Assessment of MV XLPE cable aging state based on PSO-XGBoost algorithm
•Cable aging is a major risk to the operation of power systems.•A PSO-XGBoost state assessment model is proposed to evaluate the aging state of MV XLPE cables.•The PSO algorithm is used to optimize the parameters of the XGBoost model.•The experimental results show that the proposed model has good ac...
Uloženo v:
| Vydáno v: | Electric power systems research Ročník 221; s. 109427 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.08.2023
|
| Témata: | |
| ISSN: | 0378-7796 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Cable aging is a major risk to the operation of power systems.•A PSO-XGBoost state assessment model is proposed to evaluate the aging state of MV XLPE cables.•The PSO algorithm is used to optimize the parameters of the XGBoost model.•The experimental results show that the proposed model has good accuracy.
Cable aging is one of the main security risks to power systems. With the widely used cables in power systems, the accurate assessment of cable aging status is increasingly important. This study proposes an efficient assessment model based on the PSO-XGBoost algorithm, which integrates the particle swarm optimization (PSO) algorithm and the extreme gradient boosting (XGBoost) algorithm. The XGBoost model is established to assess the cable aging status with the inputs of partial discharge, operating life, corrosion condition and load condition. The PSO algorithm automatically optimizes parameters during XGBoost model training. Then, the standard performance evaluation metrics of the proposed assessment model are compared with four advanced classification models. The accuracy, precision, recall and F1-score of the assessment model are above 98%, indicating that the proposed PSO-XGBoost model can accurately assess the cable aging state. Furthermore, these calculation results of the proposed model are better than the other four benchmark models, which shows that the proposed model performs better in cable aging status assessment than the existing models. |
|---|---|
| AbstractList | •Cable aging is a major risk to the operation of power systems.•A PSO-XGBoost state assessment model is proposed to evaluate the aging state of MV XLPE cables.•The PSO algorithm is used to optimize the parameters of the XGBoost model.•The experimental results show that the proposed model has good accuracy.
Cable aging is one of the main security risks to power systems. With the widely used cables in power systems, the accurate assessment of cable aging status is increasingly important. This study proposes an efficient assessment model based on the PSO-XGBoost algorithm, which integrates the particle swarm optimization (PSO) algorithm and the extreme gradient boosting (XGBoost) algorithm. The XGBoost model is established to assess the cable aging status with the inputs of partial discharge, operating life, corrosion condition and load condition. The PSO algorithm automatically optimizes parameters during XGBoost model training. Then, the standard performance evaluation metrics of the proposed assessment model are compared with four advanced classification models. The accuracy, precision, recall and F1-score of the assessment model are above 98%, indicating that the proposed PSO-XGBoost model can accurately assess the cable aging state. Furthermore, these calculation results of the proposed model are better than the other four benchmark models, which shows that the proposed model performs better in cable aging status assessment than the existing models. |
| ArticleNumber | 109427 |
| Author | Zhang, Chi Wei, Zeping Pan, Qiaosheng Wei, Xinyuan Wan, Aode |
| Author_xml | – sequence: 1 givenname: Qiaosheng orcidid: 0000-0002-3072-7265 surname: Pan fullname: Pan, Qiaosheng organization: School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, Anhui 230009, China – sequence: 2 givenname: Chi orcidid: 0000-0001-7959-294X surname: Zhang fullname: Zhang, Chi organization: School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, Anhui 230009, China – sequence: 3 givenname: Xinyuan orcidid: 0000-0002-8633-9990 surname: Wei fullname: Wei, Xinyuan organization: School of Electrical and Information Engineering, Anhui University of Technology, Ma'anshan 243032, China – sequence: 4 givenname: Aode surname: Wan fullname: Wan, Aode organization: School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, Anhui 230009, China – sequence: 5 givenname: Zeping surname: Wei fullname: Wei, Zeping email: zeping.wei@changhong.com organization: Sichuan Changhong Electric Co., Ltd, Mianyang, Sichuan 621000, China |
| BookMark | eNp9kMtqAjEUhrOwUG37Al3lBcZmJpOJA91YUVuwKPSCu5DLiY2MiSSh0LfviF114erA4Xw___lGaOCDB4TuSzIuSdk87MdwTHFckYr2i7au-AANCeWTgvO2uUajlPaEkKblbIgW05QgpQP4jIPFr594u9rMsZaqAyx3zu9wyjIDVjKBwcHjzdu62C6fQkgZy24Xostfh1t0ZWWX4O5v3qCPxfx99lys1suX2XRVaEpILpihti_BLZPSNHXFoOHWMNBE15YrPlEKgKmWSQp1rSRvKwJtU_b3oKix9AZNzrk6hpQiWKFdX88Fn6N0nSiJODkQe3FyIE4OxNlBj1b_0GN0Bxl_LkOPZwj6p74dRJG0A6_BuAg6CxPcJfwXXbN59g |
| CitedBy_id | crossref_primary_10_1002_nag_3972 crossref_primary_10_3390_pr11102900 crossref_primary_10_1016_j_apt_2024_104641 crossref_primary_10_1016_j_epsr_2024_111392 crossref_primary_10_3390_electronics14173521 crossref_primary_10_1007_s10765_025_03638_x crossref_primary_10_1108_ECAM_08_2024_1113 crossref_primary_10_1016_j_epsr_2025_111583 crossref_primary_10_3390_pr12050878 crossref_primary_10_1109_TIM_2025_3550602 |
| Cites_doi | 10.1049/hve.2017.0037 10.1109/TPWRD.2011.2124474 10.1109/TCBB.2019.2911071 10.1023/A:1022627411411 10.1023/A:1010933404324 10.1109/TDEI.2021.009783 10.1007/s00500-016-2474-6 10.1109/TDEI.2019.008502 10.1109/TDEI.2019.008208 10.14257/ijca.2017.10.9.01 |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.epsr.2023.109427 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_epsr_2023_109427 S0378779623003164 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADEZE ADHUB ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC BNPGV CS3 DU5 E.L EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSH SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-5d3f7797f5aad6425e67fd5ec0c4f7b78bbee5b95a3e44ba7920e961f5aeb3df3 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000998314200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-7796 |
| IngestDate | Tue Nov 18 22:29:01 EST 2025 Sat Nov 29 07:10:29 EST 2025 Sun Apr 06 06:53:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cable aging status assessment Extreme gradient boosting algorithm Particle swarm optimization algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-5d3f7797f5aad6425e67fd5ec0c4f7b78bbee5b95a3e44ba7920e961f5aeb3df3 |
| ORCID | 0000-0002-8633-9990 0000-0001-7959-294X 0000-0002-3072-7265 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_epsr_2023_109427 crossref_primary_10_1016_j_epsr_2023_109427 elsevier_sciencedirect_doi_10_1016_j_epsr_2023_109427 |
| PublicationCentury | 2000 |
| PublicationDate | August 2023 2023-08-00 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Electric power systems research |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Song, Chen (bib0019) 2010; 3 Chang (bib0018) 2019; 26 Wu (bib0007) 2013; 5 Huang (bib0010) 2019; 41 Zhang (bib0011) 2018 Bawart (bib0006) 2020 Cortes, Vapnik (bib0027) 1995; 20 Song, Liu, Wang (bib0008) 2018 Sahoo (bib0015) 2020 Chang, Boyanapalli (bib0016) 2021; 28 Wu, Liu, Wang (bib0017) 2021 Wu, Chang (bib0004) 2011; 26 Wang, Tan, Liu (bib0023) 2018; 22 Huo (bib0012) 2019 Hu (bib0013) 2021 Breiman (bib0026) 2001; 45 Yazdandoust, Haghjoo, Shahrtash (bib0020) 2008 Zhou, Yi, Dong (bib0002) 2017; 2 . Li (bib0014) 2017; 10 Chen, Guestrin (bib0021) 2016 Boler (bib0005) 2019 Yu, Chen, Meng (bib0001) 2020; 27 Wu (bib0009) 2019; Vol. 33 Zhou, Yang, Li (bib0003) 2016 Ogunleye, Wang (bib0022) 2019; 17 Wang, Sun, Xue (bib0024) 2018 Chang (10.1016/j.epsr.2023.109427_bib0016) 2021; 28 Wu (10.1016/j.epsr.2023.109427_bib0007) 2013; 5 Sahoo (10.1016/j.epsr.2023.109427_bib0015) 2020 Huang (10.1016/j.epsr.2023.109427_bib0010) 2019; 41 Yu (10.1016/j.epsr.2023.109427_bib0001) 2020; 27 Zhou (10.1016/j.epsr.2023.109427_bib0002) 2017; 2 Wu (10.1016/j.epsr.2023.109427_bib0004) 2011; 26 Wu (10.1016/j.epsr.2023.109427_bib0017) 2021 10.1016/j.epsr.2023.109427_bib0025 Wang (10.1016/j.epsr.2023.109427_bib0024) 2018 Li (10.1016/j.epsr.2023.109427_bib0014) 2017; 10 Wu (10.1016/j.epsr.2023.109427_bib0009) 2019; Vol. 33 Cortes (10.1016/j.epsr.2023.109427_bib0027) 1995; 20 Zhou (10.1016/j.epsr.2023.109427_bib0003) 2016 Boler (10.1016/j.epsr.2023.109427_bib0005) 2019 Bawart (10.1016/j.epsr.2023.109427_bib0006) 2020 Ogunleye (10.1016/j.epsr.2023.109427_bib0022) 2019; 17 Song (10.1016/j.epsr.2023.109427_bib0019) 2010; 3 Hu (10.1016/j.epsr.2023.109427_bib0013) 2021 Song (10.1016/j.epsr.2023.109427_bib0008) 2018 Yazdandoust (10.1016/j.epsr.2023.109427_bib0020) 2008 Zhang (10.1016/j.epsr.2023.109427_bib0011) 2018 Huo (10.1016/j.epsr.2023.109427_bib0012) 2019 Chang (10.1016/j.epsr.2023.109427_bib0018) 2019; 26 Breiman (10.1016/j.epsr.2023.109427_bib0026) 2001; 45 Chen (10.1016/j.epsr.2023.109427_bib0021) 2016 Wang (10.1016/j.epsr.2023.109427_bib0023) 2018; 22 |
| References_xml | – start-page: 258 year: 2021 end-page: 262 ident: bib0013 article-title: Cable life prediction based on BP neural network publication-title: 2021 International Conference on Networking Systems of AI (INSAI) – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0027 article-title: Support-vector networks[J] publication-title: Mach. Learn. – volume: 26 start-page: 1636 year: 2019 end-page: 1644 ident: bib0018 article-title: Decision tree rules for insulation condition assessment of pre-molded power cable joints with artificial defects publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0026 article-title: Random forests publication-title: Mach. Learn. – volume: 5 start-page: 1075 year: 2013 end-page: 1080 ident: bib0007 article-title: Review of acceptance and preventive test technologies of power cable lines publication-title: East China Electr. Power – year: 2018 ident: bib0008 article-title: Ultra-low frequency dielectric loss detection and aging state evaluation of 10kV XLPE cable publication-title: 2018 China International Conference on Electricity Distribution (CICED) – year: 2018 ident: bib0024 article-title: Evolving deep convolutional neural networks by variable-length particle swarm optimization for image classification publication-title: 2018 IEEE Congress on Evolutionary Computation (CEC) – year: 2021 ident: bib0017 article-title: XLPE cable health assessment based on Relief-F feature weighted FSVM publication-title: IOP Conference Series: Earth and Environmental Science – volume: 17 start-page: 2131 year: 2019 end-page: 2140 ident: bib0022 article-title: XGBoost model for chronic kidney disease diagnosis publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. – start-page: 1 year: 2019 end-page: 6 ident: bib0012 article-title: Smart-grid monitoring: enhanced machine learning for cable diagnostics publication-title: 2019 IEEE International Symposium on Power Line Communications and Its Applications (ISPLC) – volume: 3 year: 2010 ident: bib0019 article-title: Application of fuzzy decision tree in power cable insulation condition assessment publication-title: 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE) – year: 2016 ident: bib0003 article-title: An integrated cable condition diagnosis and fault localization system via sheath current monitoring publication-title: 2016 International Conference on Condition Monitoring and Diagnosis (CMD) – year: 2016 ident: bib0021 article-title: Xgboost: a scalable tree boosting system publication-title: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining – start-page: 2021 year: 2019 end-page: 2025 ident: bib0005 article-title: Aging condition assessment for live XLPE-type cables through precise high frequency impedance phase detection publication-title: 2019 IEEE Energy Conversion Congress and Exposition (ECCE) – start-page: 1 year: 2020 end-page: 6 ident: bib0015 article-title: Health index analysis of XLPE cable insulation using machine learning technique publication-title: 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON) – volume: 26 start-page: 1585 year: 2011 end-page: 1591 ident: bib0004 article-title: The use of partial discharges as an online monitoring system for underground cable joints publication-title: IEEE Trans. Power Delivery – reference: . – volume: Vol. 33 start-page: 637 year: 2019 end-page: 642 ident: bib0009 article-title: Risk assessment of cable line based on analytic hierarchy process publication-title: J. Xi'an Polytech. Univ. – start-page: 1 year: 2020 end-page: 5 ident: bib0006 article-title: Estimation of the remaining life time of medium voltage power cables based on the aging index using unique algorithms and a large database publication-title: 2020 IEEE/PES Transmission and Distribution Conference and Exposition (T&D) – volume: 10 start-page: 1 year: 2017 end-page: 14 ident: bib0014 article-title: Condition assessment of power cable for incomplete information based on probabilistic neural network publication-title: Int. J. Control Autom. – volume: 28 start-page: 2170 year: 2021 end-page: 2177 ident: bib0016 article-title: Assessment of the insulation status aging in power cable joints using support vector machine publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 41 start-page: 107 year: 2019 end-page: 110 ident: bib0010 article-title: Cable insulation life evaluation model based on improved fuzzy analytic hierarchy process publication-title: Electrical Autom. – volume: 2 start-page: 179 year: 2017 end-page: 187 ident: bib0002 article-title: Review of recent research towards power cable life cycle management publication-title: High Volt. – volume: 27 start-page: 900 year: 2020 end-page: 908 ident: bib0001 article-title: Numerical analysis of thermo-electric field for AC XLPE cables with different service times in DC operation based on conduction current measurement publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 22 start-page: 387 year: 2018 end-page: 408 ident: bib0023 article-title: Particle swarm optimization algorithm: an overview publication-title: Soft Comput. – year: 2008 ident: bib0020 article-title: Insulation status assessment in high voltage cables based on decision tree algorithm publication-title: 2008 IEEE Canada Electric Power Conference – start-page: 855 year: 2018 end-page: 860 ident: bib0011 article-title: A state assessment algorithm of power cable based on association rules data mining technology publication-title: 2018 China International Conference on Electricity Distribution (CICED) – start-page: 2021 year: 2019 ident: 10.1016/j.epsr.2023.109427_bib0005 article-title: Aging condition assessment for live XLPE-type cables through precise high frequency impedance phase detection – volume: 2 start-page: 179 issue: 3 year: 2017 ident: 10.1016/j.epsr.2023.109427_bib0002 article-title: Review of recent research towards power cable life cycle management publication-title: High Volt. doi: 10.1049/hve.2017.0037 – year: 2021 ident: 10.1016/j.epsr.2023.109427_bib0017 article-title: XLPE cable health assessment based on Relief-F feature weighted FSVM – start-page: 1 year: 2020 ident: 10.1016/j.epsr.2023.109427_bib0006 article-title: Estimation of the remaining life time of medium voltage power cables based on the aging index using unique algorithms and a large database – year: 2018 ident: 10.1016/j.epsr.2023.109427_bib0024 article-title: Evolving deep convolutional neural networks by variable-length particle swarm optimization for image classification – year: 2016 ident: 10.1016/j.epsr.2023.109427_bib0003 article-title: An integrated cable condition diagnosis and fault localization system via sheath current monitoring – volume: 26 start-page: 1585 issue: 3 year: 2011 ident: 10.1016/j.epsr.2023.109427_bib0004 article-title: The use of partial discharges as an online monitoring system for underground cable joints publication-title: IEEE Trans. Power Delivery doi: 10.1109/TPWRD.2011.2124474 – ident: 10.1016/j.epsr.2023.109427_bib0025 – volume: 3 year: 2010 ident: 10.1016/j.epsr.2023.109427_bib0019 article-title: Application of fuzzy decision tree in power cable insulation condition assessment – volume: 17 start-page: 2131 issue: 6 year: 2019 ident: 10.1016/j.epsr.2023.109427_bib0022 article-title: XGBoost model for chronic kidney disease diagnosis publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2019.2911071 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.epsr.2023.109427_bib0027 article-title: Support-vector networks[J] publication-title: Mach. Learn. doi: 10.1023/A:1022627411411 – start-page: 258 year: 2021 ident: 10.1016/j.epsr.2023.109427_bib0013 article-title: Cable life prediction based on BP neural network – year: 2008 ident: 10.1016/j.epsr.2023.109427_bib0020 article-title: Insulation status assessment in high voltage cables based on decision tree algorithm – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.epsr.2023.109427_bib0026 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – year: 2016 ident: 10.1016/j.epsr.2023.109427_bib0021 article-title: Xgboost: a scalable tree boosting system – start-page: 1 year: 2019 ident: 10.1016/j.epsr.2023.109427_bib0012 article-title: Smart-grid monitoring: enhanced machine learning for cable diagnostics – volume: Vol. 33 start-page: 637 issue: 6 year: 2019 ident: 10.1016/j.epsr.2023.109427_bib0009 article-title: Risk assessment of cable line based on analytic hierarchy process publication-title: J. Xi'an Polytech. Univ. – start-page: 855 year: 2018 ident: 10.1016/j.epsr.2023.109427_bib0011 article-title: A state assessment algorithm of power cable based on association rules data mining technology – start-page: 1 year: 2020 ident: 10.1016/j.epsr.2023.109427_bib0015 article-title: Health index analysis of XLPE cable insulation using machine learning technique – volume: 28 start-page: 2170 issue: 6 year: 2021 ident: 10.1016/j.epsr.2023.109427_bib0016 article-title: Assessment of the insulation status aging in power cable joints using support vector machine publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2021.009783 – volume: 22 start-page: 387 issue: 2 year: 2018 ident: 10.1016/j.epsr.2023.109427_bib0023 article-title: Particle swarm optimization algorithm: an overview publication-title: Soft Comput. doi: 10.1007/s00500-016-2474-6 – volume: 27 start-page: 900 issue: 3 year: 2020 ident: 10.1016/j.epsr.2023.109427_bib0001 article-title: Numerical analysis of thermo-electric field for AC XLPE cables with different service times in DC operation based on conduction current measurement publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2019.008502 – year: 2018 ident: 10.1016/j.epsr.2023.109427_bib0008 article-title: Ultra-low frequency dielectric loss detection and aging state evaluation of 10kV XLPE cable – volume: 41 start-page: 107 issue: 04 year: 2019 ident: 10.1016/j.epsr.2023.109427_bib0010 article-title: Cable insulation life evaluation model based on improved fuzzy analytic hierarchy process publication-title: Electrical Autom. – volume: 26 start-page: 1636 issue: 5 year: 2019 ident: 10.1016/j.epsr.2023.109427_bib0018 article-title: Decision tree rules for insulation condition assessment of pre-molded power cable joints with artificial defects publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2019.008208 – volume: 10 start-page: 1 issue: 9 year: 2017 ident: 10.1016/j.epsr.2023.109427_bib0014 article-title: Condition assessment of power cable for incomplete information based on probabilistic neural network publication-title: Int. J. Control Autom. doi: 10.14257/ijca.2017.10.9.01 – volume: 5 start-page: 1075 year: 2013 ident: 10.1016/j.epsr.2023.109427_bib0007 article-title: Review of acceptance and preventive test technologies of power cable lines publication-title: East China Electr. Power |
| SSID | ssj0006975 |
| Score | 2.4443915 |
| Snippet | •Cable aging is a major risk to the operation of power systems.•A PSO-XGBoost state assessment model is proposed to evaluate the aging state of MV XLPE... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109427 |
| SubjectTerms | Cable aging status assessment Extreme gradient boosting algorithm Particle swarm optimization algorithm |
| Title | Assessment of MV XLPE cable aging state based on PSO-XGBoost algorithm |
| URI | https://dx.doi.org/10.1016/j.epsr.2023.109427 |
| Volume | 221 |
| WOSCitedRecordID | wos000998314200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database issn: 0378-7796 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006975 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHxFOUl3zgFkXaJHa8Pi7VlodKWdSy5BY5fnRTQbLabFH594wfmw0tqgCJS7SKYm8ynzWeGc98g9CrNM8kESmNE7B3Y6LB3RFSVTEROUkqnhnh2r3ND9nR0bgo-Cz07-xcOwHWNOOLC778r1DDPQDbls7-Bdz9pHADfgPocAXY4fpHwE96rk2X3jKPisPZNJKuRMq3JHJFRJHdv5Q9K5gdf4yLN6_btrPh39N2Va8X336J2LtWObWMlralWiB_tscNg0iYO4VyGuxTLdpuocOOOIxJ7y_q7UGQyyIo6ubH-XZ9fvEzTFqlh9GINOtz4UKI7EqZjC_NAleVMd-6dqN2U18ZfUWF-2jCGezGneVrTTPLeEU8gcAlauxjO7GdF_woUE45uYl2U0Y5aLfdybtp8b7fk3PuKJf7FwnlUz7T7_I__d5EGZgdJ_fQ3eAv4InH-T66oZsH6M6ARfIhOtgijluDP8yxRRw7xLFDHDvEsUMctw0eII57xB-hzwfTk_23cWiPEUv43HVMVWbgW5ihQihwI6nOmVFUy5EkhlVsXFVa04pTkWlCKsF4OtI8T-B5XWXKZI_RTtM2-gnCmifcqERwojTROhFjbkbKKGsB5lzKPZRsJFLKwB1vW5h8LTdJgmellWJppVh6Ke6hqB-z9Mwp1z5NN4Iug-3nbboS1sU1457-47hn6PZ2-T5HO-vVuX6Bbsnv67pbvQzL5ydIZnzV |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+MV+XLPE+cable+aging+state+based+on+PSO-XGBoost+algorithm&rft.jtitle=Electric+power+systems+research&rft.au=Pan%2C+Qiaosheng&rft.au=Zhang%2C+Chi&rft.au=Wei%2C+Xinyuan&rft.au=Wan%2C+Aode&rft.date=2023-08-01&rft.pub=Elsevier+B.V&rft.issn=0378-7796&rft.volume=221&rft_id=info:doi/10.1016%2Fj.epsr.2023.109427&rft.externalDocID=S0378779623003164 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |