A grid-level segmentation model based on encoder-decoder structure with multi-source features for crop lodging detection

Crop lodging assessment plays a critical role in acquiring accurate information regarding the location and area of lodging, which is essential for loss assessment and adjustments of harvester parameters. In this paper, we proposed LDVO (Lodging Detection with Visible-image Only), a comprehensive gri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 151; S. 111113
Hauptverfasser: Wang, Lihui, Xiao, Huidi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.01.2024
Schlagworte:
ISSN:1568-4946, 1872-9681
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Crop lodging assessment plays a critical role in acquiring accurate information regarding the location and area of lodging, which is essential for loss assessment and adjustments of harvester parameters. In this paper, we proposed LDVO (Lodging Detection with Visible-image Only), a comprehensive grid-to-grid semantic segmentation method for timely and accurate identification of crop lodging. The LDVO model uses Inception block and dense connection to construct a lightweight feature extraction network, and complements the texture feature and crop vegetation indices as reference features for semantic segmentation. Besides, the model meshes the aerial images according to the operation characteristics of the harvester, and the accuracy of the segmentation task is reduced from the pixel level to the grid level, which minimizes the network scale and computing cost under the premise of meeting the accuracy requirements of lodging detection. Experimental results demonstrate the superiority of the proposed LDVO model over mainstream semantic segmentation networks in terms of processing speed and model parameters. Remarkably, the LDVO model achieves the highest prediction accuracy of 94.86% by leveraging a combination of RGB semantic features, VIs and texture features. Therefore, the proposed LDVO model provides a fast, feasible and low-cost reference for monitoring crop lodging status in complex field environments. It also offers a universal idea for the improvement of semantic segmentation network in special application scenarios. •A grid-level segmentation model is proposed according to the application scenarios.•Introduce texture features and vegetation indices in semantic segmentation networks.•Combining Dense connection and Inception to build a feature extraction network.
AbstractList Crop lodging assessment plays a critical role in acquiring accurate information regarding the location and area of lodging, which is essential for loss assessment and adjustments of harvester parameters. In this paper, we proposed LDVO (Lodging Detection with Visible-image Only), a comprehensive grid-to-grid semantic segmentation method for timely and accurate identification of crop lodging. The LDVO model uses Inception block and dense connection to construct a lightweight feature extraction network, and complements the texture feature and crop vegetation indices as reference features for semantic segmentation. Besides, the model meshes the aerial images according to the operation characteristics of the harvester, and the accuracy of the segmentation task is reduced from the pixel level to the grid level, which minimizes the network scale and computing cost under the premise of meeting the accuracy requirements of lodging detection. Experimental results demonstrate the superiority of the proposed LDVO model over mainstream semantic segmentation networks in terms of processing speed and model parameters. Remarkably, the LDVO model achieves the highest prediction accuracy of 94.86% by leveraging a combination of RGB semantic features, VIs and texture features. Therefore, the proposed LDVO model provides a fast, feasible and low-cost reference for monitoring crop lodging status in complex field environments. It also offers a universal idea for the improvement of semantic segmentation network in special application scenarios. •A grid-level segmentation model is proposed according to the application scenarios.•Introduce texture features and vegetation indices in semantic segmentation networks.•Combining Dense connection and Inception to build a feature extraction network.
ArticleNumber 111113
Author Wang, Lihui
Xiao, Huidi
Author_xml – sequence: 1
  givenname: Lihui
  surname: Wang
  fullname: Wang, Lihui
  email: wlhseu@163.com
– sequence: 2
  givenname: Huidi
  surname: Xiao
  fullname: Xiao, Huidi
BookMark eNp9kM1OwzAMgCM0JLbBC3DKC7QkTUkbics08SchcYFzlCZuydQ2U5INeHtSyonDcnFs67Psb4UWoxsBoWtKckoov9nlKjidF6RgOZ0eO0NLWldFJnhNF-l_y-usFCW_QKsQdiRBoqiX6GuDO29N1sMRehygG2CMKlo34sGZVGpUAINTCqNOBZ8Z-I04RH_Q8eABf9r4gYdDH20W3MFrwC2oqRNw6zzW3u1x70xnxw4biKCn8ZfovFV9gKu_uEbvD_dv26fs5fXxebt5yTQjJGac1LoqG0ZKAU2pSNlQYzhrFa-MNqaqhGAGBG1oSxnnRdmQVhtBqloQzkTD1qiY56Y1QvDQyr23g_LfkhI5uZM7ObmTkzs5u0tQ_Q_SdrYSvbL9afRuRiEddbTgZdA2uQNjfbpcGmdP4T8L7o7Z
CitedBy_id crossref_primary_10_34133_plantphenomics_0182
crossref_primary_10_1016_j_eswa_2025_129433
crossref_primary_10_1109_JSTARS_2025_3585184
crossref_primary_10_1016_j_compag_2025_110769
crossref_primary_10_1016_j_compag_2025_110587
crossref_primary_10_1049_ipr2_13228
Cites_doi 10.1016/j.isatra.2021.06.025
10.3390/rs11060671
10.1016/S2095-3119(16)61549-6
10.3390/rs11172021
10.1016/j.compag.2012.08.003
10.1016/j.eja.2023.126754
10.1016/j.asoc.2019.106019
10.1109/CVPRW.2019.00322
10.1016/j.compag.2022.106804
10.3390/s21206826
10.1016/S0065-2113(08)60782-8
10.1016/j.compag.2020.105665
10.3390/rs9090923
10.37394/232014.2022.18.8
10.3390/s22186967
10.3390/s21020613
10.1016/j.fcr.2020.108014
10.1016/j.compag.2022.107362
10.1109/ACCESS.2020.2991424
10.1016/j.eja.2020.126201
10.1016/j.bone.2021.115972
10.1016/j.isprsjprs.2020.04.012
10.1016/j.isprsjprs.2019.03.005
10.1109/ICASSP40776.2020.9053405
10.1016/j.acra.2020.08.023
10.1109/TGRS.2022.3216341
10.3390/rs9060583
10.1016/j.measurement.2022.111646
10.2135/cropsci2016.07.0569
10.3390/drones2030022
10.5194/isprs-archives-XLII-2-W13-715-2019
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2023.111113
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2023_111113
S1568494623011316
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-608c74b3049eb4a04b1dd63fa67dcdd77993de91b1f136624b0fcd907890639b3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001147375600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 03:05:59 EST 2025
Tue Nov 18 22:22:14 EST 2025
Sat Aug 03 15:33:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Precision agriculture
Texture information
Unmanned aerial vehicle
Crop lodging
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-608c74b3049eb4a04b1dd63fa67dcdd77993de91b1f136624b0fcd907890639b3
ParticipantIDs crossref_primary_10_1016_j_asoc_2023_111113
crossref_citationtrail_10_1016_j_asoc_2023_111113
elsevier_sciencedirect_doi_10_1016_j_asoc_2023_111113
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Robertson, Julias, Lee, Cook (bib37) 2017; vol. 57
He, Zhang, Ren, Sun (bib42) 2015
Q. Sun et al., “A new comprehensive index for monitoring maize lodging severity using UAV-based multi-spectral imagery,” COMPUTERS AND ELECTRONICS IN AGRICULTURE, vol. 202. ELSEVIER SCI LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND, Nov. 2022.
Murakami, Yui, Amaha (bib2) . 2012; vol. 89
H. Guan et al., “A Novel Approach to Estimate Maize Lodging Area With PolSAR Data,” IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, vol. 60. IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 445 HOES LANE, PISCATAWAY, NJ 08855–4141 USA, 2022.
Pinthus (bib3) 1974; vol. 25
Han (bib31) 2022; vol. 194
A. Mw, B. Fj, and C. Gd, “Remote sensing for agricultural applications: A meta-review,” Remote Sensing of Environment, vol. 236.
Bhandari (bib12) 2020; vol. 176
Wang (bib39) 2019; vol. 9
H. Huang, L. Lin, R. Tong, H. Hu, and J. Wu, “UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation,” arXiv, 2020.
Darvishzadeh (bib9) 2019; vol. 11
Zorić, Matić, Hocenski (bib25) 2022; vol. 125
Chauhan, Darvishzadeh, Boschetti, Nelson (bib40) 2020; vol. 164
Reza (bib18) 2021; vol. 28
Wang, Guo, Wang, Cheng, Wang, He (bib21) 2022; vol. 201
Zhang (bib7) 2012
S. Mardanisamani et al., “Crop Lodging Prediction From UAV-Acquired Images of Wheat and Canola Using a DCNN Augmented With Handcrafted Texture Features,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020.
Chauhan, Darvishzadeh, Boschetti, Pepe, Nelson (bib5) 2019; vol. 151
Dai Jianguo, Zhang Guoshun, Guo Peng, Zeng Tiaojun, and Cui Meina, and Xue Jinli, “Information extraction of cotton lodging based on multi-spectral image from UAV remote sensing,” Transactions of the Chinese Society of Agricultural Engineering, vol. 35, no. 2, pp. 63–70.
Zhang (bib27) 2019; vol. 35
Su (bib15) 2019; vol. 11
B. Yang, J. Ma, X. Yao, W. Cao, and Y. Zhu, “Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery,” Sensors (Basel, Switzerland), vol. 21, no. 2, p. 613.
Tianxing, Michael, Michael, Seth, Luke (bib14) 2017; vol. 9
Vania, Lee (bib19) . 2021; vol. 8
Suri (bib17) 2021; vol. 149
Kaplan, Kaya, Kuncan, Mi̇naz, Ertunç (bib24) 2020; vol. 87
A. Dz, D.A. Yang, C. Pcb, D. Xz, E. Zp, and L.A. Dong, “Automatic extraction of wheat lodging area based on transfer learning method and deeplabv3+ network,” Computers and Electronics in Agriculture, vol. 179.
V. Sagan, M. Maimaitijiang, P. Sidike, M. Maimaitiyiming, and F.B. Fritschi, “UAV/Satellite Multiscale Data Fusion for Crop Monitoring and Early Stress Detection,” 2019.
Aggarwal (bib28) 2022
Li, Li, Liu, Wei, Xu (bib43) 2021; vol. 123
S. Khan et al., “Alteration in yield and oil quality traits of winter rapeseed by lodging at different planting density and nitrogen rates,” Scientific Reports.
Iqbal, Mumtaz, Shafi, Zaidi (bib26) 2021; vol. 7
Yang, Wen-Bin, Di, Ustundag (bib8) 2017; vol. 16
TY (bib41) 2017; 6
.
Tirado, Hirsch, Springer (bib1) . 2021; vol. 262
Mingder, Kai-Siang, Yi-Hsuan, Hui, Liang-Mao (bib29) 2017; vol. 9
Liu, Tian, Zhao, Huang, Wang (bib22) 2020; vol. 8
K. Jakhar, A. Kaur, and D.M. Gupta, “Pneumothorax Segmentation: Deep Learning Image Segmentation to predict Pneumothorax.” 2021.
Yang, Zhu, Zhou (bib32) . 2021; vol. 21
Hall, Dahlin, Marstorp, Archila Bustos, Öborn, Jirström (bib10) . 2018; vol. 2
Jiang, Hao, Li, Zuo, Geng, Sun (bib35) . 2022; vol. 22
Shu, Bai, Meng, Yang, Li, Ma (bib30) . 2023; vol. 144
10.1016/j.asoc.2023.111113_bib16
Robertson (10.1016/j.asoc.2023.111113_bib37) 2017; vol. 57
10.1016/j.asoc.2023.111113_bib38
10.1016/j.asoc.2023.111113_bib36
Bhandari (10.1016/j.asoc.2023.111113_bib12) 2020; vol. 176
Zorić (10.1016/j.asoc.2023.111113_bib25) 2022; vol. 125
Chauhan (10.1016/j.asoc.2023.111113_bib5) 2019; vol. 151
Zhang (10.1016/j.asoc.2023.111113_bib7) 2012
Su (10.1016/j.asoc.2023.111113_bib15) 2019; vol. 11
Li (10.1016/j.asoc.2023.111113_bib43) 2021; vol. 123
Tianxing (10.1016/j.asoc.2023.111113_bib14) 2017; vol. 9
Suri (10.1016/j.asoc.2023.111113_bib17) 2021; vol. 149
Murakami (10.1016/j.asoc.2023.111113_bib2) 2012; vol. 89
10.1016/j.asoc.2023.111113_bib34
10.1016/j.asoc.2023.111113_bib13
Shu (10.1016/j.asoc.2023.111113_bib30) 2023; vol. 144
10.1016/j.asoc.2023.111113_bib11
10.1016/j.asoc.2023.111113_bib33
Zhang (10.1016/j.asoc.2023.111113_bib27) 2019; vol. 35
Kaplan (10.1016/j.asoc.2023.111113_bib24) 2020; vol. 87
Yang (10.1016/j.asoc.2023.111113_bib8) 2017; vol. 16
Mingder (10.1016/j.asoc.2023.111113_bib29) 2017; vol. 9
Han (10.1016/j.asoc.2023.111113_bib31) 2022; vol. 194
Tirado (10.1016/j.asoc.2023.111113_bib1) 2021; vol. 262
Darvishzadeh (10.1016/j.asoc.2023.111113_bib9) 2019; vol. 11
Chauhan (10.1016/j.asoc.2023.111113_bib40) 2020; vol. 164
10.1016/j.asoc.2023.111113_bib20
Liu (10.1016/j.asoc.2023.111113_bib22) 2020; vol. 8
Jiang (10.1016/j.asoc.2023.111113_bib35) 2022; vol. 22
10.1016/j.asoc.2023.111113_bib6
10.1016/j.asoc.2023.111113_bib23
Vania (10.1016/j.asoc.2023.111113_bib19) 2021; vol. 8
Wang (10.1016/j.asoc.2023.111113_bib21) 2022; vol. 201
10.1016/j.asoc.2023.111113_bib4
Aggarwal (10.1016/j.asoc.2023.111113_bib28) 2022
Yang (10.1016/j.asoc.2023.111113_bib32) 2021; vol. 21
Iqbal (10.1016/j.asoc.2023.111113_bib26) 2021; vol. 7
He (10.1016/j.asoc.2023.111113_bib42) 2015
Wang (10.1016/j.asoc.2023.111113_bib39) 2019; vol. 9
TY (10.1016/j.asoc.2023.111113_bib41) 2017; 6
Hall (10.1016/j.asoc.2023.111113_bib10) 2018; vol. 2
Reza (10.1016/j.asoc.2023.111113_bib18) 2021; vol. 28
Pinthus (10.1016/j.asoc.2023.111113_bib3) 1974; vol. 25
References_xml – volume: vol. 16
  start-page: 3
  year: 2017
  ident: bib8
  article-title: Remote sensing for agricultural applications
  publication-title: J. Integr. Agric.
– volume: vol. 125
  start-page: 400
  year: 2022
  end-page: 414
  ident: bib25
  article-title: Classification of biscuit tiles for defect detection using Fourier transform features
  publication-title: ISA Trans.
– reference: Q. Sun et al., “A new comprehensive index for monitoring maize lodging severity using UAV-based multi-spectral imagery,” COMPUTERS AND ELECTRONICS IN AGRICULTURE, vol. 202. ELSEVIER SCI LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND, Nov. 2022.
– volume: vol. 28
  start-page: S37
  year: 2021
  end-page: S44
  ident: bib18
  article-title: Deep learning for automated liver segmentation to aid in the study of infectious diseases in nonhuman primates
  publication-title: Acad. Radiol.
– volume: vol. 176
  year: 2020
  ident: bib12
  article-title: Assessing winter wheat foliage disease severity using aerial imagery acquired from small Unmanned Aerial Vehicle (UAV)
  publication-title: Comput. Electron. Agric.
– volume: vol. 35
  start-page: 98
  year: 2019
  end-page: 106
  ident: bib27
  article-title: Extraction of maize lodging area in mature period based on UAV multispectral image
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: vol. 8
  start-page: 82153
  year: 2020
  end-page: 82161
  ident: bib22
  article-title: Residual convolutional neural network for cardiac image segmentation and heart disease diagnosis
  publication-title: IEEE Access
– volume: vol. 149
  year: 2021
  ident: bib17
  article-title: A deep learning system for automated, multi-modality 2D segmentation of vertebral bodies and intervertebral discs
  publication-title: Bone
– volume: vol. 25
  start-page: 209
  year: 1974
  end-page: 263
  ident: bib3
  article-title: Lodging in wheat, barley, and oats: the phenomenon, its causes, and preventive measures
  publication-title: Adv. Agron.
– volume: vol. 8
  start-page: 1023
  year: . 2021
  end-page: 1036
  ident: bib19
  article-title: Intervertebral disc instance segmentation using a multistage optimization mask-RCNN (MOM-RCNN)
  publication-title: J. Comput. Des. Eng.
– volume: vol. 194
  year: 2022
  ident: bib31
  article-title: An explainable XGBoost model improved by SMOTE-ENN technique for maize lodging detection based on multi-source unmanned aerial vehicle images
  publication-title: Comput. Electron. Agric.
– reference: A. Dz, D.A. Yang, C. Pcb, D. Xz, E. Zp, and L.A. Dong, “Automatic extraction of wheat lodging area based on transfer learning method and deeplabv3+ network,” Computers and Electronics in Agriculture, vol. 179.
– year: 2015
  ident: bib42
  article-title: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
  publication-title: IEEE Comput. Soc.
– volume: vol. 144
  year: . 2023
  ident: bib30
  article-title: Assessing maize lodging severity using multitemporal UAV-based digital images
  publication-title: Eur. J. Agron.
– volume: vol. 21
  year: . 2021
  ident: bib32
  article-title: Accurate wheat lodging extraction from multi-channel UAV images using a lightweight network model
  publication-title: SENSORS
– reference: Dai Jianguo, Zhang Guoshun, Guo Peng, Zeng Tiaojun, and Cui Meina, and Xue Jinli, “Information extraction of cotton lodging based on multi-spectral image from UAV remote sensing,” Transactions of the Chinese Society of Agricultural Engineering, vol. 35, no. 2, pp. 63–70.
– volume: vol. 151
  start-page: 124
  year: 2019
  end-page: 140
  ident: bib5
  article-title: Remote sensing-based crop lodging assessment: Current status and perspectives
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: B. Yang, J. Ma, X. Yao, W. Cao, and Y. Zhu, “Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery,” Sensors (Basel, Switzerland), vol. 21, no. 2, p. 613.
– volume: vol. 11
  start-page: 671
  year: 2019
  ident: bib9
  article-title: Analysis of sentinel-2 and rapideye for retrieval of leaf area index in a saltmarsh using a radiative transfer model
  publication-title: Remote Sens.
– volume: vol. 11
  year: 2019
  ident: bib15
  article-title: Phenotyping of corn plants using unmanned aerial vehicle (UAV) images
  publication-title: Remote Sens.
– volume: vol. 9
  start-page: 583
  year: 2017
  ident: bib29
  article-title: Spatial and spectral hybrid image classification for rice lodging assessment through UAV imagery
  publication-title: Remote Sens.
– volume: vol. 164
  start-page: 138
  year: 2020
  end-page: 151
  ident: bib40
  article-title: Discriminant analysis for lodging severity classification in wheat using RADARSAT-2 and Sentinel-1 data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: H. Huang, L. Lin, R. Tong, H. Hu, and J. Wu, “UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation,” arXiv, 2020.
– volume: vol. 57
  start-page: 926
  year: 2017
  ident: bib37
  article-title: Maize stalk lodging: morphological determinants of stalk strength
  publication-title: Crop Sci.
– volume: vol. 123
  year: 2021
  ident: bib43
  article-title: A UAV-based framework for crop lodging assessment
  publication-title: Eur. J. Agron.
– volume: vol. 7
  year: 2021
  ident: bib26
  article-title: Gray level co-occurrence matrix (GLCM) texture based crop classification using low altitude remote sensing platforms
  publication-title: PeerJ Comput. Sci.
– reference: S. Khan et al., “Alteration in yield and oil quality traits of winter rapeseed by lodging at different planting density and nitrogen rates,” Scientific Reports.
– volume: vol. 262
  year: . 2021
  ident: bib1
  article-title: Utilizing temporal measurements from UAVs to assess root lodging in maize and its impact on productivity
  publication-title: Field Crops Res.
– volume: vol. 22
  year: . 2022
  ident: bib35
  article-title: Monitoring wheat lodging at various growth stages
  publication-title: Sensors
– volume: vol. 201
  year: 2022
  ident: bib21
  article-title: Rapid detection of incomplete coal and gangue based on improved PSPNet
  publication-title: Measurement
– reference: S. Mardanisamani et al., “Crop Lodging Prediction From UAV-Acquired Images of Wheat and Canola Using a DCNN Augmented With Handcrafted Texture Features,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020.
– volume: vol. 89
  start-page: 70
  year: . 2012
  end-page: 75
  ident: bib2
  article-title: Canopy height measurement by photogrammetric analysis of aerial images: application to buckwheat (fagopyrum esculentum moench) lodging evaluation
  publication-title: Comput. Electron. Agric.
– start-page: 580
  year: 2012
  end-page: 585
  ident: bib7
  article-title: Evaluating maize grain quality by continuous wavelet analysis under normal and lodging circumstances
  publication-title: NJAS - Wagening. J. Life Sci.
– volume: vol. 9
  start-page: 923
  year: 2017
  ident: bib14
  article-title: Assessing lodging severity over an experimental maize (Zea mays L.) Field Using UAS images
  publication-title: Remote Sens.
– reference: .
– reference: V. Sagan, M. Maimaitijiang, P. Sidike, M. Maimaitiyiming, and F.B. Fritschi, “UAV/Satellite Multiscale Data Fusion for Crop Monitoring and Early Stress Detection,” 2019.
– volume: vol. 87
  year: 2020
  ident: bib24
  article-title: An improved feature extraction method using texture analysis with LBP for bearing fault diagnosis
  publication-title: Appl. Soft Comput.
– reference: H. Guan et al., “A Novel Approach to Estimate Maize Lodging Area With PolSAR Data,” IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, vol. 60. IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 445 HOES LANE, PISCATAWAY, NJ 08855–4141 USA, 2022.
– year: 2022
  ident: bib28
  article-title: Learning TEXTURE FEATURES FROm GLCM for classification of brain tumor MRI images using random forest classifier
  publication-title: WSEAS Trans. SIGNAL Process
– reference: K. Jakhar, A. Kaur, and D.M. Gupta, “Pneumothorax Segmentation: Deep Learning Image Segmentation to predict Pneumothorax.” 2021.
– volume: 6
  year: 2017
  ident: bib41
  article-title: Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers
  publication-title: ISPRS INT J. GEO-INF
– volume: vol. 2
  start-page: 22
  year: . 2018
  ident: bib10
  article-title: Classification of maize in complex smallholder farming systems using UAV imagery
  publication-title: Drones
– reference: A. Mw, B. Fj, and C. Gd, “Remote sensing for agricultural applications: A meta-review,” Remote Sensing of Environment, vol. 236.
– volume: vol. 9
  year: 2019
  ident: bib39
  article-title: Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high-throughput unmanned aerial vehicle (UAV)
  publication-title: Sci. Rep.
– volume: 6
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2023.111113_bib41
  article-title: Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers
  publication-title: ISPRS INT J. GEO-INF
– volume: vol. 125
  start-page: 400
  year: 2022
  ident: 10.1016/j.asoc.2023.111113_bib25
  article-title: Classification of biscuit tiles for defect detection using Fourier transform features
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.06.025
– volume: vol. 11
  start-page: 671
  issue: 6
  year: 2019
  ident: 10.1016/j.asoc.2023.111113_bib9
  article-title: Analysis of sentinel-2 and rapideye for retrieval of leaf area index in a saltmarsh using a radiative transfer model
  publication-title: Remote Sens.
  doi: 10.3390/rs11060671
– volume: vol. 16
  start-page: 3
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2023.111113_bib8
  article-title: Remote sensing for agricultural applications
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(16)61549-6
– volume: vol. 11
  issue: 17
  year: 2019
  ident: 10.1016/j.asoc.2023.111113_bib15
  article-title: Phenotyping of corn plants using unmanned aerial vehicle (UAV) images
  publication-title: Remote Sens.
  doi: 10.3390/rs11172021
– ident: 10.1016/j.asoc.2023.111113_bib36
– ident: 10.1016/j.asoc.2023.111113_bib13
– volume: vol. 9
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2023.111113_bib39
  article-title: Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high-throughput unmanned aerial vehicle (UAV)
  publication-title: Sci. Rep.
– volume: vol. 89
  start-page: 70
  year: 2012
  ident: 10.1016/j.asoc.2023.111113_bib2
  article-title: Canopy height measurement by photogrammetric analysis of aerial images: application to buckwheat (fagopyrum esculentum moench) lodging evaluation
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2012.08.003
– ident: 10.1016/j.asoc.2023.111113_bib6
– volume: vol. 144
  year: 2023
  ident: 10.1016/j.asoc.2023.111113_bib30
  article-title: Assessing maize lodging severity using multitemporal UAV-based digital images
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2023.126754
– volume: vol. 87
  year: 2020
  ident: 10.1016/j.asoc.2023.111113_bib24
  article-title: An improved feature extraction method using texture analysis with LBP for bearing fault diagnosis
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.106019
– ident: 10.1016/j.asoc.2023.111113_bib34
  doi: 10.1109/CVPRW.2019.00322
– volume: vol. 194
  year: 2022
  ident: 10.1016/j.asoc.2023.111113_bib31
  article-title: An explainable XGBoost model improved by SMOTE-ENN technique for maize lodging detection based on multi-source unmanned aerial vehicle images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106804
– volume: vol. 21
  issue: 20
  year: 2021
  ident: 10.1016/j.asoc.2023.111113_bib32
  article-title: Accurate wheat lodging extraction from multi-channel UAV images using a lightweight network model
  publication-title: SENSORS
  doi: 10.3390/s21206826
– volume: vol. 25
  start-page: 209
  year: 1974
  ident: 10.1016/j.asoc.2023.111113_bib3
  article-title: Lodging in wheat, barley, and oats: the phenomenon, its causes, and preventive measures
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(08)60782-8
– volume: vol. 176
  year: 2020
  ident: 10.1016/j.asoc.2023.111113_bib12
  article-title: Assessing winter wheat foliage disease severity using aerial imagery acquired from small Unmanned Aerial Vehicle (UAV)
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105665
– volume: vol. 9
  start-page: 923
  issue: 9
  year: 2017
  ident: 10.1016/j.asoc.2023.111113_bib14
  article-title: Assessing lodging severity over an experimental maize (Zea mays L.) Field Using UAS images
  publication-title: Remote Sens.
  doi: 10.3390/rs9090923
– year: 2022
  ident: 10.1016/j.asoc.2023.111113_bib28
  article-title: Learning TEXTURE FEATURES FROm GLCM for classification of brain tumor MRI images using random forest classifier
  publication-title: WSEAS Trans. SIGNAL Process
  doi: 10.37394/232014.2022.18.8
– volume: vol. 22
  issue: 18
  year: 2022
  ident: 10.1016/j.asoc.2023.111113_bib35
  article-title: Monitoring wheat lodging at various growth stages
  publication-title: Sensors
  doi: 10.3390/s22186967
– ident: 10.1016/j.asoc.2023.111113_bib38
  doi: 10.3390/s21020613
– volume: vol. 35
  start-page: 98
  issue: 19
  year: 2019
  ident: 10.1016/j.asoc.2023.111113_bib27
  article-title: Extraction of maize lodging area in mature period based on UAV multispectral image
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: vol. 262
  year: 2021
  ident: 10.1016/j.asoc.2023.111113_bib1
  article-title: Utilizing temporal measurements from UAVs to assess root lodging in maize and its impact on productivity
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2020.108014
– ident: 10.1016/j.asoc.2023.111113_bib4
  doi: 10.1016/j.compag.2022.107362
– start-page: 580
  issue: 6
  year: 2012
  ident: 10.1016/j.asoc.2023.111113_bib7
  article-title: Evaluating maize grain quality by continuous wavelet analysis under normal and lodging circumstances
  publication-title: NJAS - Wagening. J. Life Sci.
– volume: vol. 8
  start-page: 1023
  issue: 4
  year: 2021
  ident: 10.1016/j.asoc.2023.111113_bib19
  article-title: Intervertebral disc instance segmentation using a multistage optimization mask-RCNN (MOM-RCNN)
  publication-title: J. Comput. Des. Eng.
– volume: vol. 8
  start-page: 82153
  year: 2020
  ident: 10.1016/j.asoc.2023.111113_bib22
  article-title: Residual convolutional neural network for cardiac image segmentation and heart disease diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2991424
– volume: vol. 123
  year: 2021
  ident: 10.1016/j.asoc.2023.111113_bib43
  article-title: A UAV-based framework for crop lodging assessment
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2020.126201
– volume: vol. 149
  year: 2021
  ident: 10.1016/j.asoc.2023.111113_bib17
  article-title: A deep learning system for automated, multi-modality 2D segmentation of vertebral bodies and intervertebral discs
  publication-title: Bone
  doi: 10.1016/j.bone.2021.115972
– volume: vol. 7
  issue: 8
  year: 2021
  ident: 10.1016/j.asoc.2023.111113_bib26
  article-title: Gray level co-occurrence matrix (GLCM) texture based crop classification using low altitude remote sensing platforms
  publication-title: PeerJ Comput. Sci.
– volume: vol. 164
  start-page: 138
  year: 2020
  ident: 10.1016/j.asoc.2023.111113_bib40
  article-title: Discriminant analysis for lodging severity classification in wheat using RADARSAT-2 and Sentinel-1 data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.04.012
– volume: vol. 151
  start-page: 124
  year: 2019
  ident: 10.1016/j.asoc.2023.111113_bib5
  article-title: Remote sensing-based crop lodging assessment: Current status and perspectives
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.03.005
– ident: 10.1016/j.asoc.2023.111113_bib23
  doi: 10.1109/ICASSP40776.2020.9053405
– ident: 10.1016/j.asoc.2023.111113_bib33
– ident: 10.1016/j.asoc.2023.111113_bib20
– volume: vol. 28
  start-page: S37
  year: 2021
  ident: 10.1016/j.asoc.2023.111113_bib18
  article-title: Deep learning for automated liver segmentation to aid in the study of infectious diseases in nonhuman primates
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2020.08.023
– year: 2015
  ident: 10.1016/j.asoc.2023.111113_bib42
  article-title: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
  publication-title: IEEE Comput. Soc.
– ident: 10.1016/j.asoc.2023.111113_bib16
  doi: 10.1109/TGRS.2022.3216341
– volume: vol. 9
  start-page: 583
  issue: 6
  year: 2017
  ident: 10.1016/j.asoc.2023.111113_bib29
  article-title: Spatial and spectral hybrid image classification for rice lodging assessment through UAV imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs9060583
– volume: vol. 201
  year: 2022
  ident: 10.1016/j.asoc.2023.111113_bib21
  article-title: Rapid detection of incomplete coal and gangue based on improved PSPNet
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111646
– volume: vol. 57
  start-page: 926
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2023.111113_bib37
  article-title: Maize stalk lodging: morphological determinants of stalk strength
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2016.07.0569
– volume: vol. 2
  start-page: 22
  issue: 3
  year: 2018
  ident: 10.1016/j.asoc.2023.111113_bib10
  article-title: Classification of maize in complex smallholder farming systems using UAV imagery
  publication-title: Drones
  doi: 10.3390/drones2030022
– ident: 10.1016/j.asoc.2023.111113_bib11
  doi: 10.5194/isprs-archives-XLII-2-W13-715-2019
SSID ssj0016928
Score 2.4363632
Snippet Crop lodging assessment plays a critical role in acquiring accurate information regarding the location and area of lodging, which is essential for loss...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111113
SubjectTerms Crop lodging
Deep learning
Precision agriculture
Texture information
Unmanned aerial vehicle
Title A grid-level segmentation model based on encoder-decoder structure with multi-source features for crop lodging detection
URI https://dx.doi.org/10.1016/j.asoc.2023.111113
Volume 151
WOSCitedRecordID wos001147375600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlgMXdkQpoDlwsyYax8t4jlFVVFBVcSgoNzObi6vUrbJU-fm82RwToKIHLk4ysl-svC9vPr8VoQ_AwammShAhlCK5UJpwG-QVqZLSyIoJ59D_dsrOzqrZjH8Zjb7HWpjbOeu6arPhN_9V1bAGyrals_dQdy8UFuA9KB2OoHY4_pPip8nFotVkbrOBkqW5uArVRZ2fepPYfUvbGIFtYanNgmjjXhPfStYGFJxz1qUaEu_cTxrjGoC65g2JnfqVzK-1m2-kzcplc3VDmhu57RKMvMtaX6_iFumc997AnLY_1m1cnLXCeW1P1q1uh76IST7wRQTzWVYk58GpGO1r6CjrLaQ10b769Dfj7f0Il2MBuBzbse7j7cm_dsre2cH6vMKYsnZZWxm1lVF7GQ_Q_oQVHOze_vTT8exzH2kquZu_2995KKzyOYC7d_Jn8jIgJOdP0ePwJIGnHgHP0Mh0z9GTOKUDB6P9Am2meAsIPAQEdoDADhAYPu4AAveAwBYQeAgIHAGBARDYAgIHQOAeEC_R14_H50cnJMzbICqjdEVKWimWSxt4NTIXNJep1mXWiJJppTVjwGW14alMmzQry0kuaaM0twMLLNGV2Su011135jXClImiKRqhCjkB-lNUmWhKkF5kPOOKqgOUxh-yVqEZvZ2JMq__rsIDlPTX3PhWLHeeXUT91IFMepJYA9zuuO7Nvb7lED3a_g_eoj3Qi3mHHqrbVbtcvA9Y-wmuK5mw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+grid-level+segmentation+model+based+on+encoder-decoder+structure+with+multi-source+features+for+crop+lodging+detection&rft.jtitle=Applied+soft+computing&rft.au=Wang%2C+Lihui&rft.au=Xiao%2C+Huidi&rft.date=2024-01-01&rft.issn=1568-4946&rft.volume=151&rft.spage=111113&rft_id=info:doi/10.1016%2Fj.asoc.2023.111113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2023_111113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon