A grid-level segmentation model based on encoder-decoder structure with multi-source features for crop lodging detection
Crop lodging assessment plays a critical role in acquiring accurate information regarding the location and area of lodging, which is essential for loss assessment and adjustments of harvester parameters. In this paper, we proposed LDVO (Lodging Detection with Visible-image Only), a comprehensive gri...
Gespeichert in:
| Veröffentlicht in: | Applied soft computing Jg. 151; S. 111113 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.01.2024
|
| Schlagworte: | |
| ISSN: | 1568-4946, 1872-9681 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Crop lodging assessment plays a critical role in acquiring accurate information regarding the location and area of lodging, which is essential for loss assessment and adjustments of harvester parameters. In this paper, we proposed LDVO (Lodging Detection with Visible-image Only), a comprehensive grid-to-grid semantic segmentation method for timely and accurate identification of crop lodging. The LDVO model uses Inception block and dense connection to construct a lightweight feature extraction network, and complements the texture feature and crop vegetation indices as reference features for semantic segmentation. Besides, the model meshes the aerial images according to the operation characteristics of the harvester, and the accuracy of the segmentation task is reduced from the pixel level to the grid level, which minimizes the network scale and computing cost under the premise of meeting the accuracy requirements of lodging detection. Experimental results demonstrate the superiority of the proposed LDVO model over mainstream semantic segmentation networks in terms of processing speed and model parameters. Remarkably, the LDVO model achieves the highest prediction accuracy of 94.86% by leveraging a combination of RGB semantic features, VIs and texture features. Therefore, the proposed LDVO model provides a fast, feasible and low-cost reference for monitoring crop lodging status in complex field environments. It also offers a universal idea for the improvement of semantic segmentation network in special application scenarios.
•A grid-level segmentation model is proposed according to the application scenarios.•Introduce texture features and vegetation indices in semantic segmentation networks.•Combining Dense connection and Inception to build a feature extraction network. |
|---|---|
| AbstractList | Crop lodging assessment plays a critical role in acquiring accurate information regarding the location and area of lodging, which is essential for loss assessment and adjustments of harvester parameters. In this paper, we proposed LDVO (Lodging Detection with Visible-image Only), a comprehensive grid-to-grid semantic segmentation method for timely and accurate identification of crop lodging. The LDVO model uses Inception block and dense connection to construct a lightweight feature extraction network, and complements the texture feature and crop vegetation indices as reference features for semantic segmentation. Besides, the model meshes the aerial images according to the operation characteristics of the harvester, and the accuracy of the segmentation task is reduced from the pixel level to the grid level, which minimizes the network scale and computing cost under the premise of meeting the accuracy requirements of lodging detection. Experimental results demonstrate the superiority of the proposed LDVO model over mainstream semantic segmentation networks in terms of processing speed and model parameters. Remarkably, the LDVO model achieves the highest prediction accuracy of 94.86% by leveraging a combination of RGB semantic features, VIs and texture features. Therefore, the proposed LDVO model provides a fast, feasible and low-cost reference for monitoring crop lodging status in complex field environments. It also offers a universal idea for the improvement of semantic segmentation network in special application scenarios.
•A grid-level segmentation model is proposed according to the application scenarios.•Introduce texture features and vegetation indices in semantic segmentation networks.•Combining Dense connection and Inception to build a feature extraction network. |
| ArticleNumber | 111113 |
| Author | Wang, Lihui Xiao, Huidi |
| Author_xml | – sequence: 1 givenname: Lihui surname: Wang fullname: Wang, Lihui email: wlhseu@163.com – sequence: 2 givenname: Huidi surname: Xiao fullname: Xiao, Huidi |
| BookMark | eNp9kM1OwzAMgCM0JLbBC3DKC7QkTUkbics08SchcYFzlCZuydQ2U5INeHtSyonDcnFs67Psb4UWoxsBoWtKckoov9nlKjidF6RgOZ0eO0NLWldFJnhNF-l_y-usFCW_QKsQdiRBoqiX6GuDO29N1sMRehygG2CMKlo34sGZVGpUAINTCqNOBZ8Z-I04RH_Q8eABf9r4gYdDH20W3MFrwC2oqRNw6zzW3u1x70xnxw4biKCn8ZfovFV9gKu_uEbvD_dv26fs5fXxebt5yTQjJGac1LoqG0ZKAU2pSNlQYzhrFa-MNqaqhGAGBG1oSxnnRdmQVhtBqloQzkTD1qiY56Y1QvDQyr23g_LfkhI5uZM7ObmTkzs5u0tQ_Q_SdrYSvbL9afRuRiEddbTgZdA2uQNjfbpcGmdP4T8L7o7Z |
| CitedBy_id | crossref_primary_10_34133_plantphenomics_0182 crossref_primary_10_1016_j_eswa_2025_129433 crossref_primary_10_1109_JSTARS_2025_3585184 crossref_primary_10_1016_j_compag_2025_110769 crossref_primary_10_1016_j_compag_2025_110587 crossref_primary_10_1049_ipr2_13228 |
| Cites_doi | 10.1016/j.isatra.2021.06.025 10.3390/rs11060671 10.1016/S2095-3119(16)61549-6 10.3390/rs11172021 10.1016/j.compag.2012.08.003 10.1016/j.eja.2023.126754 10.1016/j.asoc.2019.106019 10.1109/CVPRW.2019.00322 10.1016/j.compag.2022.106804 10.3390/s21206826 10.1016/S0065-2113(08)60782-8 10.1016/j.compag.2020.105665 10.3390/rs9090923 10.37394/232014.2022.18.8 10.3390/s22186967 10.3390/s21020613 10.1016/j.fcr.2020.108014 10.1016/j.compag.2022.107362 10.1109/ACCESS.2020.2991424 10.1016/j.eja.2020.126201 10.1016/j.bone.2021.115972 10.1016/j.isprsjprs.2020.04.012 10.1016/j.isprsjprs.2019.03.005 10.1109/ICASSP40776.2020.9053405 10.1016/j.acra.2020.08.023 10.1109/TGRS.2022.3216341 10.3390/rs9060583 10.1016/j.measurement.2022.111646 10.2135/cropsci2016.07.0569 10.3390/drones2030022 10.5194/isprs-archives-XLII-2-W13-715-2019 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2023.111113 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2023_111113 S1568494623011316 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-608c74b3049eb4a04b1dd63fa67dcdd77993de91b1f136624b0fcd907890639b3 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001147375600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Sat Nov 29 03:05:59 EST 2025 Tue Nov 18 22:22:14 EST 2025 Sat Aug 03 15:33:34 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Precision agriculture Texture information Unmanned aerial vehicle Crop lodging |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-608c74b3049eb4a04b1dd63fa67dcdd77993de91b1f136624b0fcd907890639b3 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2023_111113 crossref_citationtrail_10_1016_j_asoc_2023_111113 elsevier_sciencedirect_doi_10_1016_j_asoc_2023_111113 |
| PublicationCentury | 2000 |
| PublicationDate | January 2024 2024-01-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Robertson, Julias, Lee, Cook (bib37) 2017; vol. 57 He, Zhang, Ren, Sun (bib42) 2015 Q. Sun et al., “A new comprehensive index for monitoring maize lodging severity using UAV-based multi-spectral imagery,” COMPUTERS AND ELECTRONICS IN AGRICULTURE, vol. 202. ELSEVIER SCI LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND, Nov. 2022. Murakami, Yui, Amaha (bib2) . 2012; vol. 89 H. Guan et al., “A Novel Approach to Estimate Maize Lodging Area With PolSAR Data,” IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, vol. 60. IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 445 HOES LANE, PISCATAWAY, NJ 08855–4141 USA, 2022. Pinthus (bib3) 1974; vol. 25 Han (bib31) 2022; vol. 194 A. Mw, B. Fj, and C. Gd, “Remote sensing for agricultural applications: A meta-review,” Remote Sensing of Environment, vol. 236. Bhandari (bib12) 2020; vol. 176 Wang (bib39) 2019; vol. 9 H. Huang, L. Lin, R. Tong, H. Hu, and J. Wu, “UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation,” arXiv, 2020. Darvishzadeh (bib9) 2019; vol. 11 Zorić, Matić, Hocenski (bib25) 2022; vol. 125 Chauhan, Darvishzadeh, Boschetti, Nelson (bib40) 2020; vol. 164 Reza (bib18) 2021; vol. 28 Wang, Guo, Wang, Cheng, Wang, He (bib21) 2022; vol. 201 Zhang (bib7) 2012 S. Mardanisamani et al., “Crop Lodging Prediction From UAV-Acquired Images of Wheat and Canola Using a DCNN Augmented With Handcrafted Texture Features,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020. Chauhan, Darvishzadeh, Boschetti, Pepe, Nelson (bib5) 2019; vol. 151 Dai Jianguo, Zhang Guoshun, Guo Peng, Zeng Tiaojun, and Cui Meina, and Xue Jinli, “Information extraction of cotton lodging based on multi-spectral image from UAV remote sensing,” Transactions of the Chinese Society of Agricultural Engineering, vol. 35, no. 2, pp. 63–70. Zhang (bib27) 2019; vol. 35 Su (bib15) 2019; vol. 11 B. Yang, J. Ma, X. Yao, W. Cao, and Y. Zhu, “Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery,” Sensors (Basel, Switzerland), vol. 21, no. 2, p. 613. Tianxing, Michael, Michael, Seth, Luke (bib14) 2017; vol. 9 Vania, Lee (bib19) . 2021; vol. 8 Suri (bib17) 2021; vol. 149 Kaplan, Kaya, Kuncan, Mi̇naz, Ertunç (bib24) 2020; vol. 87 A. Dz, D.A. Yang, C. Pcb, D. Xz, E. Zp, and L.A. Dong, “Automatic extraction of wheat lodging area based on transfer learning method and deeplabv3+ network,” Computers and Electronics in Agriculture, vol. 179. V. Sagan, M. Maimaitijiang, P. Sidike, M. Maimaitiyiming, and F.B. Fritschi, “UAV/Satellite Multiscale Data Fusion for Crop Monitoring and Early Stress Detection,” 2019. Aggarwal (bib28) 2022 Li, Li, Liu, Wei, Xu (bib43) 2021; vol. 123 S. Khan et al., “Alteration in yield and oil quality traits of winter rapeseed by lodging at different planting density and nitrogen rates,” Scientific Reports. Iqbal, Mumtaz, Shafi, Zaidi (bib26) 2021; vol. 7 Yang, Wen-Bin, Di, Ustundag (bib8) 2017; vol. 16 TY (bib41) 2017; 6 . Tirado, Hirsch, Springer (bib1) . 2021; vol. 262 Mingder, Kai-Siang, Yi-Hsuan, Hui, Liang-Mao (bib29) 2017; vol. 9 Liu, Tian, Zhao, Huang, Wang (bib22) 2020; vol. 8 K. Jakhar, A. Kaur, and D.M. Gupta, “Pneumothorax Segmentation: Deep Learning Image Segmentation to predict Pneumothorax.” 2021. Yang, Zhu, Zhou (bib32) . 2021; vol. 21 Hall, Dahlin, Marstorp, Archila Bustos, Öborn, Jirström (bib10) . 2018; vol. 2 Jiang, Hao, Li, Zuo, Geng, Sun (bib35) . 2022; vol. 22 Shu, Bai, Meng, Yang, Li, Ma (bib30) . 2023; vol. 144 10.1016/j.asoc.2023.111113_bib16 Robertson (10.1016/j.asoc.2023.111113_bib37) 2017; vol. 57 10.1016/j.asoc.2023.111113_bib38 10.1016/j.asoc.2023.111113_bib36 Bhandari (10.1016/j.asoc.2023.111113_bib12) 2020; vol. 176 Zorić (10.1016/j.asoc.2023.111113_bib25) 2022; vol. 125 Chauhan (10.1016/j.asoc.2023.111113_bib5) 2019; vol. 151 Zhang (10.1016/j.asoc.2023.111113_bib7) 2012 Su (10.1016/j.asoc.2023.111113_bib15) 2019; vol. 11 Li (10.1016/j.asoc.2023.111113_bib43) 2021; vol. 123 Tianxing (10.1016/j.asoc.2023.111113_bib14) 2017; vol. 9 Suri (10.1016/j.asoc.2023.111113_bib17) 2021; vol. 149 Murakami (10.1016/j.asoc.2023.111113_bib2) 2012; vol. 89 10.1016/j.asoc.2023.111113_bib34 10.1016/j.asoc.2023.111113_bib13 Shu (10.1016/j.asoc.2023.111113_bib30) 2023; vol. 144 10.1016/j.asoc.2023.111113_bib11 10.1016/j.asoc.2023.111113_bib33 Zhang (10.1016/j.asoc.2023.111113_bib27) 2019; vol. 35 Kaplan (10.1016/j.asoc.2023.111113_bib24) 2020; vol. 87 Yang (10.1016/j.asoc.2023.111113_bib8) 2017; vol. 16 Mingder (10.1016/j.asoc.2023.111113_bib29) 2017; vol. 9 Han (10.1016/j.asoc.2023.111113_bib31) 2022; vol. 194 Tirado (10.1016/j.asoc.2023.111113_bib1) 2021; vol. 262 Darvishzadeh (10.1016/j.asoc.2023.111113_bib9) 2019; vol. 11 Chauhan (10.1016/j.asoc.2023.111113_bib40) 2020; vol. 164 10.1016/j.asoc.2023.111113_bib20 Liu (10.1016/j.asoc.2023.111113_bib22) 2020; vol. 8 Jiang (10.1016/j.asoc.2023.111113_bib35) 2022; vol. 22 10.1016/j.asoc.2023.111113_bib6 10.1016/j.asoc.2023.111113_bib23 Vania (10.1016/j.asoc.2023.111113_bib19) 2021; vol. 8 Wang (10.1016/j.asoc.2023.111113_bib21) 2022; vol. 201 10.1016/j.asoc.2023.111113_bib4 Aggarwal (10.1016/j.asoc.2023.111113_bib28) 2022 Yang (10.1016/j.asoc.2023.111113_bib32) 2021; vol. 21 Iqbal (10.1016/j.asoc.2023.111113_bib26) 2021; vol. 7 He (10.1016/j.asoc.2023.111113_bib42) 2015 Wang (10.1016/j.asoc.2023.111113_bib39) 2019; vol. 9 TY (10.1016/j.asoc.2023.111113_bib41) 2017; 6 Hall (10.1016/j.asoc.2023.111113_bib10) 2018; vol. 2 Reza (10.1016/j.asoc.2023.111113_bib18) 2021; vol. 28 Pinthus (10.1016/j.asoc.2023.111113_bib3) 1974; vol. 25 |
| References_xml | – volume: vol. 16 start-page: 3 year: 2017 ident: bib8 article-title: Remote sensing for agricultural applications publication-title: J. Integr. Agric. – volume: vol. 125 start-page: 400 year: 2022 end-page: 414 ident: bib25 article-title: Classification of biscuit tiles for defect detection using Fourier transform features publication-title: ISA Trans. – reference: Q. Sun et al., “A new comprehensive index for monitoring maize lodging severity using UAV-based multi-spectral imagery,” COMPUTERS AND ELECTRONICS IN AGRICULTURE, vol. 202. ELSEVIER SCI LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND, Nov. 2022. – volume: vol. 28 start-page: S37 year: 2021 end-page: S44 ident: bib18 article-title: Deep learning for automated liver segmentation to aid in the study of infectious diseases in nonhuman primates publication-title: Acad. Radiol. – volume: vol. 176 year: 2020 ident: bib12 article-title: Assessing winter wheat foliage disease severity using aerial imagery acquired from small Unmanned Aerial Vehicle (UAV) publication-title: Comput. Electron. Agric. – volume: vol. 35 start-page: 98 year: 2019 end-page: 106 ident: bib27 article-title: Extraction of maize lodging area in mature period based on UAV multispectral image publication-title: Trans. Chin. Soc. Agric. Eng. – volume: vol. 8 start-page: 82153 year: 2020 end-page: 82161 ident: bib22 article-title: Residual convolutional neural network for cardiac image segmentation and heart disease diagnosis publication-title: IEEE Access – volume: vol. 149 year: 2021 ident: bib17 article-title: A deep learning system for automated, multi-modality 2D segmentation of vertebral bodies and intervertebral discs publication-title: Bone – volume: vol. 25 start-page: 209 year: 1974 end-page: 263 ident: bib3 article-title: Lodging in wheat, barley, and oats: the phenomenon, its causes, and preventive measures publication-title: Adv. Agron. – volume: vol. 8 start-page: 1023 year: . 2021 end-page: 1036 ident: bib19 article-title: Intervertebral disc instance segmentation using a multistage optimization mask-RCNN (MOM-RCNN) publication-title: J. Comput. Des. Eng. – volume: vol. 194 year: 2022 ident: bib31 article-title: An explainable XGBoost model improved by SMOTE-ENN technique for maize lodging detection based on multi-source unmanned aerial vehicle images publication-title: Comput. Electron. Agric. – reference: A. Dz, D.A. Yang, C. Pcb, D. Xz, E. Zp, and L.A. Dong, “Automatic extraction of wheat lodging area based on transfer learning method and deeplabv3+ network,” Computers and Electronics in Agriculture, vol. 179. – year: 2015 ident: bib42 article-title: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification publication-title: IEEE Comput. Soc. – volume: vol. 144 year: . 2023 ident: bib30 article-title: Assessing maize lodging severity using multitemporal UAV-based digital images publication-title: Eur. J. Agron. – volume: vol. 21 year: . 2021 ident: bib32 article-title: Accurate wheat lodging extraction from multi-channel UAV images using a lightweight network model publication-title: SENSORS – reference: Dai Jianguo, Zhang Guoshun, Guo Peng, Zeng Tiaojun, and Cui Meina, and Xue Jinli, “Information extraction of cotton lodging based on multi-spectral image from UAV remote sensing,” Transactions of the Chinese Society of Agricultural Engineering, vol. 35, no. 2, pp. 63–70. – volume: vol. 151 start-page: 124 year: 2019 end-page: 140 ident: bib5 article-title: Remote sensing-based crop lodging assessment: Current status and perspectives publication-title: ISPRS J. Photogramm. Remote Sens. – reference: B. Yang, J. Ma, X. Yao, W. Cao, and Y. Zhu, “Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery,” Sensors (Basel, Switzerland), vol. 21, no. 2, p. 613. – volume: vol. 11 start-page: 671 year: 2019 ident: bib9 article-title: Analysis of sentinel-2 and rapideye for retrieval of leaf area index in a saltmarsh using a radiative transfer model publication-title: Remote Sens. – volume: vol. 11 year: 2019 ident: bib15 article-title: Phenotyping of corn plants using unmanned aerial vehicle (UAV) images publication-title: Remote Sens. – volume: vol. 9 start-page: 583 year: 2017 ident: bib29 article-title: Spatial and spectral hybrid image classification for rice lodging assessment through UAV imagery publication-title: Remote Sens. – volume: vol. 164 start-page: 138 year: 2020 end-page: 151 ident: bib40 article-title: Discriminant analysis for lodging severity classification in wheat using RADARSAT-2 and Sentinel-1 data publication-title: ISPRS J. Photogramm. Remote Sens. – reference: H. Huang, L. Lin, R. Tong, H. Hu, and J. Wu, “UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation,” arXiv, 2020. – volume: vol. 57 start-page: 926 year: 2017 ident: bib37 article-title: Maize stalk lodging: morphological determinants of stalk strength publication-title: Crop Sci. – volume: vol. 123 year: 2021 ident: bib43 article-title: A UAV-based framework for crop lodging assessment publication-title: Eur. J. Agron. – volume: vol. 7 year: 2021 ident: bib26 article-title: Gray level co-occurrence matrix (GLCM) texture based crop classification using low altitude remote sensing platforms publication-title: PeerJ Comput. Sci. – reference: S. Khan et al., “Alteration in yield and oil quality traits of winter rapeseed by lodging at different planting density and nitrogen rates,” Scientific Reports. – volume: vol. 262 year: . 2021 ident: bib1 article-title: Utilizing temporal measurements from UAVs to assess root lodging in maize and its impact on productivity publication-title: Field Crops Res. – volume: vol. 22 year: . 2022 ident: bib35 article-title: Monitoring wheat lodging at various growth stages publication-title: Sensors – volume: vol. 201 year: 2022 ident: bib21 article-title: Rapid detection of incomplete coal and gangue based on improved PSPNet publication-title: Measurement – reference: S. Mardanisamani et al., “Crop Lodging Prediction From UAV-Acquired Images of Wheat and Canola Using a DCNN Augmented With Handcrafted Texture Features,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020. – volume: vol. 89 start-page: 70 year: . 2012 end-page: 75 ident: bib2 article-title: Canopy height measurement by photogrammetric analysis of aerial images: application to buckwheat (fagopyrum esculentum moench) lodging evaluation publication-title: Comput. Electron. Agric. – start-page: 580 year: 2012 end-page: 585 ident: bib7 article-title: Evaluating maize grain quality by continuous wavelet analysis under normal and lodging circumstances publication-title: NJAS - Wagening. J. Life Sci. – volume: vol. 9 start-page: 923 year: 2017 ident: bib14 article-title: Assessing lodging severity over an experimental maize (Zea mays L.) Field Using UAS images publication-title: Remote Sens. – reference: . – reference: V. Sagan, M. Maimaitijiang, P. Sidike, M. Maimaitiyiming, and F.B. Fritschi, “UAV/Satellite Multiscale Data Fusion for Crop Monitoring and Early Stress Detection,” 2019. – volume: vol. 87 year: 2020 ident: bib24 article-title: An improved feature extraction method using texture analysis with LBP for bearing fault diagnosis publication-title: Appl. Soft Comput. – reference: H. Guan et al., “A Novel Approach to Estimate Maize Lodging Area With PolSAR Data,” IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, vol. 60. IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 445 HOES LANE, PISCATAWAY, NJ 08855–4141 USA, 2022. – year: 2022 ident: bib28 article-title: Learning TEXTURE FEATURES FROm GLCM for classification of brain tumor MRI images using random forest classifier publication-title: WSEAS Trans. SIGNAL Process – reference: K. Jakhar, A. Kaur, and D.M. Gupta, “Pneumothorax Segmentation: Deep Learning Image Segmentation to predict Pneumothorax.” 2021. – volume: 6 year: 2017 ident: bib41 article-title: Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers publication-title: ISPRS INT J. GEO-INF – volume: vol. 2 start-page: 22 year: . 2018 ident: bib10 article-title: Classification of maize in complex smallholder farming systems using UAV imagery publication-title: Drones – reference: A. Mw, B. Fj, and C. Gd, “Remote sensing for agricultural applications: A meta-review,” Remote Sensing of Environment, vol. 236. – volume: vol. 9 year: 2019 ident: bib39 article-title: Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high-throughput unmanned aerial vehicle (UAV) publication-title: Sci. Rep. – volume: 6 issue: 2 year: 2017 ident: 10.1016/j.asoc.2023.111113_bib41 article-title: Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers publication-title: ISPRS INT J. GEO-INF – volume: vol. 125 start-page: 400 year: 2022 ident: 10.1016/j.asoc.2023.111113_bib25 article-title: Classification of biscuit tiles for defect detection using Fourier transform features publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.06.025 – volume: vol. 11 start-page: 671 issue: 6 year: 2019 ident: 10.1016/j.asoc.2023.111113_bib9 article-title: Analysis of sentinel-2 and rapideye for retrieval of leaf area index in a saltmarsh using a radiative transfer model publication-title: Remote Sens. doi: 10.3390/rs11060671 – volume: vol. 16 start-page: 3 issue: 2 year: 2017 ident: 10.1016/j.asoc.2023.111113_bib8 article-title: Remote sensing for agricultural applications publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(16)61549-6 – volume: vol. 11 issue: 17 year: 2019 ident: 10.1016/j.asoc.2023.111113_bib15 article-title: Phenotyping of corn plants using unmanned aerial vehicle (UAV) images publication-title: Remote Sens. doi: 10.3390/rs11172021 – ident: 10.1016/j.asoc.2023.111113_bib36 – ident: 10.1016/j.asoc.2023.111113_bib13 – volume: vol. 9 issue: 1 year: 2019 ident: 10.1016/j.asoc.2023.111113_bib39 article-title: Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high-throughput unmanned aerial vehicle (UAV) publication-title: Sci. Rep. – volume: vol. 89 start-page: 70 year: 2012 ident: 10.1016/j.asoc.2023.111113_bib2 article-title: Canopy height measurement by photogrammetric analysis of aerial images: application to buckwheat (fagopyrum esculentum moench) lodging evaluation publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2012.08.003 – ident: 10.1016/j.asoc.2023.111113_bib6 – volume: vol. 144 year: 2023 ident: 10.1016/j.asoc.2023.111113_bib30 article-title: Assessing maize lodging severity using multitemporal UAV-based digital images publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2023.126754 – volume: vol. 87 year: 2020 ident: 10.1016/j.asoc.2023.111113_bib24 article-title: An improved feature extraction method using texture analysis with LBP for bearing fault diagnosis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.106019 – ident: 10.1016/j.asoc.2023.111113_bib34 doi: 10.1109/CVPRW.2019.00322 – volume: vol. 194 year: 2022 ident: 10.1016/j.asoc.2023.111113_bib31 article-title: An explainable XGBoost model improved by SMOTE-ENN technique for maize lodging detection based on multi-source unmanned aerial vehicle images publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106804 – volume: vol. 21 issue: 20 year: 2021 ident: 10.1016/j.asoc.2023.111113_bib32 article-title: Accurate wheat lodging extraction from multi-channel UAV images using a lightweight network model publication-title: SENSORS doi: 10.3390/s21206826 – volume: vol. 25 start-page: 209 year: 1974 ident: 10.1016/j.asoc.2023.111113_bib3 article-title: Lodging in wheat, barley, and oats: the phenomenon, its causes, and preventive measures publication-title: Adv. Agron. doi: 10.1016/S0065-2113(08)60782-8 – volume: vol. 176 year: 2020 ident: 10.1016/j.asoc.2023.111113_bib12 article-title: Assessing winter wheat foliage disease severity using aerial imagery acquired from small Unmanned Aerial Vehicle (UAV) publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105665 – volume: vol. 9 start-page: 923 issue: 9 year: 2017 ident: 10.1016/j.asoc.2023.111113_bib14 article-title: Assessing lodging severity over an experimental maize (Zea mays L.) Field Using UAS images publication-title: Remote Sens. doi: 10.3390/rs9090923 – year: 2022 ident: 10.1016/j.asoc.2023.111113_bib28 article-title: Learning TEXTURE FEATURES FROm GLCM for classification of brain tumor MRI images using random forest classifier publication-title: WSEAS Trans. SIGNAL Process doi: 10.37394/232014.2022.18.8 – volume: vol. 22 issue: 18 year: 2022 ident: 10.1016/j.asoc.2023.111113_bib35 article-title: Monitoring wheat lodging at various growth stages publication-title: Sensors doi: 10.3390/s22186967 – ident: 10.1016/j.asoc.2023.111113_bib38 doi: 10.3390/s21020613 – volume: vol. 35 start-page: 98 issue: 19 year: 2019 ident: 10.1016/j.asoc.2023.111113_bib27 article-title: Extraction of maize lodging area in mature period based on UAV multispectral image publication-title: Trans. Chin. Soc. Agric. Eng. – volume: vol. 262 year: 2021 ident: 10.1016/j.asoc.2023.111113_bib1 article-title: Utilizing temporal measurements from UAVs to assess root lodging in maize and its impact on productivity publication-title: Field Crops Res. doi: 10.1016/j.fcr.2020.108014 – ident: 10.1016/j.asoc.2023.111113_bib4 doi: 10.1016/j.compag.2022.107362 – start-page: 580 issue: 6 year: 2012 ident: 10.1016/j.asoc.2023.111113_bib7 article-title: Evaluating maize grain quality by continuous wavelet analysis under normal and lodging circumstances publication-title: NJAS - Wagening. J. Life Sci. – volume: vol. 8 start-page: 1023 issue: 4 year: 2021 ident: 10.1016/j.asoc.2023.111113_bib19 article-title: Intervertebral disc instance segmentation using a multistage optimization mask-RCNN (MOM-RCNN) publication-title: J. Comput. Des. Eng. – volume: vol. 8 start-page: 82153 year: 2020 ident: 10.1016/j.asoc.2023.111113_bib22 article-title: Residual convolutional neural network for cardiac image segmentation and heart disease diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2991424 – volume: vol. 123 year: 2021 ident: 10.1016/j.asoc.2023.111113_bib43 article-title: A UAV-based framework for crop lodging assessment publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2020.126201 – volume: vol. 149 year: 2021 ident: 10.1016/j.asoc.2023.111113_bib17 article-title: A deep learning system for automated, multi-modality 2D segmentation of vertebral bodies and intervertebral discs publication-title: Bone doi: 10.1016/j.bone.2021.115972 – volume: vol. 7 issue: 8 year: 2021 ident: 10.1016/j.asoc.2023.111113_bib26 article-title: Gray level co-occurrence matrix (GLCM) texture based crop classification using low altitude remote sensing platforms publication-title: PeerJ Comput. Sci. – volume: vol. 164 start-page: 138 year: 2020 ident: 10.1016/j.asoc.2023.111113_bib40 article-title: Discriminant analysis for lodging severity classification in wheat using RADARSAT-2 and Sentinel-1 data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.04.012 – volume: vol. 151 start-page: 124 year: 2019 ident: 10.1016/j.asoc.2023.111113_bib5 article-title: Remote sensing-based crop lodging assessment: Current status and perspectives publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.03.005 – ident: 10.1016/j.asoc.2023.111113_bib23 doi: 10.1109/ICASSP40776.2020.9053405 – ident: 10.1016/j.asoc.2023.111113_bib33 – ident: 10.1016/j.asoc.2023.111113_bib20 – volume: vol. 28 start-page: S37 year: 2021 ident: 10.1016/j.asoc.2023.111113_bib18 article-title: Deep learning for automated liver segmentation to aid in the study of infectious diseases in nonhuman primates publication-title: Acad. Radiol. doi: 10.1016/j.acra.2020.08.023 – year: 2015 ident: 10.1016/j.asoc.2023.111113_bib42 article-title: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification publication-title: IEEE Comput. Soc. – ident: 10.1016/j.asoc.2023.111113_bib16 doi: 10.1109/TGRS.2022.3216341 – volume: vol. 9 start-page: 583 issue: 6 year: 2017 ident: 10.1016/j.asoc.2023.111113_bib29 article-title: Spatial and spectral hybrid image classification for rice lodging assessment through UAV imagery publication-title: Remote Sens. doi: 10.3390/rs9060583 – volume: vol. 201 year: 2022 ident: 10.1016/j.asoc.2023.111113_bib21 article-title: Rapid detection of incomplete coal and gangue based on improved PSPNet publication-title: Measurement doi: 10.1016/j.measurement.2022.111646 – volume: vol. 57 start-page: 926 issue: 2 year: 2017 ident: 10.1016/j.asoc.2023.111113_bib37 article-title: Maize stalk lodging: morphological determinants of stalk strength publication-title: Crop Sci. doi: 10.2135/cropsci2016.07.0569 – volume: vol. 2 start-page: 22 issue: 3 year: 2018 ident: 10.1016/j.asoc.2023.111113_bib10 article-title: Classification of maize in complex smallholder farming systems using UAV imagery publication-title: Drones doi: 10.3390/drones2030022 – ident: 10.1016/j.asoc.2023.111113_bib11 doi: 10.5194/isprs-archives-XLII-2-W13-715-2019 |
| SSID | ssj0016928 |
| Score | 2.4363632 |
| Snippet | Crop lodging assessment plays a critical role in acquiring accurate information regarding the location and area of lodging, which is essential for loss... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 111113 |
| SubjectTerms | Crop lodging Deep learning Precision agriculture Texture information Unmanned aerial vehicle |
| Title | A grid-level segmentation model based on encoder-decoder structure with multi-source features for crop lodging detection |
| URI | https://dx.doi.org/10.1016/j.asoc.2023.111113 |
| Volume | 151 |
| WOSCitedRecordID | wos001147375600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlgMXdkQpoDlwsyYax8t4jlFVVFBVcSgoNzObi6vUrbJU-fm82RwToKIHLk4ysl-svC9vPr8VoQ_AwammShAhlCK5UJpwG-QVqZLSyIoJ59D_dsrOzqrZjH8Zjb7HWpjbOeu6arPhN_9V1bAGyrals_dQdy8UFuA9KB2OoHY4_pPip8nFotVkbrOBkqW5uArVRZ2fepPYfUvbGIFtYanNgmjjXhPfStYGFJxz1qUaEu_cTxrjGoC65g2JnfqVzK-1m2-kzcplc3VDmhu57RKMvMtaX6_iFumc997AnLY_1m1cnLXCeW1P1q1uh76IST7wRQTzWVYk58GpGO1r6CjrLaQ10b769Dfj7f0Il2MBuBzbse7j7cm_dsre2cH6vMKYsnZZWxm1lVF7GQ_Q_oQVHOze_vTT8exzH2kquZu_2995KKzyOYC7d_Jn8jIgJOdP0ePwJIGnHgHP0Mh0z9GTOKUDB6P9Am2meAsIPAQEdoDADhAYPu4AAveAwBYQeAgIHAGBARDYAgIHQOAeEC_R14_H50cnJMzbICqjdEVKWimWSxt4NTIXNJep1mXWiJJppTVjwGW14alMmzQry0kuaaM0twMLLNGV2Su011135jXClImiKRqhCjkB-lNUmWhKkF5kPOOKqgOUxh-yVqEZvZ2JMq__rsIDlPTX3PhWLHeeXUT91IFMepJYA9zuuO7Nvb7lED3a_g_eoj3Qi3mHHqrbVbtcvA9Y-wmuK5mw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+grid-level+segmentation+model+based+on+encoder-decoder+structure+with+multi-source+features+for+crop+lodging+detection&rft.jtitle=Applied+soft+computing&rft.au=Wang%2C+Lihui&rft.au=Xiao%2C+Huidi&rft.date=2024-01-01&rft.issn=1568-4946&rft.volume=151&rft.spage=111113&rft_id=info:doi/10.1016%2Fj.asoc.2023.111113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2023_111113 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |