Collaborative fuzzy clustering algorithm: Some refinements
•Necessity of partition matrices reordering has been examined.•A new collaborative strength optimization method has been given.•Global data structure is formed as a granular partition matrix. Since the inception of the concept of collaborative fuzzy clustering (CFC), many related ideas and algorithm...
Uložené v:
| Vydané v: | International journal of approximate reasoning Ročník 86; s. 41 - 61 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.07.2017
|
| Predmet: | |
| ISSN: | 0888-613X, 1873-4731 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Necessity of partition matrices reordering has been examined.•A new collaborative strength optimization method has been given.•Global data structure is formed as a granular partition matrix.
Since the inception of the concept of collaborative fuzzy clustering (CFC), many related ideas and algorithms have been proposed. In this study, we offer a synthetic view of this body of knowledge. We further concentrate on the horizontal version of the CFC algorithm being regarded as one of the major branches of the CFC. Our intent is to address the following three open questions: (a) assessing the necessity of reordering partition matrices prior to invoking the collaboration process; (b) analyzing the impact of linkage strengths on the performance of the clustering results; and (c) forming a representative global data structure with the use of the concept of information granules leading to so-called granular partition matrices. A collection of experimental studies is provided to quantify the underlying concepts and algorithms. |
|---|---|
| AbstractList | •Necessity of partition matrices reordering has been examined.•A new collaborative strength optimization method has been given.•Global data structure is formed as a granular partition matrix.
Since the inception of the concept of collaborative fuzzy clustering (CFC), many related ideas and algorithms have been proposed. In this study, we offer a synthetic view of this body of knowledge. We further concentrate on the horizontal version of the CFC algorithm being regarded as one of the major branches of the CFC. Our intent is to address the following three open questions: (a) assessing the necessity of reordering partition matrices prior to invoking the collaboration process; (b) analyzing the impact of linkage strengths on the performance of the clustering results; and (c) forming a representative global data structure with the use of the concept of information granules leading to so-called granular partition matrices. A collection of experimental studies is provided to quantify the underlying concepts and algorithms. |
| Author | Pedrycz, Witold Shen, Yinghua |
| Author_xml | – sequence: 1 givenname: Yinghua surname: Shen fullname: Shen, Yinghua email: yinghua@ualberta.ca organization: Department of Electrical and Computer Engineering, University of Alberta, Edmonton, T6R 2V4 AB, Canada – sequence: 2 givenname: Witold surname: Pedrycz fullname: Pedrycz, Witold organization: Department of Electrical and Computer Engineering, University of Alberta, Edmonton, T6R 2V4 AB, Canada |
| BookMark | eNp9kMtqwzAQRUVJoUnaH-jKP2B3ZMm2EropoS8IdNEWuhPKeJTKOHaRlEDy9XVIV12Eu5jVGe49Ezbq-o4Yu-WQceDlXZO5xvgsB15lIDMAecHGXFUilZXgIzYGpVRacvF1xSYhNABQVlKN2XzRt61Z9d5Et6PEbg-HfYLtNkTyrlsnpl333sXvzTx57zeUeLKuow11MVyzS2vaQDd_d8o-nx4_Fi_p8u35dfGwTFEAxLRAjgVaY7DGciZEXlmSaGUN0hRCkbFDqEK0StR8xgs7EKvczgrEElaVmDJ1-ou-D2EooNHFoW7fRW9cqznoowPd6KMDfXSgQerBwYDm_9Af7zbG789D9yeIhlE7R14HdNQh1c4TRl337hz-Cz-ZemE |
| CitedBy_id | crossref_primary_10_1007_s10489_018_1260_9 crossref_primary_10_1016_j_fss_2025_109507 crossref_primary_10_1016_j_eswa_2025_129648 crossref_primary_10_1155_2023_3267820 crossref_primary_10_1016_j_asoc_2023_111191 crossref_primary_10_3390_e21100951 crossref_primary_10_1016_j_ijar_2018_07_007 crossref_primary_10_1016_j_ijar_2018_12_010 crossref_primary_10_1016_j_ijar_2024_109169 crossref_primary_10_1016_j_ins_2021_07_037 crossref_primary_10_1109_TFUZZ_2020_3024804 crossref_primary_10_3233_JIFS_191092 crossref_primary_10_1109_TCYB_2021_3069783 crossref_primary_10_1007_s12652_021_03326_2 crossref_primary_10_1109_TSMC_2023_3320680 crossref_primary_10_1007_s00500_023_09523_9 crossref_primary_10_1016_j_ins_2021_12_045 crossref_primary_10_1109_TFUZZ_2019_2947231 crossref_primary_10_1016_j_patrec_2020_08_027 crossref_primary_10_1109_TCYB_2018_2886725 |
| Cites_doi | 10.1016/j.fss.2012.09.011 10.1109/TFUZZ.2006.889970 10.1016/S0167-8655(02)00130-7 10.1016/j.neucom.2015.04.034 10.1109/TCYB.2014.2334595 10.1002/nav.20053 10.1016/j.ins.2015.10.020 10.1002/widm.1182 10.1109/TSMCB.2008.925728 10.1016/j.patcog.2014.09.018 10.1016/j.asoc.2013.06.017 10.1109/TFUZZ.2011.2175400 10.1142/S1469026812500174 10.1109/TFUZZ.2013.2294205 10.1016/j.neucom.2014.11.083 10.1016/j.fss.2007.12.030 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Inc. |
| Copyright_xml | – notice: 2017 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijar.2017.04.004 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-4731 |
| EndPage | 61 |
| ExternalDocumentID | 10_1016_j_ijar_2017_04_004 S0888613X17300701 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ IHE IXB J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K UHS WUQ XPP ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-5c1c5cfaacdc693327fe4cf4d04a538eafafae7ccf83d1915f5c1b2f95cc60b73 |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000403514700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0888-613X |
| IngestDate | Sat Nov 29 04:42:30 EST 2025 Tue Nov 18 20:50:48 EST 2025 Fri Feb 23 02:17:41 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Partition matrix reordering Granular partition matrix Collaborative fuzzy clustering Horizontal mode of clustering Collaborative strength optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-5c1c5cfaacdc693327fe4cf4d04a538eafafae7ccf83d1915f5c1b2f95cc60b73 |
| PageCount | 21 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ijar_2017_04_004 crossref_primary_10_1016_j_ijar_2017_04_004 elsevier_sciencedirect_doi_10_1016_j_ijar_2017_04_004 |
| PublicationCentury | 2000 |
| PublicationDate | July 2017 2017-07-00 |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: July 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | International journal of approximate reasoning |
| PublicationYear | 2017 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Prasad, Lin, Yang, Saxena (br0160) 2013 Prasad, Siana, Li, Lin, Liu, Saxena (br0030) 2014 Pedrycz, Rai (br0040) 2008; 38 Han, Zhao, Liu, Wang (br0180) 2016; 330 Pedrycz (br0010) 2002; 23 Zarinbal, Fazel Zarandi, Turksen (br0110) 2015; 48 de Carvalho, de Melo, Lechevallier (br0080) 2015; 163 Prasad, Chou, Saxena, Kawrtiya, Li, Lin (br0130) 2015 Ghassany, Grozavu, Bennani (br0230) 2012; 11 Rastin, Cabanes, Grozavu, Bennani (br0240) 2016 Pedrycz, Homenda (br0050) 2013; 13 Falcon, Jeon, Bello, Jeong (br0210) 2007 Cleuziou, Exbrayat, Martin, Sublemontier (br0100) 2009 Jiang, Chung, Wang, Deng, Wang, Qian (br0060) 2015; 45 Chou, Prasad, Lin, Joshi, Lin, Chang (br0140) 2014 Prasad, Lin, Lin, Er, Prasad (br0170) 2015; 167 Lin, Prasad, Chang (br0150) 2013 Falcon, Depaire, Vanhoof, Abraham (br0220) 2008 De Carvalho, Lechevallier, De Melo (br0070) 2013; 215 Pedrycz, Rai (br0190) 2008; 159 Kuhn (br0260) 2005; 52 Coletta, Lucas, Hruschka, Campello, Pedrycz (br0200) 2012; 20 Loia, Pedrycz, Senatore (br0120) 2007; 15 Zhang, Cheung, Ye (br0020) 2016; 6 Zhou, Chen, Chen, Li (br0090) 2014; 22 Sublime, Grozavu, Bennani, Cornuejols (br0250) 2016 Zarinbal (10.1016/j.ijar.2017.04.004_br0110) 2015; 48 Coletta (10.1016/j.ijar.2017.04.004_br0200) 2012; 20 Rastin (10.1016/j.ijar.2017.04.004_br0240) 2016 Kuhn (10.1016/j.ijar.2017.04.004_br0260) 2005; 52 Lin (10.1016/j.ijar.2017.04.004_br0150) 2013 Chou (10.1016/j.ijar.2017.04.004_br0140) 2014 Falcon (10.1016/j.ijar.2017.04.004_br0220) 2008 Pedrycz (10.1016/j.ijar.2017.04.004_br0190) 2008; 159 Jiang (10.1016/j.ijar.2017.04.004_br0060) 2015; 45 Prasad (10.1016/j.ijar.2017.04.004_br0170) 2015; 167 Cleuziou (10.1016/j.ijar.2017.04.004_br0100) 2009 Falcon (10.1016/j.ijar.2017.04.004_br0210) 2007 Prasad (10.1016/j.ijar.2017.04.004_br0030) 2014 De Carvalho (10.1016/j.ijar.2017.04.004_br0070) 2013; 215 de Carvalho (10.1016/j.ijar.2017.04.004_br0080) 2015; 163 Sublime (10.1016/j.ijar.2017.04.004_br0250) 2016 Pedrycz (10.1016/j.ijar.2017.04.004_br0050) 2013; 13 Ghassany (10.1016/j.ijar.2017.04.004_br0230) 2012; 11 Han (10.1016/j.ijar.2017.04.004_br0180) 2016; 330 Pedrycz (10.1016/j.ijar.2017.04.004_br0040) 2008; 38 Zhang (10.1016/j.ijar.2017.04.004_br0020) 2016; 6 Pedrycz (10.1016/j.ijar.2017.04.004_br0010) 2002; 23 Zhou (10.1016/j.ijar.2017.04.004_br0090) 2014; 22 Loia (10.1016/j.ijar.2017.04.004_br0120) 2007; 15 Prasad (10.1016/j.ijar.2017.04.004_br0130) 2015 Prasad (10.1016/j.ijar.2017.04.004_br0160) 2013 |
| References_xml | – volume: 23 start-page: 1675 year: 2002 end-page: 1686 ident: br0010 article-title: Collaborative fuzzy clustering publication-title: Pattern Recognit. Lett. – volume: 6 start-page: 167 year: 2016 end-page: 176 ident: br0020 article-title: Mining from distributed and abstracted data publication-title: WIREs Data Min. Knowl. Discov. – volume: 13 start-page: 4209 year: 2013 end-page: 4218 ident: br0050 article-title: Building the fundamentals of granular computing: a principle of justifiable granularity publication-title: Appl. Soft Comput. – volume: 48 start-page: 933 year: 2015 end-page: 940 ident: br0110 article-title: Relative entropy collaborative fuzzy clustering method publication-title: Pattern Recognit. – volume: 38 start-page: 1062 year: 2008 end-page: 1072 ident: br0040 article-title: A multifaceted perspective at data analysis: a study in collaborative intelligent agents publication-title: IEEE Trans. Syst. Man Cybern., Part B, Cybern. – start-page: 246 year: 2013 end-page: 257 ident: br0160 article-title: Vertical collaborative fuzzy C-means for multiple EEG data sets publication-title: Proceedings of the Intelligent Robotics and Applications 6th International Conference – volume: 11 year: 2012 ident: br0230 article-title: Collaborative clustering using prototype-based techniques publication-title: Int. J. Comput. Intell. Appl. – volume: 45 start-page: 688 year: 2015 end-page: 701 ident: br0060 article-title: Collaborative fuzzy clustering from multiple weighted views publication-title: IEEE Trans. Cybern. – start-page: 279 year: 2013 end-page: 282 ident: br0150 article-title: Designing Mamdani type fuzzy rule using a collaborative FCM scheme publication-title: Proceedings of the International Conference on Fuzzy Theory and Its Applications – year: 2015 ident: br0130 article-title: Collaborative fuzzy rule learning for Mamdani type fuzzy inference system with mapping of cluster centers publication-title: Proceedings of the 2014 IEEE Symposium on Computational Intelligence in Control and Automation – volume: 215 start-page: 1 year: 2013 end-page: 28 ident: br0070 article-title: Relational partitioning fuzzy clustering algorithms based on multiple dissimilarity matrices publication-title: Fuzzy Sets Syst. – volume: 15 start-page: 1294 year: 2007 end-page: 1312 ident: br0120 article-title: Semantic web content analysis: a study in proximity-based collaborative clustering publication-title: IEEE Trans. Fuzzy Syst. – volume: 330 start-page: 175 year: 2016 end-page: 185 ident: br0180 article-title: Granular-computing based hybrid collaborative fuzzy clustering for long-term prediction of multiple gas holders levels publication-title: Inf. Sci. – volume: 20 start-page: 444 year: 2012 end-page: 462 ident: br0200 article-title: Collaborative fuzzy clustering algorithms: some refinements and design guidelines publication-title: IEEE Trans. Fuzzy Syst. – volume: 163 start-page: 115 year: 2015 end-page: 123 ident: br0080 article-title: A multi-view relational fuzzy c-medoid vectors clustering algorithm publication-title: Neurocomputing – start-page: 1553 year: 2014 end-page: 1558 ident: br0030 article-title: A preprocessed induced partition matrix based collaborative fuzzy clustering for data analysis publication-title: IEEE International Conference on Fuzzy Systems – volume: 159 start-page: 2399 year: 2008 end-page: 2427 ident: br0190 article-title: Collaborative clustering with the use of fuzzy C-means and its quantification publication-title: Fuzzy Sets Syst. – volume: 52 start-page: 7 year: 2005 end-page: 21 ident: br0260 article-title: The Hungarian method for the assignment problem publication-title: Nav. Res. Logist. – volume: 167 start-page: 558 year: 2015 end-page: 568 ident: br0170 article-title: A new data-driven neural fuzzy system with collaborative fuzzy clustering mechanism publication-title: Neurocomputing – start-page: 483 year: 2007 end-page: 495 ident: br0210 article-title: Learning collaboration links in a collaborative fuzzy clustering environment publication-title: Proceedings of the 6th Mexican International Conference on Artificial Intelligence – start-page: 199 year: 2016 end-page: 204 ident: br0250 article-title: Vertical collaborative clustering using generative topographic maps publication-title: Proceedings of the 7th International Conference of Soft Computing and Pattern Recognition – start-page: 787 year: 2016 end-page: 794 ident: br0240 article-title: Collaborative clustering: how to select the optimal collaborators? publication-title: Proceedings of the 2015 IEEE Symposium Series on Computational Intelligence – volume: 22 start-page: 1443 year: 2014 end-page: 1456 ident: br0090 article-title: A collaborative fuzzy clustering algorithm in distributed network environments publication-title: IEEE Trans. Fuzzy Syst. – start-page: 752 year: 2009 end-page: 757 ident: br0100 article-title: CoFKM: a centralized method for multiple-view clustering publication-title: Proceedings of the 9th IEEE International Conference on Data Mining – start-page: 315 year: 2014 end-page: 320 ident: br0140 article-title: Takagi–Sugeno–Kang type collaborative fuzzy rule based system publication-title: Proceedings of the 2014 IEEE Symposium on Computational Intelligence and Data Mining – start-page: 652 year: 2008 end-page: 657 ident: br0220 article-title: Towards a suitable reconciliation of the findings in collaborative fuzzy clustering publication-title: Proceedings of the 8th International Conference on Intelligent Systems Design and Applications – volume: 215 start-page: 1 year: 2013 ident: 10.1016/j.ijar.2017.04.004_br0070 article-title: Relational partitioning fuzzy clustering algorithms based on multiple dissimilarity matrices publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2012.09.011 – start-page: 315 year: 2014 ident: 10.1016/j.ijar.2017.04.004_br0140 article-title: Takagi–Sugeno–Kang type collaborative fuzzy rule based system – volume: 15 start-page: 1294 year: 2007 ident: 10.1016/j.ijar.2017.04.004_br0120 article-title: Semantic web content analysis: a study in proximity-based collaborative clustering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2006.889970 – volume: 23 start-page: 1675 year: 2002 ident: 10.1016/j.ijar.2017.04.004_br0010 article-title: Collaborative fuzzy clustering publication-title: Pattern Recognit. Lett. doi: 10.1016/S0167-8655(02)00130-7 – year: 2015 ident: 10.1016/j.ijar.2017.04.004_br0130 article-title: Collaborative fuzzy rule learning for Mamdani type fuzzy inference system with mapping of cluster centers – volume: 167 start-page: 558 year: 2015 ident: 10.1016/j.ijar.2017.04.004_br0170 article-title: A new data-driven neural fuzzy system with collaborative fuzzy clustering mechanism publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.04.034 – volume: 45 start-page: 688 year: 2015 ident: 10.1016/j.ijar.2017.04.004_br0060 article-title: Collaborative fuzzy clustering from multiple weighted views publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2334595 – start-page: 199 year: 2016 ident: 10.1016/j.ijar.2017.04.004_br0250 article-title: Vertical collaborative clustering using generative topographic maps – start-page: 246 year: 2013 ident: 10.1016/j.ijar.2017.04.004_br0160 article-title: Vertical collaborative fuzzy C-means for multiple EEG data sets – start-page: 787 year: 2016 ident: 10.1016/j.ijar.2017.04.004_br0240 article-title: Collaborative clustering: how to select the optimal collaborators? – volume: 52 start-page: 7 year: 2005 ident: 10.1016/j.ijar.2017.04.004_br0260 article-title: The Hungarian method for the assignment problem publication-title: Nav. Res. Logist. doi: 10.1002/nav.20053 – volume: 330 start-page: 175 year: 2016 ident: 10.1016/j.ijar.2017.04.004_br0180 article-title: Granular-computing based hybrid collaborative fuzzy clustering for long-term prediction of multiple gas holders levels publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.10.020 – start-page: 1553 year: 2014 ident: 10.1016/j.ijar.2017.04.004_br0030 article-title: A preprocessed induced partition matrix based collaborative fuzzy clustering for data analysis – volume: 6 start-page: 167 year: 2016 ident: 10.1016/j.ijar.2017.04.004_br0020 article-title: Mining from distributed and abstracted data publication-title: WIREs Data Min. Knowl. Discov. doi: 10.1002/widm.1182 – volume: 38 start-page: 1062 year: 2008 ident: 10.1016/j.ijar.2017.04.004_br0040 article-title: A multifaceted perspective at data analysis: a study in collaborative intelligent agents publication-title: IEEE Trans. Syst. Man Cybern., Part B, Cybern. doi: 10.1109/TSMCB.2008.925728 – volume: 48 start-page: 933 year: 2015 ident: 10.1016/j.ijar.2017.04.004_br0110 article-title: Relative entropy collaborative fuzzy clustering method publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.09.018 – volume: 13 start-page: 4209 year: 2013 ident: 10.1016/j.ijar.2017.04.004_br0050 article-title: Building the fundamentals of granular computing: a principle of justifiable granularity publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.06.017 – start-page: 483 year: 2007 ident: 10.1016/j.ijar.2017.04.004_br0210 article-title: Learning collaboration links in a collaborative fuzzy clustering environment – start-page: 652 year: 2008 ident: 10.1016/j.ijar.2017.04.004_br0220 article-title: Towards a suitable reconciliation of the findings in collaborative fuzzy clustering – volume: 20 start-page: 444 year: 2012 ident: 10.1016/j.ijar.2017.04.004_br0200 article-title: Collaborative fuzzy clustering algorithms: some refinements and design guidelines publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2011.2175400 – volume: 11 year: 2012 ident: 10.1016/j.ijar.2017.04.004_br0230 article-title: Collaborative clustering using prototype-based techniques publication-title: Int. J. Comput. Intell. Appl. doi: 10.1142/S1469026812500174 – volume: 22 start-page: 1443 year: 2014 ident: 10.1016/j.ijar.2017.04.004_br0090 article-title: A collaborative fuzzy clustering algorithm in distributed network environments publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2013.2294205 – volume: 163 start-page: 115 year: 2015 ident: 10.1016/j.ijar.2017.04.004_br0080 article-title: A multi-view relational fuzzy c-medoid vectors clustering algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.11.083 – start-page: 752 year: 2009 ident: 10.1016/j.ijar.2017.04.004_br0100 article-title: CoFKM: a centralized method for multiple-view clustering – start-page: 279 year: 2013 ident: 10.1016/j.ijar.2017.04.004_br0150 article-title: Designing Mamdani type fuzzy rule using a collaborative FCM scheme – volume: 159 start-page: 2399 year: 2008 ident: 10.1016/j.ijar.2017.04.004_br0190 article-title: Collaborative clustering with the use of fuzzy C-means and its quantification publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2007.12.030 |
| SSID | ssj0006748 |
| Score | 2.3406847 |
| Snippet | •Necessity of partition matrices reordering has been examined.•A new collaborative strength optimization method has been given.•Global data structure is formed... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 41 |
| SubjectTerms | Collaborative fuzzy clustering Collaborative strength optimization Granular partition matrix Horizontal mode of clustering Partition matrix reordering |
| Title | Collaborative fuzzy clustering algorithm: Some refinements |
| URI | https://dx.doi.org/10.1016/j.ijar.2017.04.004 |
| Volume | 86 |
| WOSCitedRecordID | wos000403514700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4731 dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0006748 issn: 0888-613X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSyNBEG6CetiLro_Fx67MwZuMZB6dnvEm4qIeRIhiPA09Pd1rQjKRvIj-eqv6MUlUxBUkMIQmlXSqiq-qi66vCDmgITKAFNxXYcT9OGLK51zlPiQjCS_SHKIg18Mm2NVV0mql17Va0_XCTLqsLJPpNH38VlPDGhgbW2f_w9zVl8ICvAejwxPMDs9PGf50Zllk9B4_Pz8diu4YCRF0Q2L3X3_QHj3oAn2z38OxKQpSzZ4jdXKp6mKtcI5hQtOQT9uQ6qIsH-qCblWpsd0e97D2MOYz5C0GT0IXq-8AQwxJq6s2BKy6mWpLYK4NZuGWJiBVAmdQPdgXgopB0oRFfswsxFuoTeax0hBe2ahrGNnf4LkpLXSO2h2O5K0B07y0ZmDxK57sJu4CNxEgBT_Dnr7lkNEU0Hr55OKsdVkFaJyvYg4XZte2l8pc-3v9S-_nK3M5yM1PsmoPD96JMfo6qclyg6y5wRyexelNcrzgA572AW_mA17lA8ceeoA35wFb5Pbv2c3puW-HZPgC_ubIpyIQVCjORSEaaRSFTMlYqLioxxyCmeQKXpIJoZKogMM5VSCRhyqlQjTqOYt-kaWyX8pt4rEiieKwaPAgxylmlDPdlh3wlMq6lI0dEjhVZMIyyOMgk27mrgp2MlRfhurL6nEG6tshh5XMo-FP-fDT1Gk4sxmgyewycIgP5Ha_KLdHfsyc_DdZGg3G8g9ZEZNRezjYt37zAohZg8E |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+fuzzy+clustering+algorithm%3A+Some+refinements&rft.jtitle=International+journal+of+approximate+reasoning&rft.au=Shen%2C+Yinghua&rft.au=Pedrycz%2C+Witold&rft.date=2017-07-01&rft.pub=Elsevier+Inc&rft.issn=0888-613X&rft.eissn=1873-4731&rft.volume=86&rft.spage=41&rft.epage=61&rft_id=info:doi/10.1016%2Fj.ijar.2017.04.004&rft.externalDocID=S0888613X17300701 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-613X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-613X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-613X&client=summon |