ParaFlow: Fine-grained parallel SDN controller for large-scale networks

Using Software-Defined Networking (SDN), the flexibility and programmability of networks can be significantly increased through the decoupling of the control and data planes. However, network scale-up in large-scale data centers can rapidly increase the computational complexity of operations such as...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of network and computer applications Ročník 87; s. 46 - 59
Hlavní autoři: Song, Ping, Liu, Yi, Liu, Chi, Qian, Depei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.06.2017
Témata:
ISSN:1084-8045, 1095-8592
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Using Software-Defined Networking (SDN), the flexibility and programmability of networks can be significantly increased through the decoupling of the control and data planes. However, network scale-up in large-scale data centers can rapidly increase the computational complexity of operations such as the shortest path calculation on the network topology or Quality-of-Service (QoS) routing, which, in turn, can cause scalability problems in current SDN controllers. This paper proposes ParaFlow, a multithreaded SDN controller that supports fine-grained parallelism by exploiting application parallelism and utilizing multi-/many-core resources to accelerate event processing. ParaFlow also provides a flow-based programming interface that allows application developers to program with network flows rather than various types of low-level events. Experimental results show that ParaFlow achieves satisfactory performance and scalability in the multithreaded case.
AbstractList Using Software-Defined Networking (SDN), the flexibility and programmability of networks can be significantly increased through the decoupling of the control and data planes. However, network scale-up in large-scale data centers can rapidly increase the computational complexity of operations such as the shortest path calculation on the network topology or Quality-of-Service (QoS) routing, which, in turn, can cause scalability problems in current SDN controllers. This paper proposes ParaFlow, a multithreaded SDN controller that supports fine-grained parallelism by exploiting application parallelism and utilizing multi-/many-core resources to accelerate event processing. ParaFlow also provides a flow-based programming interface that allows application developers to program with network flows rather than various types of low-level events. Experimental results show that ParaFlow achieves satisfactory performance and scalability in the multithreaded case.
Author Liu, Chi
Qian, Depei
Song, Ping
Liu, Yi
Author_xml – sequence: 1
  givenname: Ping
  surname: Song
  fullname: Song, Ping
  email: songping691@buaa.edu.cn
  organization: Beihang University, China
– sequence: 2
  givenname: Yi
  surname: Liu
  fullname: Liu, Yi
  email: yi.liu@buaa.edu.cn
  organization: Beihang University, China
– sequence: 3
  givenname: Chi
  surname: Liu
  fullname: Liu, Chi
  email: chi.liu@buaa.edu.cn
  organization: Beihang University, China
– sequence: 4
  givenname: Depei
  surname: Qian
  fullname: Qian, Depei
  email: depeiq@buaa.edu.cn
  organization: Beihang University, China
BookMark eNp9kN9KwzAUh4NMcJu-gFd9gdaTpompeCPTTWGooF6HNDkdmbEZSXH49rbMKy92df7Adzi_b0YmXeiQkEsKBQUqrrbFtjO6KIFeF8AKgPqETCnUPJe8LidjL6tcQsXPyCylLQCIqmZTsnrVUS992N9kS9dhvol6KDbbDWvv0Wdv98-ZCV0fwzDGrA0x8zpuME9Ge8w67PchfqZzctpqn_Dir87Jx_LhffGYr19WT4u7dW4YQJ_z1gAfnqyMQFnXTck0YtWibJnlyCmgMJJa0dSNti1oKRi1XFIUtmG6EWxOysNdE0NKEVu1i-5Lxx9FQY0q1FaNKtSoQgFTg4oBkv8g43rduzGWdv44entAcQj17TCqZBx2Bq2LaHplgzuG_wK7bnzZ
CitedBy_id crossref_primary_10_3390_telecom4030025
crossref_primary_10_1016_j_ijleo_2022_170038
crossref_primary_10_1016_j_jnca_2017_11_015
crossref_primary_10_1007_s10922_020_09575_4
Cites_doi 10.1145/2442516.2442541
10.1145/2934872.2934875
10.1007/BF01386390
10.1145/2486001.2491695
10.1145/2002396.2002405
10.1145/324133.324234
10.1109/ALPIT.2008.89
10.1145/2034773.2034812
10.1109/INFCOM.2001.916277
10.1145/1672308.1672333
10.1109/ICNP.2014.91
10.1145/2491185.2491189
10.1145/2658260.2658261
10.1145/2491185.2491198
10.1145/1355734.1355746
10.1007/978-3-642-18378-2_15
10.1145/2890955.2890958
10.1109/49.536364
10.1145/2377677.2377735
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jnca.2017.03.009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1095-8592
EndPage 59
ExternalDocumentID 10_1016_j_jnca_2017_03_009
S108480451730111X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
ZU3
~G-
29L
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
FGOYB
HZ~
R2-
SEW
UHS
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-5fc050174c6e899b23aee4fe8f3d5e510e6c81d6b9badf0a8631d581e6db3ab63
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000401883400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1084-8045
IngestDate Tue Nov 18 21:10:19 EST 2025
Sat Nov 29 07:05:11 EST 2025
Fri Feb 23 02:12:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fine-grained parallelism
Software-defined networking
Multithreaded controller
D.1.3 [Concurrent Programming]: Parallel Programming
Languages
Performance
C.2.1 [Computer-Communication Networks]: Network Architecture and Design—Network Communications
Event-based programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-5fc050174c6e899b23aee4fe8f3d5e510e6c81d6b9badf0a8631d581e6db3ab63
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_jnca_2017_03_009
crossref_citationtrail_10_1016_j_jnca_2017_03_009
elsevier_sciencedirect_doi_10_1016_j_jnca_2017_03_009
PublicationCentury 2000
PublicationDate 2017-06-01
2017-06-00
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of network and computer applications
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dixit, A.A., Hao, F., Mukherjee, S.,Lakshman, T., Kompella, R., 2014. Elasticon: an elastic distributed SDN controller. In: Proceedings of the tenth ACM/IEEE symposium on architectures for networking and communications systems, pp. 17–28.
SHERWOOD, R., KOK-KIONG Y.. Cbench: an OpenFlow Controller Benchmarker.
Qin, Y., Xiao, W., Ye, J., Wei, W., Zhao, C., 2008. The algorithm for parallel routing searching based on QosR Pareto optimization. In: International Conference on Advanced Language Processing and Web Information Technology.
McKeown, Anderson, Balakrishnan, Parulkar, Peterson, Rexford, Shenker, Turner (bib1) 2008
Koponen, Casado, Gude, Stribling, Poutievski, Zhu, Ramanathan, Iwata, Inoue, Hama, Shenker (bib4) 2010
Natasha Gude (bib11) 2008; 38
Amin Tootoonchian (bib12) 2012
David Erickson. et al. 2013. The Beacon OpenFlow controller. In: HotSDN '13 Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, pages 13-18.
Voellmy, Ford, Hudak, Yang (bib15) 2012; 42
Bonetta, D., Binder, W., Pautasso, C., 2013. TigerQuoll: Parallel Event-based JavaScript. In: Proceedings of the 18th ACM SIGPLAN symposium on principles and practice of parallel programming, PPoPP’13, p. 251–260.
Cai, Z. A., Cox, L., Ng, T. S. E, 2010. Maestro: A System for Scalable OpenFlow Control. Technical Report, TR10-08. Rice University.
Syme, D., Petricek, T., Lomov, D., 2011. The F# asynchronous programming model. In: Proceedings of the 13th International Conference on Practical Aspects of Declarative Languages, PADL’11, pp. 175–189.
Bremler-Barr A., Harchol Y., Hay D., 2016. OpenBox: a software-defined framework for developing, deploying, and managing network functions[C]. In: Proceedings of the ACM Conference on ACM SIGCOMM, 511-524.
Lantz, B., Connor, B., Hart, J., Berde, P., Radoslavov, P., Kobayashi, M., Koide, T., Higuchi, Y., Gerola, M., Snow, W., Parulkar, G., 2014. ONOS: Towards an Open, Distributed SDN OS. In: Proceedings ACM SIGCOMM HotSDN.
OpenFlow Switch Specification Version 1.1.0, ONF.
Madduri, Bader, Berry, Crobak (bib25) 2007
Foster, N., Harrison, R., Freedman, M.J., Monsanto, C., Rexford, J., Story, A., Walker, D., 2011. Frenetic: a network programming language. In: Proceedings of the 16th ACM SIGPLAN International Conference on Functional Programming, ICFP ’11, New York, NY, USA, pp. 279–291.
Bal, Heines (bib18) 1998; 6
Boost. Version 1.61.0.
Yeganeh S., Ganjali Y., 2016. Beehive: Simple Distributed Programming in Software-Defined Networks[J].
Tootoocian, A., Ganjali, Y., 2010. HyperFlow: A distributed control plane for OpenFlow. In: Proceedings ACM INM/WREN.
Juttner, A., Szviatovski, B., Mecs, I., Rajko, Z., 2001. Lagrange relaxation based method for the QoS routing problem. In: Proceedings IEEE INFOCOM, vol. 2, Apr, pp. 859–868.
Netty. Version 4.1.5.
Schmid S., Suomela J., 2013. Exploiting locality in distributed SDN control. In: Proceedings of the ACM SIGCOMM workshop on HotSDN. 121−126.
Dijkstra (bib9) 1959; 1
Wang, Crowcroft (bib40) 1996; 14
.
Fu, Y.,Bi, J.,Gao, K., Chen, Z.,Wu, J., Hao, B. Orion, 2014. A hybrid hierarchical control plane of software-defined networking for large-scale networks. In: IEEE Proceedings of the 22nd International Conference on Network Protocols (ICNP), pp. 569–576.
Andreas Voellmy, Yang, Ford (bib17) 2013
Blumofe, Leiserson (bib28) 1999; 46
Nascimento, M.. et al. 2011. Virtual routers as a service: The RouteFlow approach leveraging software-defined networks. In: Rroceedings Proceedings of the 6th Intern-ational Conference on Future Internet Technologies, CFI’11, p. 34–37.
Sharma, S., Staessens, D.. et al. 2013. Automatic configuration of routing control platforms in OpenFlow networks. In: Proceedings of the ACM SIGCOMM 2013 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, 491–492.
Floodlight.
Open vSwitch. Version 2.4.1.
Guoliang Xue, Sen (bib19) 2007; 15
Egilmez, H. E., Dane, S. T., Bagci, K. T., Tekalp, A. M., 2012. Openqos: An openflow controller design for multimedia delivery with end-toend quality of service over software-defined networks. In: IEEE Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), Asia-Pacific, pp. 1–8.
Kontesidou, G., Zarifis, K., 2009. Openflow Virtual Networking: A Flow-Based Network Virtualization Architecture [Dissertation]. Stockholm, Sweden.
LBaaS. Version 1.0.
Yeganeh, S.H., Ganjali, Y., Kandoo, 2012. A framework for efficient and scalable offloading of control applications. In: Proceedings ACM SIGCOMM HotSDN.
Sherwood, Chan, Covington, Gibb, Flajslik, Handigol, Huang, Kazemian, Kobayashi, Naous (bib33) 2010; 40
Trema.
ENSON, A NAND, A KELLA, A, ZHANG (bib31) 2011
10.1016/j.jnca.2017.03.009_bib27
10.1016/j.jnca.2017.03.009_bib26
10.1016/j.jnca.2017.03.009_bib29
10.1016/j.jnca.2017.03.009_bib23
10.1016/j.jnca.2017.03.009_bib22
ENSON (10.1016/j.jnca.2017.03.009_bib31) 2011
Amin Tootoonchian (10.1016/j.jnca.2017.03.009_bib12) 2012
10.1016/j.jnca.2017.03.009_bib24
10.1016/j.jnca.2017.03.009_bib41
Natasha Gude (10.1016/j.jnca.2017.03.009_bib11) 2008; 38
10.1016/j.jnca.2017.03.009_bib21
10.1016/j.jnca.2017.03.009_bib20
Bal (10.1016/j.jnca.2017.03.009_bib18) 1998; 6
Sherwood (10.1016/j.jnca.2017.03.009_bib33) 2010; 40
Koponen (10.1016/j.jnca.2017.03.009_bib4) 2010
Wang (10.1016/j.jnca.2017.03.009_bib40) 1996; 14
Blumofe (10.1016/j.jnca.2017.03.009_bib28) 1999; 46
10.1016/j.jnca.2017.03.009_bib16
10.1016/j.jnca.2017.03.009_bib38
Guoliang Xue (10.1016/j.jnca.2017.03.009_bib19) 2007; 15
10.1016/j.jnca.2017.03.009_bib37
10.1016/j.jnca.2017.03.009_bib39
Dijkstra (10.1016/j.jnca.2017.03.009_bib9) 1959; 1
10.1016/j.jnca.2017.03.009_bib34
10.1016/j.jnca.2017.03.009_bib14
10.1016/j.jnca.2017.03.009_bib36
10.1016/j.jnca.2017.03.009_bib13
Madduri (10.1016/j.jnca.2017.03.009_bib25) 2007
10.1016/j.jnca.2017.03.009_bib35
10.1016/j.jnca.2017.03.009_bib30
10.1016/j.jnca.2017.03.009_bib8
10.1016/j.jnca.2017.03.009_bib10
10.1016/j.jnca.2017.03.009_bib32
Andreas Voellmy (10.1016/j.jnca.2017.03.009_bib17) 2013
McKeown (10.1016/j.jnca.2017.03.009_bib1) 2008
10.1016/j.jnca.2017.03.009_bib3
10.1016/j.jnca.2017.03.009_bib2
10.1016/j.jnca.2017.03.009_bib5
10.1016/j.jnca.2017.03.009_bib7
10.1016/j.jnca.2017.03.009_bib6
Voellmy (10.1016/j.jnca.2017.03.009_bib15) 2012; 42
References_xml – reference: Trema.
– reference: Sharma, S., Staessens, D.. et al. 2013. Automatic configuration of routing control platforms in OpenFlow networks. In: Proceedings of the ACM SIGCOMM 2013 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, 491–492.
– reference: Bremler-Barr A., Harchol Y., Hay D., 2016. OpenBox: a software-defined framework for developing, deploying, and managing network functions[C]. In: Proceedings of the ACM Conference on ACM SIGCOMM, 511-524.
– reference: Dixit, A.A., Hao, F., Mukherjee, S.,Lakshman, T., Kompella, R., 2014. Elasticon: an elastic distributed SDN controller. In: Proceedings of the tenth ACM/IEEE symposium on architectures for networking and communications systems, pp. 17–28.
– reference: Juttner, A., Szviatovski, B., Mecs, I., Rajko, Z., 2001. Lagrange relaxation based method for the QoS routing problem. In: Proceedings IEEE INFOCOM, vol. 2, Apr, pp. 859–868.
– reference: Boost. Version 1.61.0.
– year: 2013
  ident: bib17
  article-title: and Paul Hudak. maple: Simplifying SDN programming using algorithmic policies
  publication-title: SIGCOMM
– volume: 6
  start-page: 74
  year: 1998
  end-page: 84
  ident: bib18
  article-title: Approaches for integrating task and data parallelism
  publication-title: IEEE Concurr. Comput. Soc.
– reference: Open vSwitch. Version 2.4.1. ▪
– volume: 38
  year: 2008
  ident: bib11
  article-title: NOX: towards an operating system for networks
  publication-title: ACM SIGCOMM Comput. Commun. Rev.
– reference: Foster, N., Harrison, R., Freedman, M.J., Monsanto, C., Rexford, J., Story, A., Walker, D., 2011. Frenetic: a network programming language. In: Proceedings of the 16th ACM SIGPLAN International Conference on Functional Programming, ICFP ’11, New York, NY, USA, pp. 279–291.
– year: 2007
  ident: bib25
  article-title: An experimental study of a parallel shortest path algorithm for solving large scale graph instances
  publication-title: ALENEX
– reference: OpenFlow Switch Specification Version 1.1.0, ONF.
– year: 2012
  ident: bib12
  article-title: On controller performance in software-defined networks
  publication-title: HotICE
– volume: 14
  start-page: 1228
  year: 1996
  end-page: 1234
  ident: bib40
  article-title: Quality-of-service routing for supporting multimedia applications
  publication-title: IEEE J. Sel. Areas Communi- cations
– reference: Qin, Y., Xiao, W., Ye, J., Wei, W., Zhao, C., 2008. The algorithm for parallel routing searching based on QosR Pareto optimization. In: International Conference on Advanced Language Processing and Web Information Technology.
– year: 2008
  ident: bib1
  article-title: OpenFlow: enabling innovation in campus networks
  publication-title: ACM SIGCOMM Comput. Commun. Rev.
– reference: David Erickson. et al. 2013. The Beacon OpenFlow controller. In: HotSDN '13 Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, pages 13-18.
– volume: 46
  start-page: 720
  year: 1999
  end-page: 748
  ident: bib28
  article-title: Scheduling multithreaded computations by work stealing [J]
  publication-title: J. ACM
– year: 2010
  ident: bib4
  article-title: Onix: a distributed control platform for large-scale production networks
  publication-title: OSDI
– reference: Syme, D., Petricek, T., Lomov, D., 2011. The F# asynchronous programming model. In: Proceedings of the 13th International Conference on Practical Aspects of Declarative Languages, PADL’11, pp. 175–189.
– reference: Lantz, B., Connor, B., Hart, J., Berde, P., Radoslavov, P., Kobayashi, M., Koide, T., Higuchi, Y., Gerola, M., Snow, W., Parulkar, G., 2014. ONOS: Towards an Open, Distributed SDN OS. In: Proceedings ACM SIGCOMM HotSDN.
– reference: Cai, Z. A., Cox, L., Ng, T. S. E, 2010. Maestro: A System for Scalable OpenFlow Control. Technical Report, TR10-08. Rice University.
– reference: Kontesidou, G., Zarifis, K., 2009. Openflow Virtual Networking: A Flow-Based Network Virtualization Architecture [Dissertation]. Stockholm, Sweden.
– year: 2011
  ident: bib31
  article-title: MicroTE: fine grained traffic engineering for data centers
  publication-title: ACM Conex.
– reference: Nascimento, M.. et al. 2011. Virtual routers as a service: The RouteFlow approach leveraging software-defined networks. In: Rroceedings Proceedings of the 6th Intern-ational Conference on Future Internet Technologies, CFI’11, p. 34–37.
– reference: Egilmez, H. E., Dane, S. T., Bagci, K. T., Tekalp, A. M., 2012. Openqos: An openflow controller design for multimedia delivery with end-toend quality of service over software-defined networks. In: IEEE Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), Asia-Pacific, pp. 1–8.
– reference: Schmid S., Suomela J., 2013. Exploiting locality in distributed SDN control. In: Proceedings of the ACM SIGCOMM workshop on HotSDN. 121−126.
– reference: Yeganeh, S.H., Ganjali, Y., Kandoo, 2012. A framework for efficient and scalable offloading of control applications. In: Proceedings ACM SIGCOMM HotSDN.
– reference: Yeganeh S., Ganjali Y., 2016. Beehive: Simple Distributed Programming in Software-Defined Networks[J].
– reference: .
– reference: LBaaS. Version 1.0.
– reference: SHERWOOD, R., KOK-KIONG Y.. Cbench: an OpenFlow Controller Benchmarker.
– volume: 40
  start-page: 129
  year: 2010
  end-page: 130
  ident: bib33
  article-title: Carving research slices out of your production networks with OpenFlow
  publication-title: ACM SIGCOMM Comput. Commun. Rev.
– reference: Tootoocian, A., Ganjali, Y., 2010. HyperFlow: A distributed control plane for OpenFlow. In: Proceedings ACM INM/WREN.
– reference: Netty. Version 4.1.5.
– reference: Fu, Y.,Bi, J.,Gao, K., Chen, Z.,Wu, J., Hao, B. Orion, 2014. A hybrid hierarchical control plane of software-defined networking for large-scale networks. In: IEEE Proceedings of the 22nd International Conference on Network Protocols (ICNP), pp. 569–576.
– reference: Floodlight.
– volume: 1
  start-page: 269C271
  year: 1959
  ident: bib9
  article-title: Dijkstra: a note on two problems in connexion with graphs
  publication-title: Numer. Math.
– volume: 15
  year: 2007
  ident: bib19
  article-title: Finding a path subject to many additive QoS constraints
  publication-title: IEEE/ACM Trans. Netw.
– volume: 42
  start-page: 289
  year: 2012
  end-page: 290
  ident: bib15
  article-title: Scaling software-defined network controllers on multicore servers
  publication-title: ACM SIGCOMM Comput. Commun. Rev. - Spec. Oct. Issue SIGCOMM '12
– reference: Bonetta, D., Binder, W., Pautasso, C., 2013. TigerQuoll: Parallel Event-based JavaScript. In: Proceedings of the 18th ACM SIGPLAN symposium on principles and practice of parallel programming, PPoPP’13, p. 251–260.
– ident: 10.1016/j.jnca.2017.03.009_bib26
  doi: 10.1145/2442516.2442541
– ident: 10.1016/j.jnca.2017.03.009_bib41
  doi: 10.1145/2934872.2934875
– ident: 10.1016/j.jnca.2017.03.009_bib32
– ident: 10.1016/j.jnca.2017.03.009_bib38
– volume: 1
  start-page: 269C271
  issue: 1
  year: 1959
  ident: 10.1016/j.jnca.2017.03.009_bib9
  article-title: Dijkstra: a note on two problems in connexion with graphs
  publication-title: Numer. Math.
  doi: 10.1007/BF01386390
– ident: 10.1016/j.jnca.2017.03.009_bib36
– ident: 10.1016/j.jnca.2017.03.009_bib34
– ident: 10.1016/j.jnca.2017.03.009_bib2
– ident: 10.1016/j.jnca.2017.03.009_bib6
– year: 2013
  ident: 10.1016/j.jnca.2017.03.009_bib17
  article-title: and Paul Hudak. maple: Simplifying SDN programming using algorithmic policies
  publication-title: SIGCOMM
– ident: 10.1016/j.jnca.2017.03.009_bib30
  doi: 10.1145/2486001.2491695
– year: 2007
  ident: 10.1016/j.jnca.2017.03.009_bib25
  article-title: An experimental study of a parallel shortest path algorithm for solving large scale graph instances
  publication-title: ALENEX
– ident: 10.1016/j.jnca.2017.03.009_bib29
  doi: 10.1145/2002396.2002405
– volume: 46
  start-page: 720
  issue: 5
  year: 1999
  ident: 10.1016/j.jnca.2017.03.009_bib28
  article-title: Scheduling multithreaded computations by work stealing [J]
  publication-title: J. ACM
  doi: 10.1145/324133.324234
– ident: 10.1016/j.jnca.2017.03.009_bib21
  doi: 10.1109/ALPIT.2008.89
– year: 2010
  ident: 10.1016/j.jnca.2017.03.009_bib4
  article-title: Onix: a distributed control platform for large-scale production networks
  publication-title: OSDI
– year: 2011
  ident: 10.1016/j.jnca.2017.03.009_bib31
  article-title: MicroTE: fine grained traffic engineering for data centers
  publication-title: ACM Conex.
– ident: 10.1016/j.jnca.2017.03.009_bib14
– ident: 10.1016/j.jnca.2017.03.009_bib23
  doi: 10.1145/2034773.2034812
– ident: 10.1016/j.jnca.2017.03.009_bib35
  doi: 10.1109/INFCOM.2001.916277
– ident: 10.1016/j.jnca.2017.03.009_bib37
– ident: 10.1016/j.jnca.2017.03.009_bib16
– volume: 40
  start-page: 129
  issue: 1
  year: 2010
  ident: 10.1016/j.jnca.2017.03.009_bib33
  article-title: Carving research slices out of your production networks with OpenFlow
  publication-title: ACM SIGCOMM Comput. Commun. Rev.
  doi: 10.1145/1672308.1672333
– ident: 10.1016/j.jnca.2017.03.009_bib10
  doi: 10.1109/ICNP.2014.91
– ident: 10.1016/j.jnca.2017.03.009_bib13
  doi: 10.1145/2491185.2491189
– volume: 6
  start-page: 74
  year: 1998
  ident: 10.1016/j.jnca.2017.03.009_bib18
  article-title: Approaches for integrating task and data parallelism
– ident: 10.1016/j.jnca.2017.03.009_bib3
– ident: 10.1016/j.jnca.2017.03.009_bib8
  doi: 10.1145/2658260.2658261
– volume: 15
  issue: 1
  year: 2007
  ident: 10.1016/j.jnca.2017.03.009_bib19
  article-title: Finding a path subject to many additive QoS constraints
  publication-title: IEEE/ACM Trans. Netw.
– ident: 10.1016/j.jnca.2017.03.009_bib5
– ident: 10.1016/j.jnca.2017.03.009_bib7
  doi: 10.1145/2491185.2491198
– volume: 38
  issue: 3
  year: 2008
  ident: 10.1016/j.jnca.2017.03.009_bib11
  article-title: NOX: towards an operating system for networks
  publication-title: ACM SIGCOMM Comput. Commun. Rev.
– ident: 10.1016/j.jnca.2017.03.009_bib22
– ident: 10.1016/j.jnca.2017.03.009_bib20
– year: 2008
  ident: 10.1016/j.jnca.2017.03.009_bib1
  article-title: OpenFlow: enabling innovation in campus networks
  publication-title: ACM SIGCOMM Comput. Commun. Rev.
  doi: 10.1145/1355734.1355746
– ident: 10.1016/j.jnca.2017.03.009_bib24
– ident: 10.1016/j.jnca.2017.03.009_bib27
  doi: 10.1007/978-3-642-18378-2_15
– ident: 10.1016/j.jnca.2017.03.009_bib39
  doi: 10.1145/2890955.2890958
– year: 2012
  ident: 10.1016/j.jnca.2017.03.009_bib12
  article-title: On controller performance in software-defined networks
  publication-title: HotICE
– volume: 14
  start-page: 1228
  year: 1996
  ident: 10.1016/j.jnca.2017.03.009_bib40
  article-title: Quality-of-service routing for supporting multimedia applications
  publication-title: IEEE J. Sel. Areas Communi- cations
  doi: 10.1109/49.536364
– volume: 42
  start-page: 289
  issue: 4
  year: 2012
  ident: 10.1016/j.jnca.2017.03.009_bib15
  article-title: Scaling software-defined network controllers on multicore servers
  publication-title: ACM SIGCOMM Comput. Commun. Rev. - Spec. Oct. Issue SIGCOMM '12
  doi: 10.1145/2377677.2377735
SSID ssj0006493
Score 2.1603425
Snippet Using Software-Defined Networking (SDN), the flexibility and programmability of networks can be significantly increased through the decoupling of the control...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 46
SubjectTerms C.2.1 [Computer-Communication Networks]: Network Architecture and Design—Network Communications
D.1.3 [Concurrent Programming]: Parallel Programming
Event-based programming
Fine-grained parallelism
Languages
Multithreaded controller
Software-defined networking
Title ParaFlow: Fine-grained parallel SDN controller for large-scale networks
URI https://dx.doi.org/10.1016/j.jnca.2017.03.009
Volume 87
WOSCitedRecordID wos000401883400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-8592
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006493
  issn: 1084-8045
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLZQ2WE7AGObBozJh90qo6ROHHs3xChsQlWnMdRb5DgOSxWFqi0__vw9x3YadQONwy5R5TZOk_fpfc8vz99D6JNIDGnGITFCJ8QoyhEuWUA4lyaglWLQiPpcXSSjEZ9MxNglcxZNO4GkrvnDg5j9V1PDGBjbbJ19hrnbSWEAPoPR4Qhmh-M_GX4s53JY3dybtf4QYkhybbpAQFxpVL6rSlf9H19GvkS90vOm0LAyBeFkAQbT_dpWhi8eiVvd135DXNMTot99D94mbVy179izo6n7KW8bp1-uDZz8ake-l9J5wpkuu0mJMFkVTzk_GvAIyM8qRXpH65jVekqXeLSca0XB__DmNrEwPZqa7I65jNWjFSvu8u_r1yitLTT0NWzT1MyRmjnSgKbNls_NQRIL3kObx19PJ99a-maRcLsy7B24nVa2KHD9n_w9mulEKJc7aMuZCB9bSLxGG7reRdu-bQd2XnwXvepoUL5BZx4vn3EXLdijBQNa8AotGNCCO2jBHi1v0c_h6eXJOXHdNYiiQbAkcaGCGO4kUkzDojsbUKl1VGhe0DzW4Ko1U7CYYZnIZF4EkjMa5jEPNcszKjNG36FefVPr9wjLTOUiiiQVOYTfKucFi4FElea5BpKgeyj0TylVTnredECp0sfts4f67TkzK7zy5K9j__BTFzrakDAFLD1x3v6zrnKAXq7A_gH1lvNbfYheqLtluZh_dED6DUG4jgc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ParaFlow%3A+Fine-grained+parallel+SDN+controller+for+large-scale+networks&rft.jtitle=Journal+of+network+and+computer+applications&rft.au=Song%2C+Ping&rft.au=Liu%2C+Yi&rft.au=Liu%2C+Chi&rft.au=Qian%2C+Depei&rft.date=2017-06-01&rft.issn=1084-8045&rft.volume=87&rft.spage=46&rft.epage=59&rft_id=info:doi/10.1016%2Fj.jnca.2017.03.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jnca_2017_03_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1084-8045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1084-8045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1084-8045&client=summon