj.asoc.2019.106060&rft.externalDocID=S1568494619308439 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |