Assessment of MV XLPE cable aging state based on PSO-XGBoost algorithm

•Cable aging is a major risk to the operation of power systems.•A PSO-XGBoost state assessment model is proposed to evaluate the aging state of MV XLPE cables.•The PSO algorithm is used to optimize the parameters of the XGBoost model.•The experimental results show that the proposed model has good ac...

Full description

Saved in:
Bibliographic Details
Published in:Electric power systems research Vol. 221; p. 109427
Main Authors: Pan, Qiaosheng, Zhang, Chi, Wei, Xinyuan, Wan, Aode, Wei, Zeping
Format: Journal Article
Language:English
Published: Elsevier B.V 01.08.2023
Subjects:
ISSN:0378-7796
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Cable aging is a major risk to the operation of power systems.•A PSO-XGBoost state assessment model is proposed to evaluate the aging state of MV XLPE cables.•The PSO algorithm is used to optimize the parameters of the XGBoost model.•The experimental results show that the proposed model has good accuracy. Cable aging is one of the main security risks to power systems. With the widely used cables in power systems, the accurate assessment of cable aging status is increasingly important. This study proposes an efficient assessment model based on the PSO-XGBoost algorithm, which integrates the particle swarm optimization (PSO) algorithm and the extreme gradient boosting (XGBoost) algorithm. The XGBoost model is established to assess the cable aging status with the inputs of partial discharge, operating life, corrosion condition and load condition. The PSO algorithm automatically optimizes parameters during XGBoost model training. Then, the standard performance evaluation metrics of the proposed assessment model are compared with four advanced classification models. The accuracy, precision, recall and F1-score of the assessment model are above 98%, indicating that the proposed PSO-XGBoost model can accurately assess the cable aging state. Furthermore, these calculation results of the proposed model are better than the other four benchmark models, which shows that the proposed model performs better in cable aging status assessment than the existing models.
AbstractList •Cable aging is a major risk to the operation of power systems.•A PSO-XGBoost state assessment model is proposed to evaluate the aging state of MV XLPE cables.•The PSO algorithm is used to optimize the parameters of the XGBoost model.•The experimental results show that the proposed model has good accuracy. Cable aging is one of the main security risks to power systems. With the widely used cables in power systems, the accurate assessment of cable aging status is increasingly important. This study proposes an efficient assessment model based on the PSO-XGBoost algorithm, which integrates the particle swarm optimization (PSO) algorithm and the extreme gradient boosting (XGBoost) algorithm. The XGBoost model is established to assess the cable aging status with the inputs of partial discharge, operating life, corrosion condition and load condition. The PSO algorithm automatically optimizes parameters during XGBoost model training. Then, the standard performance evaluation metrics of the proposed assessment model are compared with four advanced classification models. The accuracy, precision, recall and F1-score of the assessment model are above 98%, indicating that the proposed PSO-XGBoost model can accurately assess the cable aging state. Furthermore, these calculation results of the proposed model are better than the other four benchmark models, which shows that the proposed model performs better in cable aging status assessment than the existing models.
ArticleNumber 109427
Author Zhang, Chi
Wei, Zeping
Pan, Qiaosheng
Wei, Xinyuan
Wan, Aode
Author_xml – sequence: 1
  givenname: Qiaosheng
  orcidid: 0000-0002-3072-7265
  surname: Pan
  fullname: Pan, Qiaosheng
  organization: School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
– sequence: 2
  givenname: Chi
  orcidid: 0000-0001-7959-294X
  surname: Zhang
  fullname: Zhang, Chi
  organization: School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
– sequence: 3
  givenname: Xinyuan
  orcidid: 0000-0002-8633-9990
  surname: Wei
  fullname: Wei, Xinyuan
  organization: School of Electrical and Information Engineering, Anhui University of Technology, Ma'anshan 243032, China
– sequence: 4
  givenname: Aode
  surname: Wan
  fullname: Wan, Aode
  organization: School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
– sequence: 5
  givenname: Zeping
  surname: Wei
  fullname: Wei, Zeping
  email: zeping.wei@changhong.com
  organization: Sichuan Changhong Electric Co., Ltd, Mianyang, Sichuan 621000, China
BookMark eNp9kMtqAjEUhrOwUG37Al3lBcZmJpOJA91YUVuwKPSCu5DLiY2MiSSh0LfviF114erA4Xw___lGaOCDB4TuSzIuSdk87MdwTHFckYr2i7au-AANCeWTgvO2uUajlPaEkKblbIgW05QgpQP4jIPFr594u9rMsZaqAyx3zu9wyjIDVjKBwcHjzdu62C6fQkgZy24Xostfh1t0ZWWX4O5v3qCPxfx99lys1suX2XRVaEpILpihti_BLZPSNHXFoOHWMNBE15YrPlEKgKmWSQp1rSRvKwJtU_b3oKix9AZNzrk6hpQiWKFdX88Fn6N0nSiJODkQe3FyIE4OxNlBj1b_0GN0Bxl_LkOPZwj6p74dRJG0A6_BuAg6CxPcJfwXXbN59g
CitedBy_id crossref_primary_10_1002_nag_3972
crossref_primary_10_3390_pr11102900
crossref_primary_10_1016_j_apt_2024_104641
crossref_primary_10_1016_j_epsr_2024_111392
crossref_primary_10_3390_electronics14173521
crossref_primary_10_1007_s10765_025_03638_x
crossref_primary_10_1108_ECAM_08_2024_1113
crossref_primary_10_1016_j_epsr_2025_111583
crossref_primary_10_3390_pr12050878
crossref_primary_10_1109_TIM_2025_3550602
Cites_doi 10.1049/hve.2017.0037
10.1109/TPWRD.2011.2124474
10.1109/TCBB.2019.2911071
10.1023/A:1022627411411
10.1023/A:1010933404324
10.1109/TDEI.2021.009783
10.1007/s00500-016-2474-6
10.1109/TDEI.2019.008502
10.1109/TDEI.2019.008208
10.14257/ijca.2017.10.9.01
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.epsr.2023.109427
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_epsr_2023_109427
S0378779623003164
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADHUB
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
E.L
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSH
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-5d3f7797f5aad6425e67fd5ec0c4f7b78bbee5b95a3e44ba7920e961f5aeb3df3
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000998314200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7796
IngestDate Tue Nov 18 22:29:01 EST 2025
Sat Nov 29 07:10:29 EST 2025
Sun Apr 06 06:53:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Cable aging status assessment
Extreme gradient boosting algorithm
Particle swarm optimization algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-5d3f7797f5aad6425e67fd5ec0c4f7b78bbee5b95a3e44ba7920e961f5aeb3df3
ORCID 0000-0002-8633-9990
0000-0001-7959-294X
0000-0002-3072-7265
ParticipantIDs crossref_citationtrail_10_1016_j_epsr_2023_109427
crossref_primary_10_1016_j_epsr_2023_109427
elsevier_sciencedirect_doi_10_1016_j_epsr_2023_109427
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Electric power systems research
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Song, Chen (bib0019) 2010; 3
Chang (bib0018) 2019; 26
Wu (bib0007) 2013; 5
Huang (bib0010) 2019; 41
Zhang (bib0011) 2018
Bawart (bib0006) 2020
Cortes, Vapnik (bib0027) 1995; 20
Song, Liu, Wang (bib0008) 2018
Sahoo (bib0015) 2020
Chang, Boyanapalli (bib0016) 2021; 28
Wu, Liu, Wang (bib0017) 2021
Wu, Chang (bib0004) 2011; 26
Wang, Tan, Liu (bib0023) 2018; 22
Huo (bib0012) 2019
Hu (bib0013) 2021
Breiman (bib0026) 2001; 45
Yazdandoust, Haghjoo, Shahrtash (bib0020) 2008
Zhou, Yi, Dong (bib0002) 2017; 2
.
Li (bib0014) 2017; 10
Chen, Guestrin (bib0021) 2016
Boler (bib0005) 2019
Yu, Chen, Meng (bib0001) 2020; 27
Wu (bib0009) 2019; Vol. 33
Zhou, Yang, Li (bib0003) 2016
Ogunleye, Wang (bib0022) 2019; 17
Wang, Sun, Xue (bib0024) 2018
Chang (10.1016/j.epsr.2023.109427_bib0016) 2021; 28
Wu (10.1016/j.epsr.2023.109427_bib0007) 2013; 5
Sahoo (10.1016/j.epsr.2023.109427_bib0015) 2020
Huang (10.1016/j.epsr.2023.109427_bib0010) 2019; 41
Yu (10.1016/j.epsr.2023.109427_bib0001) 2020; 27
Zhou (10.1016/j.epsr.2023.109427_bib0002) 2017; 2
Wu (10.1016/j.epsr.2023.109427_bib0004) 2011; 26
Wu (10.1016/j.epsr.2023.109427_bib0017) 2021
10.1016/j.epsr.2023.109427_bib0025
Wang (10.1016/j.epsr.2023.109427_bib0024) 2018
Li (10.1016/j.epsr.2023.109427_bib0014) 2017; 10
Wu (10.1016/j.epsr.2023.109427_bib0009) 2019; Vol. 33
Cortes (10.1016/j.epsr.2023.109427_bib0027) 1995; 20
Zhou (10.1016/j.epsr.2023.109427_bib0003) 2016
Boler (10.1016/j.epsr.2023.109427_bib0005) 2019
Bawart (10.1016/j.epsr.2023.109427_bib0006) 2020
Ogunleye (10.1016/j.epsr.2023.109427_bib0022) 2019; 17
Song (10.1016/j.epsr.2023.109427_bib0019) 2010; 3
Hu (10.1016/j.epsr.2023.109427_bib0013) 2021
Song (10.1016/j.epsr.2023.109427_bib0008) 2018
Yazdandoust (10.1016/j.epsr.2023.109427_bib0020) 2008
Zhang (10.1016/j.epsr.2023.109427_bib0011) 2018
Huo (10.1016/j.epsr.2023.109427_bib0012) 2019
Chang (10.1016/j.epsr.2023.109427_bib0018) 2019; 26
Breiman (10.1016/j.epsr.2023.109427_bib0026) 2001; 45
Chen (10.1016/j.epsr.2023.109427_bib0021) 2016
Wang (10.1016/j.epsr.2023.109427_bib0023) 2018; 22
References_xml – start-page: 258
  year: 2021
  end-page: 262
  ident: bib0013
  article-title: Cable life prediction based on BP neural network
  publication-title: 2021 International Conference on Networking Systems of AI (INSAI)
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0027
  article-title: Support-vector networks[J]
  publication-title: Mach. Learn.
– volume: 26
  start-page: 1636
  year: 2019
  end-page: 1644
  ident: bib0018
  article-title: Decision tree rules for insulation condition assessment of pre-molded power cable joints with artificial defects
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0026
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 5
  start-page: 1075
  year: 2013
  end-page: 1080
  ident: bib0007
  article-title: Review of acceptance and preventive test technologies of power cable lines
  publication-title: East China Electr. Power
– year: 2018
  ident: bib0008
  article-title: Ultra-low frequency dielectric loss detection and aging state evaluation of 10kV XLPE cable
  publication-title: 2018 China International Conference on Electricity Distribution (CICED)
– year: 2018
  ident: bib0024
  article-title: Evolving deep convolutional neural networks by variable-length particle swarm optimization for image classification
  publication-title: 2018 IEEE Congress on Evolutionary Computation (CEC)
– year: 2021
  ident: bib0017
  article-title: XLPE cable health assessment based on Relief-F feature weighted FSVM
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 17
  start-page: 2131
  year: 2019
  end-page: 2140
  ident: bib0022
  article-title: XGBoost model for chronic kidney disease diagnosis
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– start-page: 1
  year: 2019
  end-page: 6
  ident: bib0012
  article-title: Smart-grid monitoring: enhanced machine learning for cable diagnostics
  publication-title: 2019 IEEE International Symposium on Power Line Communications and Its Applications (ISPLC)
– volume: 3
  year: 2010
  ident: bib0019
  article-title: Application of fuzzy decision tree in power cable insulation condition assessment
  publication-title: 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE)
– year: 2016
  ident: bib0003
  article-title: An integrated cable condition diagnosis and fault localization system via sheath current monitoring
  publication-title: 2016 International Conference on Condition Monitoring and Diagnosis (CMD)
– year: 2016
  ident: bib0021
  article-title: Xgboost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining
– start-page: 2021
  year: 2019
  end-page: 2025
  ident: bib0005
  article-title: Aging condition assessment for live XLPE-type cables through precise high frequency impedance phase detection
  publication-title: 2019 IEEE Energy Conversion Congress and Exposition (ECCE)
– start-page: 1
  year: 2020
  end-page: 6
  ident: bib0015
  article-title: Health index analysis of XLPE cable insulation using machine learning technique
  publication-title: 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON)
– volume: 26
  start-page: 1585
  year: 2011
  end-page: 1591
  ident: bib0004
  article-title: The use of partial discharges as an online monitoring system for underground cable joints
  publication-title: IEEE Trans. Power Delivery
– reference: .
– volume: Vol. 33
  start-page: 637
  year: 2019
  end-page: 642
  ident: bib0009
  article-title: Risk assessment of cable line based on analytic hierarchy process
  publication-title: J. Xi'an Polytech. Univ.
– start-page: 1
  year: 2020
  end-page: 5
  ident: bib0006
  article-title: Estimation of the remaining life time of medium voltage power cables based on the aging index using unique algorithms and a large database
  publication-title: 2020 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)
– volume: 10
  start-page: 1
  year: 2017
  end-page: 14
  ident: bib0014
  article-title: Condition assessment of power cable for incomplete information based on probabilistic neural network
  publication-title: Int. J. Control Autom.
– volume: 28
  start-page: 2170
  year: 2021
  end-page: 2177
  ident: bib0016
  article-title: Assessment of the insulation status aging in power cable joints using support vector machine
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 41
  start-page: 107
  year: 2019
  end-page: 110
  ident: bib0010
  article-title: Cable insulation life evaluation model based on improved fuzzy analytic hierarchy process
  publication-title: Electrical Autom.
– volume: 2
  start-page: 179
  year: 2017
  end-page: 187
  ident: bib0002
  article-title: Review of recent research towards power cable life cycle management
  publication-title: High Volt.
– volume: 27
  start-page: 900
  year: 2020
  end-page: 908
  ident: bib0001
  article-title: Numerical analysis of thermo-electric field for AC XLPE cables with different service times in DC operation based on conduction current measurement
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 22
  start-page: 387
  year: 2018
  end-page: 408
  ident: bib0023
  article-title: Particle swarm optimization algorithm: an overview
  publication-title: Soft Comput.
– year: 2008
  ident: bib0020
  article-title: Insulation status assessment in high voltage cables based on decision tree algorithm
  publication-title: 2008 IEEE Canada Electric Power Conference
– start-page: 855
  year: 2018
  end-page: 860
  ident: bib0011
  article-title: A state assessment algorithm of power cable based on association rules data mining technology
  publication-title: 2018 China International Conference on Electricity Distribution (CICED)
– start-page: 2021
  year: 2019
  ident: 10.1016/j.epsr.2023.109427_bib0005
  article-title: Aging condition assessment for live XLPE-type cables through precise high frequency impedance phase detection
– volume: 2
  start-page: 179
  issue: 3
  year: 2017
  ident: 10.1016/j.epsr.2023.109427_bib0002
  article-title: Review of recent research towards power cable life cycle management
  publication-title: High Volt.
  doi: 10.1049/hve.2017.0037
– year: 2021
  ident: 10.1016/j.epsr.2023.109427_bib0017
  article-title: XLPE cable health assessment based on Relief-F feature weighted FSVM
– start-page: 1
  year: 2020
  ident: 10.1016/j.epsr.2023.109427_bib0006
  article-title: Estimation of the remaining life time of medium voltage power cables based on the aging index using unique algorithms and a large database
– year: 2018
  ident: 10.1016/j.epsr.2023.109427_bib0024
  article-title: Evolving deep convolutional neural networks by variable-length particle swarm optimization for image classification
– year: 2016
  ident: 10.1016/j.epsr.2023.109427_bib0003
  article-title: An integrated cable condition diagnosis and fault localization system via sheath current monitoring
– volume: 26
  start-page: 1585
  issue: 3
  year: 2011
  ident: 10.1016/j.epsr.2023.109427_bib0004
  article-title: The use of partial discharges as an online monitoring system for underground cable joints
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/TPWRD.2011.2124474
– ident: 10.1016/j.epsr.2023.109427_bib0025
– volume: 3
  year: 2010
  ident: 10.1016/j.epsr.2023.109427_bib0019
  article-title: Application of fuzzy decision tree in power cable insulation condition assessment
– volume: 17
  start-page: 2131
  issue: 6
  year: 2019
  ident: 10.1016/j.epsr.2023.109427_bib0022
  article-title: XGBoost model for chronic kidney disease diagnosis
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2019.2911071
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.epsr.2023.109427_bib0027
  article-title: Support-vector networks[J]
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– start-page: 258
  year: 2021
  ident: 10.1016/j.epsr.2023.109427_bib0013
  article-title: Cable life prediction based on BP neural network
– year: 2008
  ident: 10.1016/j.epsr.2023.109427_bib0020
  article-title: Insulation status assessment in high voltage cables based on decision tree algorithm
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.epsr.2023.109427_bib0026
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– year: 2016
  ident: 10.1016/j.epsr.2023.109427_bib0021
  article-title: Xgboost: a scalable tree boosting system
– start-page: 1
  year: 2019
  ident: 10.1016/j.epsr.2023.109427_bib0012
  article-title: Smart-grid monitoring: enhanced machine learning for cable diagnostics
– volume: Vol. 33
  start-page: 637
  issue: 6
  year: 2019
  ident: 10.1016/j.epsr.2023.109427_bib0009
  article-title: Risk assessment of cable line based on analytic hierarchy process
  publication-title: J. Xi'an Polytech. Univ.
– start-page: 855
  year: 2018
  ident: 10.1016/j.epsr.2023.109427_bib0011
  article-title: A state assessment algorithm of power cable based on association rules data mining technology
– start-page: 1
  year: 2020
  ident: 10.1016/j.epsr.2023.109427_bib0015
  article-title: Health index analysis of XLPE cable insulation using machine learning technique
– volume: 28
  start-page: 2170
  issue: 6
  year: 2021
  ident: 10.1016/j.epsr.2023.109427_bib0016
  article-title: Assessment of the insulation status aging in power cable joints using support vector machine
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2021.009783
– volume: 22
  start-page: 387
  issue: 2
  year: 2018
  ident: 10.1016/j.epsr.2023.109427_bib0023
  article-title: Particle swarm optimization algorithm: an overview
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2474-6
– volume: 27
  start-page: 900
  issue: 3
  year: 2020
  ident: 10.1016/j.epsr.2023.109427_bib0001
  article-title: Numerical analysis of thermo-electric field for AC XLPE cables with different service times in DC operation based on conduction current measurement
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2019.008502
– year: 2018
  ident: 10.1016/j.epsr.2023.109427_bib0008
  article-title: Ultra-low frequency dielectric loss detection and aging state evaluation of 10kV XLPE cable
– volume: 41
  start-page: 107
  issue: 04
  year: 2019
  ident: 10.1016/j.epsr.2023.109427_bib0010
  article-title: Cable insulation life evaluation model based on improved fuzzy analytic hierarchy process
  publication-title: Electrical Autom.
– volume: 26
  start-page: 1636
  issue: 5
  year: 2019
  ident: 10.1016/j.epsr.2023.109427_bib0018
  article-title: Decision tree rules for insulation condition assessment of pre-molded power cable joints with artificial defects
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2019.008208
– volume: 10
  start-page: 1
  issue: 9
  year: 2017
  ident: 10.1016/j.epsr.2023.109427_bib0014
  article-title: Condition assessment of power cable for incomplete information based on probabilistic neural network
  publication-title: Int. J. Control Autom.
  doi: 10.14257/ijca.2017.10.9.01
– volume: 5
  start-page: 1075
  year: 2013
  ident: 10.1016/j.epsr.2023.109427_bib0007
  article-title: Review of acceptance and preventive test technologies of power cable lines
  publication-title: East China Electr. Power
SSID ssj0006975
Score 2.4443915
Snippet •Cable aging is a major risk to the operation of power systems.•A PSO-XGBoost state assessment model is proposed to evaluate the aging state of MV XLPE...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109427
SubjectTerms Cable aging status assessment
Extreme gradient boosting algorithm
Particle swarm optimization algorithm
Title Assessment of MV XLPE cable aging state based on PSO-XGBoost algorithm
URI https://dx.doi.org/10.1016/j.epsr.2023.109427
Volume 221
WOSCitedRecordID wos000998314200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 0378-7796
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006975
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHxFMUaOUDtyjSbhzH8XGptpQKyqKWklvkV9hUkKw2W1T-PePHZkOLKkDiEkVR7CTzOePxeOYbhF4RTUc6YywGY13GaapJnCtB4kwLopkY51KkrtgEOz7Oi4LPQv3OzpUTYE2TX17yxX-FGq4B2DZ19i_g7juFC3AOoMMRYIfjHwE_6bk2XXjLWVS8m00j5VKkfEkil0QU2flL272C2cmHuHjzum076_790i7r1fzbLx57VyqnVtHCllQL5M92u2HgCXO7UE6DfaxF281NmBGHPun9eb3ZCHJRBEXd_LjYjM_PvodJq83QG5GQPhYuuMiupcn41CxYqjLmS9eu1W7iM6OvqXDvTTiH2bizfK0JsYxXqScQuEKNfWI7tv3COgqUU5beRtsJoxy02_bk7bQ46ufkjDvK5f5FQvqUj_S7-qTfmygDs-P0Abof1gt44nF-iG6Z5hG6N2CRfIwONojjtsLvz7BFHDvEsUMcO8SxQxy3DR4gjnvEn6BPB9PT_cM4lMeIFXzuKqaaVPAtrKJCaFhGUpOxSlOjRiqtmGS5lMZQyakgBn5EwXgyMjwbw_1GEl2Rp2iraRvzDGHJKy4zITmBX1ZYetmxTtOkUioRjGRiB43XEilV4I63JUy-lusgwfPSSrG0Uiy9FHdQ1LdZeOaUG--ma0GXwfbzNl0J4-KGds__sd0LdHczfF-irdXywuyiO-r7qu6We2H4_ATfMnyA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+MV+XLPE+cable+aging+state+based+on+PSO-XGBoost+algorithm&rft.jtitle=Electric+power+systems+research&rft.au=Pan%2C+Qiaosheng&rft.au=Zhang%2C+Chi&rft.au=Wei%2C+Xinyuan&rft.au=Wan%2C+Aode&rft.date=2023-08-01&rft.pub=Elsevier+B.V&rft.issn=0378-7796&rft.volume=221&rft_id=info:doi/10.1016%2Fj.epsr.2023.109427&rft.externalDocID=S0378779623003164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon