Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings

This paper proposes a new stacked pruning sparse denoising autoencoder (sPSDAE) model for intelligent fault diagnosis of rolling bearings. Different from the traditional autoencoder, the proposed sPSDAE model, including a fully connected autoencoder network, uses the superior features extracted in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 88; S. 106060
Hauptverfasser: Zhu, Haiping, Cheng, Jiaxin, Zhang, Cong, Wu, Jun, Shao, Xinyu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.03.2020
Schlagworte:
ISSN:1568-4946, 1872-9681
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper proposes a new stacked pruning sparse denoising autoencoder (sPSDAE) model for intelligent fault diagnosis of rolling bearings. Different from the traditional autoencoder, the proposed sPSDAE model, including a fully connected autoencoder network, uses the superior features extracted in all the previous layers to participate in the subsequent layers. This means that some new channels are created to connect the front layers and the back layers, which reduces information loss. To improve the training efficiency and precision of the sPSDAE model, a pruning operation is added into the sPSDAE model so as to prohibit non-superior units from participating in all the subsequent layers. Meanwhile, a feature fusion mechanism is introduced to ensure the uniqueness of the feature dimensions. After that, the sparse expression of the sPSDAE model is strengthened, thereby improving the generalization ability. The proposed method is evaluated by using a public bearing dataset and is compared with other popular fault diagnosis models. The results show that the ability of the sPSDAE model to extract features is significantly enhanced and the phenomenon of gradient disappearance is further reduced. The proposed model achieves higher diagnostic accuracy than other popular fault diagnosis models. •A new sPSDAE model is proposed to diagnose bearing faults.•Proposed fully connected network enhances information transfer efficiency significantly.•Pruning operation is designed to reduce the network redundancy.•Proposed feature fusion method shares feature information and guarantees the uniqueness of the feature dimensions.•A variety of methods are used to optimize the sparsity of the model.
AbstractList This paper proposes a new stacked pruning sparse denoising autoencoder (sPSDAE) model for intelligent fault diagnosis of rolling bearings. Different from the traditional autoencoder, the proposed sPSDAE model, including a fully connected autoencoder network, uses the superior features extracted in all the previous layers to participate in the subsequent layers. This means that some new channels are created to connect the front layers and the back layers, which reduces information loss. To improve the training efficiency and precision of the sPSDAE model, a pruning operation is added into the sPSDAE model so as to prohibit non-superior units from participating in all the subsequent layers. Meanwhile, a feature fusion mechanism is introduced to ensure the uniqueness of the feature dimensions. After that, the sparse expression of the sPSDAE model is strengthened, thereby improving the generalization ability. The proposed method is evaluated by using a public bearing dataset and is compared with other popular fault diagnosis models. The results show that the ability of the sPSDAE model to extract features is significantly enhanced and the phenomenon of gradient disappearance is further reduced. The proposed model achieves higher diagnostic accuracy than other popular fault diagnosis models. •A new sPSDAE model is proposed to diagnose bearing faults.•Proposed fully connected network enhances information transfer efficiency significantly.•Pruning operation is designed to reduce the network redundancy.•Proposed feature fusion method shares feature information and guarantees the uniqueness of the feature dimensions.•A variety of methods are used to optimize the sparsity of the model.
ArticleNumber 106060
Author Wu, Jun
Shao, Xinyu
Zhang, Cong
Cheng, Jiaxin
Zhu, Haiping
Author_xml – sequence: 1
  givenname: Haiping
  orcidid: 0000-0002-5989-012X
  surname: Zhu
  fullname: Zhu, Haiping
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Jiaxin
  surname: Cheng
  fullname: Cheng, Jiaxin
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Cong
  surname: Zhang
  fullname: Zhang, Cong
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
– sequence: 4
  givenname: Jun
  orcidid: 0000-0002-8657-5475
  surname: Wu
  fullname: Wu, Jun
  email: wuj@hust.edu.cn
  organization: School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, China
– sequence: 5
  givenname: Xinyu
  surname: Shao
  fullname: Shao, Xinyu
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
BookMark eNp9kM9OAyEQh4mpibX6Ap54ga3AFhYSL6bxX9LEg3omLDs01BUaoCa-vWzqyUMzh5n84JvAd4lmIQZA6IaSJSVU3O6WJke7ZISqGohaZ2hOZccaJSSd1ZkL2azUSlygy5x3pEKKyTnq34qxnzDgfToEH7Y4703KgAcI0ecpMIcSIdg4QMK9yfWqDwXG0W8hFOzMYSx48GYbYvYZR4dTrIcV7MGk2vMVOndmzHD91xfo4_Hhff3cbF6fXtb3m8a2hJRG1BfJtuu7DlQrwIC1nFPZQ0eUci1RghPROgeUA2OuNVyumOEDd9IayqBdIHnca1PMOYHT1hdTfAwlGT9qSvTkSu_05EpPrvTRVUXZP3Sf_JdJP6ehuyME9VPfHpLO1ldTMPgEtugh-lP4L-eHhwo
CitedBy_id crossref_primary_10_1155_2021_9927151
crossref_primary_10_3390_e25020242
crossref_primary_10_1016_j_chemolab_2025_105423
crossref_primary_10_1016_j_ymssp_2021_108765
crossref_primary_10_1109_ACCESS_2020_3024647
crossref_primary_10_1016_j_measurement_2020_108580
crossref_primary_10_1016_j_eswa_2023_122806
crossref_primary_10_1016_j_asoc_2021_107150
crossref_primary_10_1088_1361_6501_ad4bfc
crossref_primary_10_1109_TIM_2022_3160533
crossref_primary_10_1109_TSMC_2021_3130232
crossref_primary_10_1016_j_eswa_2023_120066
crossref_primary_10_1088_1361_6501_ace7eb
crossref_primary_10_3390_sym16111461
crossref_primary_10_1109_JSEN_2024_3449139
crossref_primary_10_1016_j_measurement_2022_112318
crossref_primary_10_32604_cmc_2021_014941
crossref_primary_10_1016_j_ymssp_2021_108653
crossref_primary_10_1109_ACCESS_2021_3084602
crossref_primary_10_1016_j_neucom_2023_126353
crossref_primary_10_1002_spe_70004
crossref_primary_10_1016_j_aei_2022_101552
crossref_primary_10_1007_s10489_024_05568_x
crossref_primary_10_1186_s10033_021_00569_0
crossref_primary_10_1109_ACCESS_2020_2992692
crossref_primary_10_1007_s12206_025_0305_3
crossref_primary_10_1088_1361_6501_ace640
crossref_primary_10_1109_JSEN_2024_3382345
crossref_primary_10_1049_smt2_12143
crossref_primary_10_1007_s00521_022_06972_5
crossref_primary_10_1016_j_asoc_2022_108934
crossref_primary_10_3390_app131910994
crossref_primary_10_1109_TIM_2021_3116309
crossref_primary_10_1016_j_isatra_2024_06_009
crossref_primary_10_1016_j_renene_2022_11_064
crossref_primary_10_1088_1361_6501_ad0939
crossref_primary_10_1007_s00521_020_05345_0
crossref_primary_10_1016_j_asoc_2023_110459
crossref_primary_10_1016_j_jmsy_2021_03_022
crossref_primary_10_1007_s40684_025_00748_7
crossref_primary_10_1016_j_asoc_2023_110739
crossref_primary_10_1016_j_engfailanal_2025_109474
crossref_primary_10_1108_ILT_11_2019_0496
crossref_primary_10_1155_2022_5420478
crossref_primary_10_1016_j_measurement_2020_108601
crossref_primary_10_1109_JIOT_2025_3579006
crossref_primary_10_1016_j_asoc_2025_113138
crossref_primary_10_1016_j_ymssp_2023_110271
crossref_primary_10_3390_app12020818
crossref_primary_10_1016_j_asoc_2020_107003
crossref_primary_10_3390_s22155658
crossref_primary_10_1002_msd2_12019
crossref_primary_10_1016_j_aei_2022_101749
crossref_primary_10_1108_ILT_09_2020_0335
crossref_primary_10_1007_s42417_022_00498_9
crossref_primary_10_1016_j_mechmachtheory_2023_105292
crossref_primary_10_3233_JIFS_212873
crossref_primary_10_3390_app13127322
crossref_primary_10_1109_TITS_2021_3073557
crossref_primary_10_1016_j_asoc_2022_109772
crossref_primary_10_3390_machines13010071
crossref_primary_10_1016_j_asoc_2021_108207
crossref_primary_10_1016_j_asoc_2021_107755
crossref_primary_10_1016_j_engappai_2021_104279
crossref_primary_10_1016_j_asoc_2020_106525
crossref_primary_10_1007_s00354_022_00158_2
crossref_primary_10_1007_s00500_023_08140_w
crossref_primary_10_1016_j_ces_2024_120466
crossref_primary_10_1177_09596518221125960
crossref_primary_10_1016_j_aei_2024_102445
crossref_primary_10_1038_s41598_024_59785_y
crossref_primary_10_3390_s21175830
crossref_primary_10_1109_TNNLS_2022_3230458
crossref_primary_10_1007_s00521_022_07224_2
crossref_primary_10_1016_j_ress_2023_109850
crossref_primary_10_1016_j_asoc_2021_107400
crossref_primary_10_1007_s12204_021_2320_6
crossref_primary_10_1177_1748006X221108598
crossref_primary_10_3390_app14031212
crossref_primary_10_1002_qre_3597
crossref_primary_10_1016_j_engappai_2023_105970
crossref_primary_10_1109_TAI_2023_3266190
crossref_primary_10_3390_electronics12030768
crossref_primary_10_1016_j_aei_2021_101247
crossref_primary_10_1016_j_dsp_2022_103777
crossref_primary_10_1088_1361_6501_adb76f
crossref_primary_10_32604_sdhm_2024_053998
crossref_primary_10_1016_j_measurement_2025_118456
crossref_primary_10_3390_en16010296
crossref_primary_10_1177_14759217251327760
crossref_primary_10_1016_j_neunet_2025_107843
crossref_primary_10_1109_JSEN_2020_3030910
crossref_primary_10_1007_s10489_021_02733_4
crossref_primary_10_1108_AEAT_10_2020_0234
crossref_primary_10_1016_j_ijepes_2020_106448
crossref_primary_10_1002_qre_3768
crossref_primary_10_1016_j_knosys_2022_109399
crossref_primary_10_1177_09544062211008464
crossref_primary_10_1016_j_asoc_2023_110784
crossref_primary_10_1016_j_asoc_2023_110669
crossref_primary_10_1016_j_measurement_2021_110460
crossref_primary_10_3390_app15126455
crossref_primary_10_1088_1361_6501_acc1f8
crossref_primary_10_1109_ACCESS_2024_3397184
Cites_doi 10.1016/j.eswa.2013.12.026
10.1007/BF00332918
10.1016/j.ymssp.2006.12.004
10.1016/j.measurement.2016.04.007
10.1109/2.53
10.1109/TFUZZ.2015.2446535
10.1016/j.ress.2013.02.022
10.1016/j.sigpro.2016.07.028
10.1109/TIE.2018.2815946
10.1023/A:1022627411411
10.1016/j.measurement.2019.06.029
10.1007/978-3-642-21735-7_7
10.1126/science.1127647
10.1109/TIE.2016.2582729
10.1109/TIE.2017.2774777
10.1108/IMDS-11-2016-0469
10.1016/j.asoc.2018.03.043
10.1109/CVPR.2016.90
10.1016/j.ymssp.2017.02.013
10.1016/j.isatra.2016.01.002
10.1109/TIE.2013.2261033
10.1109/CVPR.2017.243
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2019.106060
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2019_106060
S1568494619308439
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-6169837b77e936eaecc5518be7099f30965063ffe15e22f3a5842a5d5f8ca12e3
ISICitedReferencesCount 113
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000515094200053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 22:21:03 EST 2025
Sat Nov 29 07:01:35 EST 2025
Fri Feb 23 02:49:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Fault diagnosis
Stacked pruning sparse denoising autoencoder
Pruning operation
Rolling bearing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-6169837b77e936eaecc5518be7099f30965063ffe15e22f3a5842a5d5f8ca12e3
ORCID 0000-0002-8657-5475
0000-0002-5989-012X
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2019_106060
crossref_primary_10_1016_j_asoc_2019_106060
elsevier_sciencedirect_doi_10_1016_j_asoc_2019_106060
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolutional neural networks, in: International Conference on Neural Information Processing Systems, 2012.
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: IEEE Conference on Computer Vision & Pattern Recognition, 2016.
Lu, Wang, Qin (b31) 2017; 130
Vincent, Larochelle, Lajoie, Bengio (b33) 2010; 11
Vincent, Larochelle, Bengio, Manzago, Cohen (b24) 2008
J. Masci, U. Meier, D. Ciresan, Jürgen Schmidhuber, Stacked convolutional auto-encoders for hierarchical feature extraction, in: International Conference on Artificial Neural Networks, 2011.
Kingma, Diederik, Welling (b27) 2013
Faa-jeng, I-fan, Kai-jie (b14) 2016; 24
Bengio, Lamblin, Dan (b32) 2007; 19
Ince, Kiranyaz, Eren, Askar, Gabbouj (b15) 2016; 63
Marcin, Marcel, Marcin (b22) 2016; 61
Meidi, Hui, Ping (b34) 2019; 146
Hinton, Salakhutdinov (b11) 2006; 313
Srivastava, Rupesh, Greff, Schmidhuber (b16) 2015
Sun, Shao, Zhao, Yan, Zhang (b30) 2016; 89
Ming, Jiang, Feng (b1) 2017; 93
M. Chen, K. Weinberger, F. Sha, Marginalized denoising auto-encoders for nonlinear representations, in: International Conference on International Conference on Machine Learning, 2014.
Zadeh, Lofti (b8) 2008; 21
G. Huang, Z. Liu, V.D.M. Laurens, Densely connected convolutional networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017.
Rai, Mohanty (b3) 2007; 21
Bourlard, Kamp (b23) 1988; 59
Poultney, Sumit, Yann (b25) 2007
Cortes, Corinna, Vapnik (b10) 1995; 20
Van, Failsal, Andrew (b13) 2014; 41
Wu, Wu, Cao (b2) 2018; PP
Huang, Shen, Long (b5) 1998; 454
Wen, Li, Gao (b20) 2018; 65
Sakurada, Mayu, Yairi (b29) 2014
Mohamed, Abdel, Hinton (b12) 2010
Cheng, Zhu, Wu, Shao (b21) 2019; PP
He, Zhang, Ren (b36) 2015
Wu, Wu, Lv (b6) 2017; 117
Shatnawi, Yousef, Al-Khassaweneh (b7) 2013; 61
Wu, Su, Cheng (b9) 2018; 68
Tse Peter, Yang, Tam (b4) 2004; 277
Tamilselvan, Prasanna, Wang (b19) 2013; 115
Huang (10.1016/j.asoc.2019.106060_b5) 1998; 454
Wu (10.1016/j.asoc.2019.106060_b6) 2017; 117
Hinton (10.1016/j.asoc.2019.106060_b11) 2006; 313
10.1016/j.asoc.2019.106060_b18
10.1016/j.asoc.2019.106060_b17
Zadeh (10.1016/j.asoc.2019.106060_b8) 2008; 21
Van (10.1016/j.asoc.2019.106060_b13) 2014; 41
Bengio (10.1016/j.asoc.2019.106060_b32) 2007; 19
10.1016/j.asoc.2019.106060_b35
Bourlard (10.1016/j.asoc.2019.106060_b23) 1988; 59
Lu (10.1016/j.asoc.2019.106060_b31) 2017; 130
Cheng (10.1016/j.asoc.2019.106060_b21) 2019; PP
Wu (10.1016/j.asoc.2019.106060_b9) 2018; 68
Vincent (10.1016/j.asoc.2019.106060_b33) 2010; 11
Rai (10.1016/j.asoc.2019.106060_b3) 2007; 21
Sakurada (10.1016/j.asoc.2019.106060_b29) 2014
Vincent (10.1016/j.asoc.2019.106060_b24) 2008
Meidi (10.1016/j.asoc.2019.106060_b34) 2019; 146
Mohamed (10.1016/j.asoc.2019.106060_b12) 2010
Faa-jeng (10.1016/j.asoc.2019.106060_b14) 2016; 24
Wu (10.1016/j.asoc.2019.106060_b2) 2018; PP
Shatnawi (10.1016/j.asoc.2019.106060_b7) 2013; 61
Wen (10.1016/j.asoc.2019.106060_b20) 2018; 65
Tse Peter (10.1016/j.asoc.2019.106060_b4) 2004; 277
Srivastava (10.1016/j.asoc.2019.106060_b16) 2015
He (10.1016/j.asoc.2019.106060_b36) 2015
Ince (10.1016/j.asoc.2019.106060_b15) 2016; 63
10.1016/j.asoc.2019.106060_b28
Cortes (10.1016/j.asoc.2019.106060_b10) 1995; 20
Tamilselvan (10.1016/j.asoc.2019.106060_b19) 2013; 115
10.1016/j.asoc.2019.106060_b26
Ming (10.1016/j.asoc.2019.106060_b1) 2017; 93
Poultney (10.1016/j.asoc.2019.106060_b25) 2007
Kingma (10.1016/j.asoc.2019.106060_b27) 2013
Marcin (10.1016/j.asoc.2019.106060_b22) 2016; 61
Sun (10.1016/j.asoc.2019.106060_b30) 2016; 89
References_xml – volume: 89
  start-page: 171
  year: 2016
  end-page: 178
  ident: b30
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
– volume: 146
  start-page: 305
  year: 2019
  end-page: 314
  ident: b34
  article-title: A sparse stacked denoising autoencoder with optimized transfer learning applied to the fault diagnosis of rolling bearings
  publication-title: Measurement
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b10
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– reference: M. Chen, K. Weinberger, F. Sha, Marginalized denoising auto-encoders for nonlinear representations, in: International Conference on International Conference on Machine Learning, 2014.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b11
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 21
  start-page: 83
  year: 2008
  end-page: 93
  ident: b8
  article-title: Fuzzy logic
  publication-title: Computer
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: b33
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 68
  start-page: 13
  year: 2018
  end-page: 23
  ident: b9
  article-title: Multi-sensor information fusion for remaining useful life prediction of machining tools by adaptive network based fuzzy inference system
  publication-title: Appl. Soft Comput.
– volume: 19
  start-page: 153
  year: 2007
  end-page: 160
  ident: b32
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 115
  start-page: 124
  year: 2013
  end-page: 135
  ident: b19
  article-title: Failure diagnosis using deep belief learning based health state classification
  publication-title: Reliab. Eng. Syst. Saf.
– year: 2014
  ident: b29
  article-title: Anomaly detection using autoencoders with nonlinear dimensionality reduction
  publication-title: Mlsda Workshop on Machine Learning for Sensory Data Analysis
– year: 2015
  ident: b16
  article-title: Training very deep networks
  publication-title: Comput. Sci.
– volume: 63
  start-page: 7067
  year: 2016
  end-page: 7075
  ident: b15
  article-title: Real-time motor fault detection by 1-d convolutional neural networks
  publication-title: IEEE Trans. Ind. Electron.
– volume: 65
  start-page: 5990
  year: 2018
  end-page: 5998
  ident: b20
  article-title: A new convolutional neural network-based data-driven fault diagnosis method
  publication-title: IEEE Trans. Ind. Electron.
– reference: G. Huang, Z. Liu, V.D.M. Laurens, Densely connected convolutional networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017.
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b5
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. A
– volume: 61
  start-page: 318
  year: 2016
  end-page: 328
  ident: b22
  article-title: Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system
  publication-title: ISA Trans.
– start-page: 4354
  year: 2010
  end-page: 4357
  ident: b12
  article-title: Phone recognition using restricted Boltzmann machines
  publication-title: IEEE International Conference on Acoustics Speech and Signal Processing
– volume: 41
  start-page: 4113
  year: 2014
  end-page: 4122
  ident: b13
  article-title: An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks
  publication-title: Expert Syst. Appl.
– volume: 21
  start-page: 2607
  year: 2007
  end-page: 2615
  ident: b3
  article-title: Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert–Huang transform
  publication-title: Mech. Syst. Signal Process.
– volume: 24
  start-page: 153
  year: 2016
  end-page: 167
  ident: b14
  article-title: Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive
  publication-title: IEEE Trans. Fuzzy Syst.
– reference: A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolutional neural networks, in: International Conference on Neural Information Processing Systems, 2012.
– year: 2013
  ident: b27
  article-title: Auto-Encoding Variational Bayes
– volume: 117
  year: 2017
  ident: b6
  article-title: Design a degradation condition monitoring system scheme for rolling bearing using EMD and PCA
  publication-title: Ind. Manag. Data Syst.
– volume: 93
  start-page: 460
  year: 2017
  end-page: 493
  ident: b1
  article-title: Research on variational mode decomposition in rolling bearings fault diagnosis of the multistage centrifugal pump
  publication-title: Mech. Syst. Signal Process.
– volume: 130
  start-page: 377
  year: 2017
  end-page: 388
  ident: b31
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
  publication-title: Signal Process.
– volume: PP
  start-page: 1
  year: 2018
  ident: b2
  article-title: Degradation data-driven time-to-failure prognostics approach for rolling element bearings in electrical machines
  publication-title: IEEE Trans. Ind. Electron.
– volume: PP
  start-page: 1
  year: 2019
  ident: b21
  article-title: Machine health monitoring using adaptive kernel spectral clustering and deep long short-term memory recurrent neural networks
  publication-title: IEEE Trans. Ind. Inf.
– volume: 59
  start-page: 291
  year: 1988
  end-page: 294
  ident: b23
  article-title: Auto-association by multilayer perceptrons and singular value decomposition
  publication-title: Biol. Cybernet.
– year: 2015
  ident: b36
  article-title: Delving Deep Into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
– volume: 277
  start-page: 1005
  year: 2004
  end-page: 1024
  ident: b4
  article-title: Machine fault diagnosis through an effective exact wavelet analysis
  publication-title: J. Sound Vib.
– start-page: 1137
  year: 2007
  end-page: 1144
  ident: b25
  article-title: Efficient learning of sparse representations with an energy-based model
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2008
  ident: b24
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: International Conference on Machine Learning
– volume: 61
  start-page: 1434
  year: 2013
  end-page: 1443
  ident: b7
  article-title: Fault diagnosis in internal combustion engines using extension neural network
  publication-title: IEEE Trans. Ind. Electron.
– reference: J. Masci, U. Meier, D. Ciresan, Jürgen Schmidhuber, Stacked convolutional auto-encoders for hierarchical feature extraction, in: International Conference on Artificial Neural Networks, 2011.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: IEEE Conference on Computer Vision & Pattern Recognition, 2016.
– volume: 41
  start-page: 4113
  issue: 9
  year: 2014
  ident: 10.1016/j.asoc.2019.106060_b13
  article-title: An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.12.026
– volume: 59
  start-page: 291
  issue: 4–5
  year: 1988
  ident: 10.1016/j.asoc.2019.106060_b23
  article-title: Auto-association by multilayer perceptrons and singular value decomposition
  publication-title: Biol. Cybernet.
  doi: 10.1007/BF00332918
– year: 2015
  ident: 10.1016/j.asoc.2019.106060_b16
  article-title: Training very deep networks
  publication-title: Comput. Sci.
– volume: 277
  start-page: 1005
  issue: 4–5
  year: 2004
  ident: 10.1016/j.asoc.2019.106060_b4
  article-title: Machine fault diagnosis through an effective exact wavelet analysis
  publication-title: J. Sound Vib.
– volume: 21
  start-page: 2607
  issue: 6
  year: 2007
  ident: 10.1016/j.asoc.2019.106060_b3
  article-title: Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert–Huang transform
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2006.12.004
– volume: 89
  start-page: 171
  issue: ISFA
  year: 2016
  ident: 10.1016/j.asoc.2019.106060_b30
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.04.007
– volume: 21
  start-page: 83
  issue: 4
  year: 2008
  ident: 10.1016/j.asoc.2019.106060_b8
  article-title: Fuzzy logic
  publication-title: Computer
  doi: 10.1109/2.53
– volume: 24
  start-page: 153
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2019.106060_b14
  article-title: Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2015.2446535
– volume: 115
  start-page: 124
  issue: 7
  year: 2013
  ident: 10.1016/j.asoc.2019.106060_b19
  article-title: Failure diagnosis using deep belief learning based health state classification
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2013.02.022
– volume: 130
  start-page: 377
  issue: C
  year: 2017
  ident: 10.1016/j.asoc.2019.106060_b31
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.07.028
– ident: 10.1016/j.asoc.2019.106060_b28
– volume: PP
  start-page: 1
  issue: 99
  year: 2018
  ident: 10.1016/j.asoc.2019.106060_b2
  article-title: Degradation data-driven time-to-failure prognostics approach for rolling element bearings in electrical machines
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2815946
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.asoc.2019.106060_b10
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– volume: 146
  start-page: 305
  year: 2019
  ident: 10.1016/j.asoc.2019.106060_b34
  article-title: A sparse stacked denoising autoencoder with optimized transfer learning applied to the fault diagnosis of rolling bearings
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.06.029
– ident: 10.1016/j.asoc.2019.106060_b26
  doi: 10.1007/978-3-642-21735-7_7
– year: 2014
  ident: 10.1016/j.asoc.2019.106060_b29
  article-title: Anomaly detection using autoencoders with nonlinear dimensionality reduction
– start-page: 1137
  year: 2007
  ident: 10.1016/j.asoc.2019.106060_b25
  article-title: Efficient learning of sparse representations with an energy-based model
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 19
  start-page: 153
  year: 2007
  ident: 10.1016/j.asoc.2019.106060_b32
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.asoc.2019.106060_b35
– volume: PP
  start-page: 1
  issue: 99
  year: 2019
  ident: 10.1016/j.asoc.2019.106060_b21
  article-title: Machine health monitoring using adaptive kernel spectral clustering and deep long short-term memory recurrent neural networks
  publication-title: IEEE Trans. Ind. Inf.
– year: 2015
  ident: 10.1016/j.asoc.2019.106060_b36
– year: 2013
  ident: 10.1016/j.asoc.2019.106060_b27
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  ident: 10.1016/j.asoc.2019.106060_b33
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.asoc.2019.106060_b11
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 63
  start-page: 7067
  issue: 11
  year: 2016
  ident: 10.1016/j.asoc.2019.106060_b15
  article-title: Real-time motor fault detection by 1-d convolutional neural networks
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2582729
– volume: 65
  start-page: 5990
  issue: 7
  year: 2018
  ident: 10.1016/j.asoc.2019.106060_b20
  article-title: A new convolutional neural network-based data-driven fault diagnosis method
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2774777
– volume: 117
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2019.106060_b6
  article-title: Design a degradation condition monitoring system scheme for rolling bearing using EMD and PCA
  publication-title: Ind. Manag. Data Syst.
  doi: 10.1108/IMDS-11-2016-0469
– volume: 68
  start-page: 13
  year: 2018
  ident: 10.1016/j.asoc.2019.106060_b9
  article-title: Multi-sensor information fusion for remaining useful life prediction of machining tools by adaptive network based fuzzy inference system
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.03.043
– ident: 10.1016/j.asoc.2019.106060_b17
  doi: 10.1109/CVPR.2016.90
– volume: 93
  start-page: 460
  year: 2017
  ident: 10.1016/j.asoc.2019.106060_b1
  article-title: Research on variational mode decomposition in rolling bearings fault diagnosis of the multistage centrifugal pump
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.02.013
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 10.1016/j.asoc.2019.106060_b5
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. A
– volume: 61
  start-page: 318
  year: 2016
  ident: 10.1016/j.asoc.2019.106060_b22
  article-title: Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2016.01.002
– volume: 61
  start-page: 1434
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2019.106060_b7
  article-title: Fault diagnosis in internal combustion engines using extension neural network
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2013.2261033
– start-page: 4354
  year: 2010
  ident: 10.1016/j.asoc.2019.106060_b12
  article-title: Phone recognition using restricted Boltzmann machines
– year: 2008
  ident: 10.1016/j.asoc.2019.106060_b24
  article-title: Extracting and composing robust features with denoising autoencoders
– ident: 10.1016/j.asoc.2019.106060_b18
  doi: 10.1109/CVPR.2017.243
SSID ssj0016928
Score 2.578736
Snippet This paper proposes a new stacked pruning sparse denoising autoencoder (sPSDAE) model for intelligent fault diagnosis of rolling bearings. Different from the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106060
SubjectTerms Deep learning
Fault diagnosis
Pruning operation
Rolling bearing
Stacked pruning sparse denoising autoencoder
Title Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings
URI https://dx.doi.org/10.1016/j.asoc.2019.106060
Volume 88
WOSCitedRecordID wos000515094200053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect (Freedom Collection)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYo9NALjz7Eo1Q-9IaC8nIcH9EKVDigHqi6t8hxbHURStBugvbnM7Yn3oW2qBx6iVaW400yX8Yzk5lvCPmaZHmTM5nbahwT5YankWhqMOQYU01cJzLnyjWb4NfX5XQqvuPngoVrJ8Dbtlwuxf1_FTWMgbBt6ewrxB0WhQH4DUKHI4gdjv8keDAf4c201f-Di3mAypgvbHVU281cYEAOfWfpKy2LhN3EGscZ4Xk5-xMjh7vehmRtBp4nK5kjcXcNjyoE1kfmWrRiF6DOXX760I-boQtHD25vk7ZDdhid_NKYBzyTy1m7moyx60m3mvtz8LUj7Xp4AnzRkJ81atSijHKBcUZUub6TH-pMcEpj31PgN3XuIwu3pxKQatPwxOlq8lPu7Gd7Wsg0HJPYbiu7RmXXqPwab8hWypkATbh1dnk-vQrfngrhOvKGC8dSK58V-PxK_mzOrJkoN7tkG30LeuYxsUc2dPue7Ix9Oyiq8Q-kRohQhAj1EKEBInQNItRBhK5BhDqI0AAR2hmKEKEjRD6SHxfnN5NvEfbaiFQWx31UwG2XGa851yIrtIQ323L11ZqDC2EyyxEExqwxOmE6TU0mwXBNJWuYKZVMUp19Iptt1-p9QnXMtdKlEUqw3LBcNgKcXKPAua8boYsDkoyPrFJIRG_7odxVfxfWATkJ59x7GpYXZ7NREhUakt5ArABYL5x3-Kp_OSLvVoD_TDb7-aCPyVv10M8W8y-Iqkd4Y5dB
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacked+pruning+sparse+denoising+autoencoder+based+intelligent+fault+diagnosis+of+rolling+bearings&rft.jtitle=Applied+soft+computing&rft.au=Zhu%2C+Haiping&rft.au=Cheng%2C+Jiaxin&rft.au=Zhang%2C+Cong&rft.au=Wu%2C+Jun&rft.date=2020-03-01&rft.issn=1568-4946&rft.volume=88&rft.spage=106060&rft_id=info:doi/10.1016%2Fj.asoc.2019.106060&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_106060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon