Collaborative fuzzy clustering algorithm: Some refinements

•Necessity of partition matrices reordering has been examined.•A new collaborative strength optimization method has been given.•Global data structure is formed as a granular partition matrix. Since the inception of the concept of collaborative fuzzy clustering (CFC), many related ideas and algorithm...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of approximate reasoning Ročník 86; s. 41 - 61
Hlavní autori: Shen, Yinghua, Pedrycz, Witold
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.07.2017
Predmet:
ISSN:0888-613X, 1873-4731
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Necessity of partition matrices reordering has been examined.•A new collaborative strength optimization method has been given.•Global data structure is formed as a granular partition matrix. Since the inception of the concept of collaborative fuzzy clustering (CFC), many related ideas and algorithms have been proposed. In this study, we offer a synthetic view of this body of knowledge. We further concentrate on the horizontal version of the CFC algorithm being regarded as one of the major branches of the CFC. Our intent is to address the following three open questions: (a) assessing the necessity of reordering partition matrices prior to invoking the collaboration process; (b) analyzing the impact of linkage strengths on the performance of the clustering results; and (c) forming a representative global data structure with the use of the concept of information granules leading to so-called granular partition matrices. A collection of experimental studies is provided to quantify the underlying concepts and algorithms.
AbstractList •Necessity of partition matrices reordering has been examined.•A new collaborative strength optimization method has been given.•Global data structure is formed as a granular partition matrix. Since the inception of the concept of collaborative fuzzy clustering (CFC), many related ideas and algorithms have been proposed. In this study, we offer a synthetic view of this body of knowledge. We further concentrate on the horizontal version of the CFC algorithm being regarded as one of the major branches of the CFC. Our intent is to address the following three open questions: (a) assessing the necessity of reordering partition matrices prior to invoking the collaboration process; (b) analyzing the impact of linkage strengths on the performance of the clustering results; and (c) forming a representative global data structure with the use of the concept of information granules leading to so-called granular partition matrices. A collection of experimental studies is provided to quantify the underlying concepts and algorithms.
Author Pedrycz, Witold
Shen, Yinghua
Author_xml – sequence: 1
  givenname: Yinghua
  surname: Shen
  fullname: Shen, Yinghua
  email: yinghua@ualberta.ca
  organization: Department of Electrical and Computer Engineering, University of Alberta, Edmonton, T6R 2V4 AB, Canada
– sequence: 2
  givenname: Witold
  surname: Pedrycz
  fullname: Pedrycz, Witold
  organization: Department of Electrical and Computer Engineering, University of Alberta, Edmonton, T6R 2V4 AB, Canada
BookMark eNp9kMtqwzAQRUVJoUnaH-jKP2B3ZMm2EropoS8IdNEWuhPKeJTKOHaRlEDy9XVIV12Eu5jVGe49Ezbq-o4Yu-WQceDlXZO5xvgsB15lIDMAecHGXFUilZXgIzYGpVRacvF1xSYhNABQVlKN2XzRt61Z9d5Et6PEbg-HfYLtNkTyrlsnpl333sXvzTx57zeUeLKuow11MVyzS2vaQDd_d8o-nx4_Fi_p8u35dfGwTFEAxLRAjgVaY7DGciZEXlmSaGUN0hRCkbFDqEK0StR8xgs7EKvczgrEElaVmDJ1-ou-D2EooNHFoW7fRW9cqznoowPd6KMDfXSgQerBwYDm_9Af7zbG789D9yeIhlE7R14HdNQh1c4TRl337hz-Cz-ZemE
CitedBy_id crossref_primary_10_1007_s10489_018_1260_9
crossref_primary_10_1016_j_fss_2025_109507
crossref_primary_10_1016_j_eswa_2025_129648
crossref_primary_10_1155_2023_3267820
crossref_primary_10_1016_j_asoc_2023_111191
crossref_primary_10_3390_e21100951
crossref_primary_10_1016_j_ijar_2018_07_007
crossref_primary_10_1016_j_ijar_2018_12_010
crossref_primary_10_1016_j_ijar_2024_109169
crossref_primary_10_1016_j_ins_2021_07_037
crossref_primary_10_1109_TFUZZ_2020_3024804
crossref_primary_10_3233_JIFS_191092
crossref_primary_10_1109_TCYB_2021_3069783
crossref_primary_10_1007_s12652_021_03326_2
crossref_primary_10_1109_TSMC_2023_3320680
crossref_primary_10_1007_s00500_023_09523_9
crossref_primary_10_1016_j_ins_2021_12_045
crossref_primary_10_1109_TFUZZ_2019_2947231
crossref_primary_10_1016_j_patrec_2020_08_027
crossref_primary_10_1109_TCYB_2018_2886725
Cites_doi 10.1016/j.fss.2012.09.011
10.1109/TFUZZ.2006.889970
10.1016/S0167-8655(02)00130-7
10.1016/j.neucom.2015.04.034
10.1109/TCYB.2014.2334595
10.1002/nav.20053
10.1016/j.ins.2015.10.020
10.1002/widm.1182
10.1109/TSMCB.2008.925728
10.1016/j.patcog.2014.09.018
10.1016/j.asoc.2013.06.017
10.1109/TFUZZ.2011.2175400
10.1142/S1469026812500174
10.1109/TFUZZ.2013.2294205
10.1016/j.neucom.2014.11.083
10.1016/j.fss.2007.12.030
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright_xml – notice: 2017 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ijar.2017.04.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-4731
EndPage 61
ExternalDocumentID 10_1016_j_ijar_2017_04_004
S0888613X17300701
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
UHS
WUQ
XPP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-5c1c5cfaacdc693327fe4cf4d04a538eafafae7ccf83d1915f5c1b2f95cc60b73
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000403514700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-613X
IngestDate Sat Nov 29 04:42:30 EST 2025
Tue Nov 18 20:50:48 EST 2025
Fri Feb 23 02:17:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Partition matrix reordering
Granular partition matrix
Collaborative fuzzy clustering
Horizontal mode of clustering
Collaborative strength optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-5c1c5cfaacdc693327fe4cf4d04a538eafafae7ccf83d1915f5c1b2f95cc60b73
PageCount 21
ParticipantIDs crossref_citationtrail_10_1016_j_ijar_2017_04_004
crossref_primary_10_1016_j_ijar_2017_04_004
elsevier_sciencedirect_doi_10_1016_j_ijar_2017_04_004
PublicationCentury 2000
PublicationDate July 2017
2017-07-00
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: July 2017
PublicationDecade 2010
PublicationTitle International journal of approximate reasoning
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Prasad, Lin, Yang, Saxena (br0160) 2013
Prasad, Siana, Li, Lin, Liu, Saxena (br0030) 2014
Pedrycz, Rai (br0040) 2008; 38
Han, Zhao, Liu, Wang (br0180) 2016; 330
Pedrycz (br0010) 2002; 23
Zarinbal, Fazel Zarandi, Turksen (br0110) 2015; 48
de Carvalho, de Melo, Lechevallier (br0080) 2015; 163
Prasad, Chou, Saxena, Kawrtiya, Li, Lin (br0130) 2015
Ghassany, Grozavu, Bennani (br0230) 2012; 11
Rastin, Cabanes, Grozavu, Bennani (br0240) 2016
Pedrycz, Homenda (br0050) 2013; 13
Falcon, Jeon, Bello, Jeong (br0210) 2007
Cleuziou, Exbrayat, Martin, Sublemontier (br0100) 2009
Jiang, Chung, Wang, Deng, Wang, Qian (br0060) 2015; 45
Chou, Prasad, Lin, Joshi, Lin, Chang (br0140) 2014
Prasad, Lin, Lin, Er, Prasad (br0170) 2015; 167
Lin, Prasad, Chang (br0150) 2013
Falcon, Depaire, Vanhoof, Abraham (br0220) 2008
De Carvalho, Lechevallier, De Melo (br0070) 2013; 215
Pedrycz, Rai (br0190) 2008; 159
Kuhn (br0260) 2005; 52
Coletta, Lucas, Hruschka, Campello, Pedrycz (br0200) 2012; 20
Loia, Pedrycz, Senatore (br0120) 2007; 15
Zhang, Cheung, Ye (br0020) 2016; 6
Zhou, Chen, Chen, Li (br0090) 2014; 22
Sublime, Grozavu, Bennani, Cornuejols (br0250) 2016
Zarinbal (10.1016/j.ijar.2017.04.004_br0110) 2015; 48
Coletta (10.1016/j.ijar.2017.04.004_br0200) 2012; 20
Rastin (10.1016/j.ijar.2017.04.004_br0240) 2016
Kuhn (10.1016/j.ijar.2017.04.004_br0260) 2005; 52
Lin (10.1016/j.ijar.2017.04.004_br0150) 2013
Chou (10.1016/j.ijar.2017.04.004_br0140) 2014
Falcon (10.1016/j.ijar.2017.04.004_br0220) 2008
Pedrycz (10.1016/j.ijar.2017.04.004_br0190) 2008; 159
Jiang (10.1016/j.ijar.2017.04.004_br0060) 2015; 45
Prasad (10.1016/j.ijar.2017.04.004_br0170) 2015; 167
Cleuziou (10.1016/j.ijar.2017.04.004_br0100) 2009
Falcon (10.1016/j.ijar.2017.04.004_br0210) 2007
Prasad (10.1016/j.ijar.2017.04.004_br0030) 2014
De Carvalho (10.1016/j.ijar.2017.04.004_br0070) 2013; 215
de Carvalho (10.1016/j.ijar.2017.04.004_br0080) 2015; 163
Sublime (10.1016/j.ijar.2017.04.004_br0250) 2016
Pedrycz (10.1016/j.ijar.2017.04.004_br0050) 2013; 13
Ghassany (10.1016/j.ijar.2017.04.004_br0230) 2012; 11
Han (10.1016/j.ijar.2017.04.004_br0180) 2016; 330
Pedrycz (10.1016/j.ijar.2017.04.004_br0040) 2008; 38
Zhang (10.1016/j.ijar.2017.04.004_br0020) 2016; 6
Pedrycz (10.1016/j.ijar.2017.04.004_br0010) 2002; 23
Zhou (10.1016/j.ijar.2017.04.004_br0090) 2014; 22
Loia (10.1016/j.ijar.2017.04.004_br0120) 2007; 15
Prasad (10.1016/j.ijar.2017.04.004_br0130) 2015
Prasad (10.1016/j.ijar.2017.04.004_br0160) 2013
References_xml – volume: 23
  start-page: 1675
  year: 2002
  end-page: 1686
  ident: br0010
  article-title: Collaborative fuzzy clustering
  publication-title: Pattern Recognit. Lett.
– volume: 6
  start-page: 167
  year: 2016
  end-page: 176
  ident: br0020
  article-title: Mining from distributed and abstracted data
  publication-title: WIREs Data Min. Knowl. Discov.
– volume: 13
  start-page: 4209
  year: 2013
  end-page: 4218
  ident: br0050
  article-title: Building the fundamentals of granular computing: a principle of justifiable granularity
  publication-title: Appl. Soft Comput.
– volume: 48
  start-page: 933
  year: 2015
  end-page: 940
  ident: br0110
  article-title: Relative entropy collaborative fuzzy clustering method
  publication-title: Pattern Recognit.
– volume: 38
  start-page: 1062
  year: 2008
  end-page: 1072
  ident: br0040
  article-title: A multifaceted perspective at data analysis: a study in collaborative intelligent agents
  publication-title: IEEE Trans. Syst. Man Cybern., Part B, Cybern.
– start-page: 246
  year: 2013
  end-page: 257
  ident: br0160
  article-title: Vertical collaborative fuzzy C-means for multiple EEG data sets
  publication-title: Proceedings of the Intelligent Robotics and Applications 6th International Conference
– volume: 11
  year: 2012
  ident: br0230
  article-title: Collaborative clustering using prototype-based techniques
  publication-title: Int. J. Comput. Intell. Appl.
– volume: 45
  start-page: 688
  year: 2015
  end-page: 701
  ident: br0060
  article-title: Collaborative fuzzy clustering from multiple weighted views
  publication-title: IEEE Trans. Cybern.
– start-page: 279
  year: 2013
  end-page: 282
  ident: br0150
  article-title: Designing Mamdani type fuzzy rule using a collaborative FCM scheme
  publication-title: Proceedings of the International Conference on Fuzzy Theory and Its Applications
– year: 2015
  ident: br0130
  article-title: Collaborative fuzzy rule learning for Mamdani type fuzzy inference system with mapping of cluster centers
  publication-title: Proceedings of the 2014 IEEE Symposium on Computational Intelligence in Control and Automation
– volume: 215
  start-page: 1
  year: 2013
  end-page: 28
  ident: br0070
  article-title: Relational partitioning fuzzy clustering algorithms based on multiple dissimilarity matrices
  publication-title: Fuzzy Sets Syst.
– volume: 15
  start-page: 1294
  year: 2007
  end-page: 1312
  ident: br0120
  article-title: Semantic web content analysis: a study in proximity-based collaborative clustering
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 330
  start-page: 175
  year: 2016
  end-page: 185
  ident: br0180
  article-title: Granular-computing based hybrid collaborative fuzzy clustering for long-term prediction of multiple gas holders levels
  publication-title: Inf. Sci.
– volume: 20
  start-page: 444
  year: 2012
  end-page: 462
  ident: br0200
  article-title: Collaborative fuzzy clustering algorithms: some refinements and design guidelines
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 163
  start-page: 115
  year: 2015
  end-page: 123
  ident: br0080
  article-title: A multi-view relational fuzzy c-medoid vectors clustering algorithm
  publication-title: Neurocomputing
– start-page: 1553
  year: 2014
  end-page: 1558
  ident: br0030
  article-title: A preprocessed induced partition matrix based collaborative fuzzy clustering for data analysis
  publication-title: IEEE International Conference on Fuzzy Systems
– volume: 159
  start-page: 2399
  year: 2008
  end-page: 2427
  ident: br0190
  article-title: Collaborative clustering with the use of fuzzy C-means and its quantification
  publication-title: Fuzzy Sets Syst.
– volume: 52
  start-page: 7
  year: 2005
  end-page: 21
  ident: br0260
  article-title: The Hungarian method for the assignment problem
  publication-title: Nav. Res. Logist.
– volume: 167
  start-page: 558
  year: 2015
  end-page: 568
  ident: br0170
  article-title: A new data-driven neural fuzzy system with collaborative fuzzy clustering mechanism
  publication-title: Neurocomputing
– start-page: 483
  year: 2007
  end-page: 495
  ident: br0210
  article-title: Learning collaboration links in a collaborative fuzzy clustering environment
  publication-title: Proceedings of the 6th Mexican International Conference on Artificial Intelligence
– start-page: 199
  year: 2016
  end-page: 204
  ident: br0250
  article-title: Vertical collaborative clustering using generative topographic maps
  publication-title: Proceedings of the 7th International Conference of Soft Computing and Pattern Recognition
– start-page: 787
  year: 2016
  end-page: 794
  ident: br0240
  article-title: Collaborative clustering: how to select the optimal collaborators?
  publication-title: Proceedings of the 2015 IEEE Symposium Series on Computational Intelligence
– volume: 22
  start-page: 1443
  year: 2014
  end-page: 1456
  ident: br0090
  article-title: A collaborative fuzzy clustering algorithm in distributed network environments
  publication-title: IEEE Trans. Fuzzy Syst.
– start-page: 752
  year: 2009
  end-page: 757
  ident: br0100
  article-title: CoFKM: a centralized method for multiple-view clustering
  publication-title: Proceedings of the 9th IEEE International Conference on Data Mining
– start-page: 315
  year: 2014
  end-page: 320
  ident: br0140
  article-title: Takagi–Sugeno–Kang type collaborative fuzzy rule based system
  publication-title: Proceedings of the 2014 IEEE Symposium on Computational Intelligence and Data Mining
– start-page: 652
  year: 2008
  end-page: 657
  ident: br0220
  article-title: Towards a suitable reconciliation of the findings in collaborative fuzzy clustering
  publication-title: Proceedings of the 8th International Conference on Intelligent Systems Design and Applications
– volume: 215
  start-page: 1
  year: 2013
  ident: 10.1016/j.ijar.2017.04.004_br0070
  article-title: Relational partitioning fuzzy clustering algorithms based on multiple dissimilarity matrices
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2012.09.011
– start-page: 315
  year: 2014
  ident: 10.1016/j.ijar.2017.04.004_br0140
  article-title: Takagi–Sugeno–Kang type collaborative fuzzy rule based system
– volume: 15
  start-page: 1294
  year: 2007
  ident: 10.1016/j.ijar.2017.04.004_br0120
  article-title: Semantic web content analysis: a study in proximity-based collaborative clustering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2006.889970
– volume: 23
  start-page: 1675
  year: 2002
  ident: 10.1016/j.ijar.2017.04.004_br0010
  article-title: Collaborative fuzzy clustering
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(02)00130-7
– year: 2015
  ident: 10.1016/j.ijar.2017.04.004_br0130
  article-title: Collaborative fuzzy rule learning for Mamdani type fuzzy inference system with mapping of cluster centers
– volume: 167
  start-page: 558
  year: 2015
  ident: 10.1016/j.ijar.2017.04.004_br0170
  article-title: A new data-driven neural fuzzy system with collaborative fuzzy clustering mechanism
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.034
– volume: 45
  start-page: 688
  year: 2015
  ident: 10.1016/j.ijar.2017.04.004_br0060
  article-title: Collaborative fuzzy clustering from multiple weighted views
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2334595
– start-page: 199
  year: 2016
  ident: 10.1016/j.ijar.2017.04.004_br0250
  article-title: Vertical collaborative clustering using generative topographic maps
– start-page: 246
  year: 2013
  ident: 10.1016/j.ijar.2017.04.004_br0160
  article-title: Vertical collaborative fuzzy C-means for multiple EEG data sets
– start-page: 787
  year: 2016
  ident: 10.1016/j.ijar.2017.04.004_br0240
  article-title: Collaborative clustering: how to select the optimal collaborators?
– volume: 52
  start-page: 7
  year: 2005
  ident: 10.1016/j.ijar.2017.04.004_br0260
  article-title: The Hungarian method for the assignment problem
  publication-title: Nav. Res. Logist.
  doi: 10.1002/nav.20053
– volume: 330
  start-page: 175
  year: 2016
  ident: 10.1016/j.ijar.2017.04.004_br0180
  article-title: Granular-computing based hybrid collaborative fuzzy clustering for long-term prediction of multiple gas holders levels
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.10.020
– start-page: 1553
  year: 2014
  ident: 10.1016/j.ijar.2017.04.004_br0030
  article-title: A preprocessed induced partition matrix based collaborative fuzzy clustering for data analysis
– volume: 6
  start-page: 167
  year: 2016
  ident: 10.1016/j.ijar.2017.04.004_br0020
  article-title: Mining from distributed and abstracted data
  publication-title: WIREs Data Min. Knowl. Discov.
  doi: 10.1002/widm.1182
– volume: 38
  start-page: 1062
  year: 2008
  ident: 10.1016/j.ijar.2017.04.004_br0040
  article-title: A multifaceted perspective at data analysis: a study in collaborative intelligent agents
  publication-title: IEEE Trans. Syst. Man Cybern., Part B, Cybern.
  doi: 10.1109/TSMCB.2008.925728
– volume: 48
  start-page: 933
  year: 2015
  ident: 10.1016/j.ijar.2017.04.004_br0110
  article-title: Relative entropy collaborative fuzzy clustering method
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.09.018
– volume: 13
  start-page: 4209
  year: 2013
  ident: 10.1016/j.ijar.2017.04.004_br0050
  article-title: Building the fundamentals of granular computing: a principle of justifiable granularity
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.06.017
– start-page: 483
  year: 2007
  ident: 10.1016/j.ijar.2017.04.004_br0210
  article-title: Learning collaboration links in a collaborative fuzzy clustering environment
– start-page: 652
  year: 2008
  ident: 10.1016/j.ijar.2017.04.004_br0220
  article-title: Towards a suitable reconciliation of the findings in collaborative fuzzy clustering
– volume: 20
  start-page: 444
  year: 2012
  ident: 10.1016/j.ijar.2017.04.004_br0200
  article-title: Collaborative fuzzy clustering algorithms: some refinements and design guidelines
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2011.2175400
– volume: 11
  year: 2012
  ident: 10.1016/j.ijar.2017.04.004_br0230
  article-title: Collaborative clustering using prototype-based techniques
  publication-title: Int. J. Comput. Intell. Appl.
  doi: 10.1142/S1469026812500174
– volume: 22
  start-page: 1443
  year: 2014
  ident: 10.1016/j.ijar.2017.04.004_br0090
  article-title: A collaborative fuzzy clustering algorithm in distributed network environments
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2013.2294205
– volume: 163
  start-page: 115
  year: 2015
  ident: 10.1016/j.ijar.2017.04.004_br0080
  article-title: A multi-view relational fuzzy c-medoid vectors clustering algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.11.083
– start-page: 752
  year: 2009
  ident: 10.1016/j.ijar.2017.04.004_br0100
  article-title: CoFKM: a centralized method for multiple-view clustering
– start-page: 279
  year: 2013
  ident: 10.1016/j.ijar.2017.04.004_br0150
  article-title: Designing Mamdani type fuzzy rule using a collaborative FCM scheme
– volume: 159
  start-page: 2399
  year: 2008
  ident: 10.1016/j.ijar.2017.04.004_br0190
  article-title: Collaborative clustering with the use of fuzzy C-means and its quantification
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2007.12.030
SSID ssj0006748
Score 2.3406847
Snippet •Necessity of partition matrices reordering has been examined.•A new collaborative strength optimization method has been given.•Global data structure is formed...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 41
SubjectTerms Collaborative fuzzy clustering
Collaborative strength optimization
Granular partition matrix
Horizontal mode of clustering
Partition matrix reordering
Title Collaborative fuzzy clustering algorithm: Some refinements
URI https://dx.doi.org/10.1016/j.ijar.2017.04.004
Volume 86
WOSCitedRecordID wos000403514700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4731
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0006748
  issn: 0888-613X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSyNBEG6CetiLro_Fx67MwZuMZB6dnvEm4qIeRIhiPA09Pd1rQjKRvIj-eqv6MUlUxBUkMIQmlXSqiq-qi66vCDmgITKAFNxXYcT9OGLK51zlPiQjCS_SHKIg18Mm2NVV0mql17Va0_XCTLqsLJPpNH38VlPDGhgbW2f_w9zVl8ICvAejwxPMDs9PGf50Zllk9B4_Pz8diu4YCRF0Q2L3X3_QHj3oAn2z38OxKQpSzZ4jdXKp6mKtcI5hQtOQT9uQ6qIsH-qCblWpsd0e97D2MOYz5C0GT0IXq-8AQwxJq6s2BKy6mWpLYK4NZuGWJiBVAmdQPdgXgopB0oRFfswsxFuoTeax0hBe2ahrGNnf4LkpLXSO2h2O5K0B07y0ZmDxK57sJu4CNxEgBT_Dnr7lkNEU0Hr55OKsdVkFaJyvYg4XZte2l8pc-3v9S-_nK3M5yM1PsmoPD96JMfo6qclyg6y5wRyexelNcrzgA572AW_mA17lA8ceeoA35wFb5Pbv2c3puW-HZPgC_ubIpyIQVCjORSEaaRSFTMlYqLioxxyCmeQKXpIJoZKogMM5VSCRhyqlQjTqOYt-kaWyX8pt4rEiieKwaPAgxylmlDPdlh3wlMq6lI0dEjhVZMIyyOMgk27mrgp2MlRfhurL6nEG6tshh5XMo-FP-fDT1Gk4sxmgyewycIgP5Ha_KLdHfsyc_DdZGg3G8g9ZEZNRezjYt37zAohZg8E
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+fuzzy+clustering+algorithm%3A+Some+refinements&rft.jtitle=International+journal+of+approximate+reasoning&rft.au=Shen%2C+Yinghua&rft.au=Pedrycz%2C+Witold&rft.date=2017-07-01&rft.pub=Elsevier+Inc&rft.issn=0888-613X&rft.eissn=1873-4731&rft.volume=86&rft.spage=41&rft.epage=61&rft_id=info:doi/10.1016%2Fj.ijar.2017.04.004&rft.externalDocID=S0888613X17300701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-613X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-613X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-613X&client=summon