A visual measurement algorithm for vibration displacement of rotating body using semantic segmentation network

Compared with the traditional vibration displacement measurement methods, visual vibration measurement offers several advantages such as long-distance capability, non-contact operation and easy installation. However, the phenomenon of low fitting accuracy of the bounding box often occurs when detect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 237; S. 121306
Hauptverfasser: Chai, Shanglei, Wang, Sen, Liu, Chang, Liu, Xiaoqin, Liu, Tao, Yang, Rongliang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.03.2024
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Compared with the traditional vibration displacement measurement methods, visual vibration measurement offers several advantages such as long-distance capability, non-contact operation and easy installation. However, the phenomenon of low fitting accuracy of the bounding box often occurs when detecting rotating objects, resulting in a slight deviation in the relative offset of the center vibration point of the target between frames, which will cause a serious deviation in the regression of vibration displacement offset. In this paper, a high-speed industrial camera is employed as the image acquisition medium, and a deep learning-based semantic segmentation method is introduced to address visual vibration measurement challenges in rotating body. Specifically, the CSP module integrates different depth semantic information which is introduced into the Mobiledets backbone network in a targeted manner. This is not only strengthens the performance of the network for segmenting vibration objects, but also dramatically improves the practical performance of the algorithm. The conventional Relu activation function is substituted with Mish activation function, making the network more adept at segmenting rotating body in challenging backgrounds with varying illumination, blur, and similarity. The CSP+Mobiledets backbone network constructed in this study outperforms the U-Net network in terms of feature extraction effectiveness. Adding Dice-loss to the original loss function can more effectively solve the severe imbalance problem of samples caused by long-distance image acquisition. We take the most representative rotating body-rotor as the experimental subject. The displacement curve obtained by the existing algorithm has the best degree of fit with the signal curve collected by the eddy sensor. The results of different segmentation algorithms and detection algorithms on time domain curve plot, frequency domain plot and axis orbit plot are collectively compared. Furthermore, the results also provide valuable guidance for visual measurement of the vibration displacement of the rotating body in specific industrial scenarios. •A semantic segmentation network is applied for vibration displacement measurement.•CSP+Mobiledets backbone network to enhance feature extraction are proposed.•The proposed network has excellent performance under complex background.•The proposed algorithm has broad applicability on rotating structure.
AbstractList Compared with the traditional vibration displacement measurement methods, visual vibration measurement offers several advantages such as long-distance capability, non-contact operation and easy installation. However, the phenomenon of low fitting accuracy of the bounding box often occurs when detecting rotating objects, resulting in a slight deviation in the relative offset of the center vibration point of the target between frames, which will cause a serious deviation in the regression of vibration displacement offset. In this paper, a high-speed industrial camera is employed as the image acquisition medium, and a deep learning-based semantic segmentation method is introduced to address visual vibration measurement challenges in rotating body. Specifically, the CSP module integrates different depth semantic information which is introduced into the Mobiledets backbone network in a targeted manner. This is not only strengthens the performance of the network for segmenting vibration objects, but also dramatically improves the practical performance of the algorithm. The conventional Relu activation function is substituted with Mish activation function, making the network more adept at segmenting rotating body in challenging backgrounds with varying illumination, blur, and similarity. The CSP+Mobiledets backbone network constructed in this study outperforms the U-Net network in terms of feature extraction effectiveness. Adding Dice-loss to the original loss function can more effectively solve the severe imbalance problem of samples caused by long-distance image acquisition. We take the most representative rotating body-rotor as the experimental subject. The displacement curve obtained by the existing algorithm has the best degree of fit with the signal curve collected by the eddy sensor. The results of different segmentation algorithms and detection algorithms on time domain curve plot, frequency domain plot and axis orbit plot are collectively compared. Furthermore, the results also provide valuable guidance for visual measurement of the vibration displacement of the rotating body in specific industrial scenarios. •A semantic segmentation network is applied for vibration displacement measurement.•CSP+Mobiledets backbone network to enhance feature extraction are proposed.•The proposed network has excellent performance under complex background.•The proposed algorithm has broad applicability on rotating structure.
ArticleNumber 121306
Author Chai, Shanglei
Liu, Xiaoqin
Yang, Rongliang
Liu, Tao
Wang, Sen
Liu, Chang
Author_xml – sequence: 1
  givenname: Shanglei
  orcidid: 0000-0002-0631-1438
  surname: Chai
  fullname: Chai, Shanglei
  email: heitieya@126.com
– sequence: 2
  givenname: Sen
  orcidid: 0000-0003-1259-8030
  surname: Wang
  fullname: Wang, Sen
  email: wangsen0401@126.com
– sequence: 3
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
  email: liuchang3385@gmail.com
– sequence: 4
  givenname: Xiaoqin
  surname: Liu
  fullname: Liu, Xiaoqin
  email: liuxqsmile@gmail.com
– sequence: 5
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
  email: liutao.hais@hotmail.com
– sequence: 6
  givenname: Rongliang
  surname: Yang
  fullname: Yang, Rongliang
  email: yrl9797@126.com
BookMark eNp9kM9qwzAMh83oYG23F9jJL5BMrtM4gV1K2T8o7LKdjevInbvELrbb0rdfQnbaYScJ9PuE9M3IxHmHhNwzyBmw8mGfYzyrfAELnrMF41BekSmrBM9KUfMJmUK9FFnBRHFDZjHuAZgAEFPiVvRk41G1tEMVjwE7dImqdueDTV8dNT70gW1QyXpHGxsPrdJjyBsafOoHbke3vrnQYxzaiJ1yyeq-2Q25kXSYzj5835Jro9qId791Tj6fnz7Wr9nm_eVtvdpkmgOkbFk1tak5lgJLBFWXXBmAUmwFMG2YMRq5BigUsKJqGFdNUTe6qhRWUGhc8jlZjHt18DEGNPIQbKfCRTKQgzG5l4MxORiTo7Eeqv5A2o7np6Bs-z_6OKLYP3WyGGTUFp3GxgbUSTbe_of_ACfKjJM
CitedBy_id crossref_primary_10_1007_s11554_024_01578_7
crossref_primary_10_1016_j_aej_2025_02_010
crossref_primary_10_1016_j_measurement_2024_116426
crossref_primary_10_1007_s10853_024_10381_5
crossref_primary_10_1109_TIM_2025_3584147
crossref_primary_10_1007_s00530_025_01777_7
crossref_primary_10_1088_1361_6501_ad9106
crossref_primary_10_1016_j_euromechsol_2024_105326
crossref_primary_10_1155_stc_4714219
crossref_primary_10_1016_j_matcom_2025_07_069
crossref_primary_10_1142_S2010324724400083
crossref_primary_10_1016_j_engappai_2025_110285
crossref_primary_10_1016_j_imavis_2023_104887
crossref_primary_10_1016_j_ymssp_2025_113017
crossref_primary_10_1080_15376494_2024_2436648
crossref_primary_10_1109_ACCESS_2024_3485089
crossref_primary_10_1007_s12206_024_0413_5
crossref_primary_10_1080_15376494_2024_2422578
crossref_primary_10_1088_1361_6501_adcc47
crossref_primary_10_1007_s12206_024_1107_8
crossref_primary_10_1109_JSEN_2024_3472730
crossref_primary_10_1109_JSEN_2025_3585519
crossref_primary_10_1007_s11760_024_03779_w
crossref_primary_10_1016_j_ymssp_2025_112776
crossref_primary_10_1016_j_msea_2024_147217
crossref_primary_10_1016_j_ymssp_2025_113287
crossref_primary_10_1142_S201032472440006X
Cites_doi 10.1109/CVPR.2015.7298965
10.1109/CVPR.2019.00293
10.1016/j.jsv.2017.06.008
10.1016/j.eswa.2021.116027
10.1016/j.measurement.2017.09.043
10.1023/B:VISI.0000029664.99615.94
10.1016/j.ymssp.2022.109137
10.1016/j.eswa.2021.115565
10.1109/CVPR.2019.00584
10.1002/stc.2009
10.1109/CVPRW50498.2020.00203
10.1016/j.eswa.2009.10.041
10.1109/TNN.2002.1031944
10.1007/s13349-017-0261-4
10.1007/978-3-030-01234-2_49
10.1002/stc.1852
10.1016/j.measurement.2021.109847
10.1016/0004-3702(81)90024-2
10.3390/s17061305
10.1109/CVPR.2017.179
10.1080/15732479.2016.1164729
10.1016/j.eswa.2021.114570
10.1007/BF02310791
10.1109/CVPR46437.2021.00382
10.1002/stc.1850
10.1109/CVPR42600.2020.01079
10.1109/ICCV.2019.00140
10.1111/mice.12767
10.1016/j.eswa.2021.116290
10.1016/j.measurement.2016.12.020
10.1109/CVPR.2016.90
10.3390/s150716557
10.1109/CVPR.2017.660
10.1109/ICCV.2019.00667
10.1016/j.conbuildmat.2020.120923
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.121306
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_121306
S0957417423018080
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-58d9f93e67e6e0a963af0067b701cf1ffce3c004a0148d13ad49dc88ae804ce53
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001237073000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Nov 18 21:12:14 EST 2025
Sat Nov 29 07:05:07 EST 2025
Fri Feb 23 02:35:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Rotating body
Semantic segmentation
Vibration displacement measurement
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-58d9f93e67e6e0a963af0067b701cf1ffce3c004a0148d13ad49dc88ae804ce53
ORCID 0000-0002-0631-1438
0000-0003-1259-8030
ParticipantIDs crossref_primary_10_1016_j_eswa_2023_121306
crossref_citationtrail_10_1016_j_eswa_2023_121306
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_121306
PublicationCentury 2000
PublicationDate 2024-03-01
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xu, Brownjohn (b39) 2018; 8
Zhang, Liu, Zhao (b42) 2021; 267
(pp. 6569–6578).
Rublee, Rabaud, Konolige, Bradski (b31) 2011
(pp. 2881–2890).
Ma, Choi, Sohn (b26) 2022; 37
Li, Zheng, Li, Ma, Hu (b21) 2022; 190
Tan, Le (b35) 2019
(pp. 2820–2828).
Horn, Schunck (b12) 1981; 17
Howard, A., Sandler, M., Chu, G., Chen, L., Chen, B., Tan, M., et al. (2019). Searching for mobilenetv3. In
Khuc, Catbas (b19) 2017; 13
Zhu, Zhang, Lu, Li (b44) 2021; 183
Milletari, Navab, Ahmadi (b27) 2016
(pp. 1314–1324).
Ren, He, Girshick, Sun (b29) 2015; 28
Sonkul, Dhage, Vyas (b32) 2021; 185
(pp. 801–818).
Liu, Anguelov, Erhan, Szegedy, Reed, Fu (b22) 2016
Yoon, Elanwar, Choi, Golparvar-Fard, Spencer (b41) 2016; 23
Wang, C., Liao, H. M., Wu, Y., Chen, P., Hsieh, J., & Yeh, I. (2020). CSPNet: A new backbone that can enhance learning capability of CNN. In
Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In
(pp. 3825–3834).
Feng, Scarangello, Feng, Ye (b7) 2017; 99
(pp. 3431–3440).
Khaloo, Lattanzi (b17) 2017; 24
Hu, He, Wang, Liu, Zhang, He (b14) 2017; 17
(pp. 2462–2470).
Misra (b28) 2019
Sun, K., Xiao, B., Liu, D., & Wang, J. (2019). Deep high-resolution representation learning for human pose estimation. In
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
Yang, Wang, Wu, Liu, Liu (b40) 2022; 177
Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., & Brox, T. (2017). Flownet 2.0: Evolution of optical flow estimation with deep networks. In
Lucas, Kanade (b25) 1981
Ghate, Dudul (b10) 2010; 37
Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Centernet: Keypoint triplets for object detection. In
Khuc, Catbas (b18) 2017; 24
Feng, Feng, Ozer, Fukuda (b6) 2015; 15
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In
Ge, Liu, Wang, Li, Sun (b9) 2021
(pp. 770–778).
Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., et al. (2019). Mnasnet: Platform-aware neural architecture search for mobile. In
Jin, Chen (b16) 2021; 171
Chen, L., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation. In
Xiong, Y., Liu, H., Gupta, S., Akin, B., Bender, G., Wang, Y., et al. (2021). Mobiledets: Searching for object detection architectures for mobile accelerators. In
(pp. 5693–5703).
Dong, Ye, Jin (b3) 2018; 126
Carroll, Chang (b1) 1970; 35
(pp. 10781–10790).
Feng, Feng (b5) 2017; 406
Lowe (b24) 2004; 60
Gautama, Van Hulle (b8) 2002; 13
Kumar, Hati (b20) 2022; 191
Tan, M., Pang, R., & Le, Q. V. (2020). Efficientdet: Scalable and efficient object detection. In
Ronneberger, Fischer, Brox (b30) 2015
(pp. 390–391).
Ghate (10.1016/j.eswa.2023.121306_b10) 2010; 37
Kumar (10.1016/j.eswa.2023.121306_b20) 2022; 191
10.1016/j.eswa.2023.121306_b43
Ren (10.1016/j.eswa.2023.121306_b29) 2015; 28
10.1016/j.eswa.2023.121306_b23
Sonkul (10.1016/j.eswa.2023.121306_b32) 2021; 185
Hu (10.1016/j.eswa.2023.121306_b14) 2017; 17
Xu (10.1016/j.eswa.2023.121306_b39) 2018; 8
Carroll (10.1016/j.eswa.2023.121306_b1) 1970; 35
Milletari (10.1016/j.eswa.2023.121306_b27) 2016
Misra (10.1016/j.eswa.2023.121306_b28) 2019
Liu (10.1016/j.eswa.2023.121306_b22) 2016
Feng (10.1016/j.eswa.2023.121306_b6) 2015; 15
Zhu (10.1016/j.eswa.2023.121306_b44) 2021; 183
Ge (10.1016/j.eswa.2023.121306_b9) 2021
Feng (10.1016/j.eswa.2023.121306_b7) 2017; 99
Horn (10.1016/j.eswa.2023.121306_b12) 1981; 17
Jin (10.1016/j.eswa.2023.121306_b16) 2021; 171
Dong (10.1016/j.eswa.2023.121306_b3) 2018; 126
Feng (10.1016/j.eswa.2023.121306_b5) 2017; 406
10.1016/j.eswa.2023.121306_b11
10.1016/j.eswa.2023.121306_b33
10.1016/j.eswa.2023.121306_b34
10.1016/j.eswa.2023.121306_b13
Gautama (10.1016/j.eswa.2023.121306_b8) 2002; 13
Li (10.1016/j.eswa.2023.121306_b21) 2022; 190
10.1016/j.eswa.2023.121306_b36
10.1016/j.eswa.2023.121306_b15
10.1016/j.eswa.2023.121306_b37
Tan (10.1016/j.eswa.2023.121306_b35) 2019
10.1016/j.eswa.2023.121306_b38
Yang (10.1016/j.eswa.2023.121306_b40) 2022; 177
Khuc (10.1016/j.eswa.2023.121306_b18) 2017; 24
Khuc (10.1016/j.eswa.2023.121306_b19) 2017; 13
Rublee (10.1016/j.eswa.2023.121306_b31) 2011
Khaloo (10.1016/j.eswa.2023.121306_b17) 2017; 24
Lucas (10.1016/j.eswa.2023.121306_b25) 1981
Ronneberger (10.1016/j.eswa.2023.121306_b30) 2015
10.1016/j.eswa.2023.121306_b2
Ma (10.1016/j.eswa.2023.121306_b26) 2022; 37
10.1016/j.eswa.2023.121306_b4
Zhang (10.1016/j.eswa.2023.121306_b42) 2021; 267
Lowe (10.1016/j.eswa.2023.121306_b24) 2004; 60
Yoon (10.1016/j.eswa.2023.121306_b41) 2016; 23
References_xml – reference: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
– start-page: 2564
  year: 2011
  end-page: 2571
  ident: b31
  article-title: ORB: An efficient alternative to SIFT or SURF
  publication-title: 2011 International conference on computer vision
– reference: (pp. 2462–2470).
– volume: 190
  year: 2022
  ident: b21
  article-title: One-shot neural architecture search for fault diagnosis using vibration signals
  publication-title: Expert Systems with Applications
– reference: Wang, C., Liao, H. M., Wu, Y., Chen, P., Hsieh, J., & Yeh, I. (2020). CSPNet: A new backbone that can enhance learning capability of CNN. In
– volume: 406
  start-page: 15
  year: 2017
  end-page: 28
  ident: b5
  article-title: Identification of structural stiffness and excitation forces in time domain using noncontact vision-based displacement measurement
  publication-title: Journal of Sound and Vibration
– start-page: 565
  year: 2016
  end-page: 571
  ident: b27
  article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation
  publication-title: 2016 Fourth international conference on 3D vision
– volume: 15
  start-page: 16557
  year: 2015
  end-page: 16575
  ident: b6
  article-title: A vision-based sensor for noncontact structural displacement measurement
  publication-title: Sensors
– volume: 24
  year: 2017
  ident: b17
  article-title: Pixel-wise structural motion tracking from rectified repurposed videos
  publication-title: Structural Control and Health Monitoring
– volume: 37
  start-page: 3468
  year: 2010
  end-page: 3481
  ident: b10
  article-title: Optimal MLP neural network classifier for fault detection of three phase induction motor
  publication-title: Expert Systems with Applications
– reference: (pp. 2881–2890).
– volume: 17
  start-page: 1305
  year: 2017
  ident: b14
  article-title: A high-speed target-free vision-based sensor for bus rapid transit viaduct vibration measurements using CMT and ORB algorithms
  publication-title: Sensors
– volume: 17
  start-page: 185
  year: 1981
  end-page: 203
  ident: b12
  article-title: Determining optical flow
  publication-title: Artificial Intelligence
– reference: (pp. 3825–3834).
– volume: 24
  year: 2017
  ident: b18
  article-title: Completely contactless structural health monitoring of real-life structures using cameras and computer vision
  publication-title: Structural Control and Health Monitoring
– reference: Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., et al. (2019). Mnasnet: Platform-aware neural architecture search for mobile. In
– year: 1981
  ident: b25
  publication-title: An iterative image registration technique with an application to stereo vision
– volume: 99
  start-page: 44
  year: 2017
  end-page: 52
  ident: b7
  article-title: Cable tension force estimate using novel noncontact vision-based sensor
  publication-title: Measurement
– reference: Chen, L., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation. In
– reference: (pp. 5693–5703).
– reference: (pp. 801–818).
– start-page: 10
  year: 2019
  end-page: 48550
  ident: b28
  article-title: Mish: A self regularized non-monotonic neural activation function
– reference: Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., & Brox, T. (2017). Flownet 2.0: Evolution of optical flow estimation with deep networks. In
– volume: 126
  start-page: 405
  year: 2018
  end-page: 416
  ident: b3
  article-title: Identification of structural dynamic characteristics based on machine vision technology
  publication-title: Measurement
– volume: 35
  start-page: 283
  year: 1970
  end-page: 319
  ident: b1
  article-title: Analysis of individual differences in multidimensional scaling via an N-way generalization of “eckart-Young” decomposition
  publication-title: Psychometrika
– volume: 191
  year: 2022
  ident: b20
  article-title: Dilated convolutional neural network based model for bearing faults and broken rotor bar detection in squirrel cage induction motors
  publication-title: Expert Systems with Applications
– reference: Sun, K., Xiao, B., Liu, D., & Wang, J. (2019). Deep high-resolution representation learning for human pose estimation. In
– reference: Xiong, Y., Liu, H., Gupta, S., Akin, B., Bender, G., Wang, Y., et al. (2021). Mobiledets: Searching for object detection architectures for mobile accelerators. In
– volume: 13
  start-page: 1127
  year: 2002
  end-page: 1136
  ident: b8
  article-title: A phase-based approach to the estimation of the optical flow field using spatial filtering
  publication-title: IEEE Transactions on Neural Networks
– volume: 183
  year: 2021
  ident: b44
  article-title: A multi-resolution deep feature framework for dynamic displacement measurement of bridges using vision-based tracking system
  publication-title: Measurement
– volume: 171
  year: 2021
  ident: b16
  article-title: An end-to-end framework combining time–frequency expert knowledge and modified transformer networks for vibration signal classification
  publication-title: Expert Systems with Applications
– reference: Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Centernet: Keypoint triplets for object detection. In
– reference: (pp. 2820–2828).
– reference: Tan, M., Pang, R., & Le, Q. V. (2020). Efficientdet: Scalable and efficient object detection. In
– volume: 13
  start-page: 505
  year: 2017
  end-page: 516
  ident: b19
  article-title: Computer vision-based displacement and vibration monitoring without using physical target on structures
  publication-title: Structure and Infrastructure Engineering
– volume: 185
  year: 2021
  ident: b32
  article-title: Single and multi-label fault classification in rotors from unprocessed multi-sensor data through deep and parallel CNN architectures
  publication-title: Expert Systems with Applications
– volume: 28
  year: 2015
  ident: b29
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 23
  start-page: 1405
  year: 2016
  end-page: 1416
  ident: b41
  article-title: Target-free approach for vision-based structural system identification using consumer-grade cameras
  publication-title: Structural Control and Health Monitoring
– start-page: 21
  year: 2016
  end-page: 37
  ident: b22
  article-title: Ssd: Single shot multibox detector
  publication-title: European conference on computer vision
– reference: (pp. 6569–6578).
– reference: Howard, A., Sandler, M., Chu, G., Chen, L., Chen, B., Tan, M., et al. (2019). Searching for mobilenetv3. In
– reference: (pp. 390–391).
– year: 2021
  ident: b9
  article-title: Yolox: Exceeding yolo series in 2021
– reference: (pp. 770–778).
– start-page: 234
  year: 2015
  end-page: 241
  ident: b30
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International conference on medical image computing and computer-assisted intervention
– volume: 177
  year: 2022
  ident: b40
  article-title: Using lightweight convolutional neural network to track vibration displacement in rotating body video
  publication-title: Mechanical Systems and Signal Processing
– reference: (pp. 10781–10790).
– volume: 8
  start-page: 91
  year: 2018
  end-page: 110
  ident: b39
  article-title: Review of machine-vision based methodologies for displacement measurement in civil structures
  publication-title: Journal of Civil Structural Health Monitoring
– volume: 60
  start-page: 91
  year: 2004
  end-page: 110
  ident: b24
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: International Journal of Computer Vision
– volume: 267
  year: 2021
  ident: b42
  article-title: Structural displacement monitoring based on mask regions with convolutional neural network
  publication-title: Construction and Building Materials
– reference: (pp. 3431–3440).
– reference: Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In
– reference: (pp. 1314–1324).
– start-page: 6105
  year: 2019
  end-page: 6114
  ident: b35
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
  publication-title: International conference on machine learning
– volume: 37
  start-page: 688
  year: 2022
  end-page: 703
  ident: b26
  article-title: Real-time structural displacement estimation by fusing asynchronous acceleration and computer vision measurements
  publication-title: Computer-Aided Civil and Infrastructure Engineering
– reference: Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In
– ident: 10.1016/j.eswa.2023.121306_b23
  doi: 10.1109/CVPR.2015.7298965
– start-page: 565
  year: 2016
  ident: 10.1016/j.eswa.2023.121306_b27
  article-title: V-net: Fully convolutional neural networks for volumetric medical image segmentation
– ident: 10.1016/j.eswa.2023.121306_b34
  doi: 10.1109/CVPR.2019.00293
– volume: 406
  start-page: 15
  year: 2017
  ident: 10.1016/j.eswa.2023.121306_b5
  article-title: Identification of structural stiffness and excitation forces in time domain using noncontact vision-based displacement measurement
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2017.06.008
– volume: 190
  year: 2022
  ident: 10.1016/j.eswa.2023.121306_b21
  article-title: One-shot neural architecture search for fault diagnosis using vibration signals
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.116027
– volume: 126
  start-page: 405
  year: 2018
  ident: 10.1016/j.eswa.2023.121306_b3
  article-title: Identification of structural dynamic characteristics based on machine vision technology
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.09.043
– start-page: 21
  year: 2016
  ident: 10.1016/j.eswa.2023.121306_b22
  article-title: Ssd: Single shot multibox detector
– start-page: 6105
  year: 2019
  ident: 10.1016/j.eswa.2023.121306_b35
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
– volume: 60
  start-page: 91
  year: 2004
  ident: 10.1016/j.eswa.2023.121306_b24
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: International Journal of Computer Vision
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 177
  year: 2022
  ident: 10.1016/j.eswa.2023.121306_b40
  article-title: Using lightweight convolutional neural network to track vibration displacement in rotating body video
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2022.109137
– volume: 185
  year: 2021
  ident: 10.1016/j.eswa.2023.121306_b32
  article-title: Single and multi-label fault classification in rotors from unprocessed multi-sensor data through deep and parallel CNN architectures
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115565
– ident: 10.1016/j.eswa.2023.121306_b33
  doi: 10.1109/CVPR.2019.00584
– volume: 24
  year: 2017
  ident: 10.1016/j.eswa.2023.121306_b17
  article-title: Pixel-wise structural motion tracking from rectified repurposed videos
  publication-title: Structural Control and Health Monitoring
  doi: 10.1002/stc.2009
– ident: 10.1016/j.eswa.2023.121306_b37
  doi: 10.1109/CVPRW50498.2020.00203
– volume: 37
  start-page: 3468
  year: 2010
  ident: 10.1016/j.eswa.2023.121306_b10
  article-title: Optimal MLP neural network classifier for fault detection of three phase induction motor
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.10.041
– volume: 13
  start-page: 1127
  year: 2002
  ident: 10.1016/j.eswa.2023.121306_b8
  article-title: A phase-based approach to the estimation of the optical flow field using spatial filtering
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2002.1031944
– volume: 8
  start-page: 91
  year: 2018
  ident: 10.1016/j.eswa.2023.121306_b39
  article-title: Review of machine-vision based methodologies for displacement measurement in civil structures
  publication-title: Journal of Civil Structural Health Monitoring
  doi: 10.1007/s13349-017-0261-4
– ident: 10.1016/j.eswa.2023.121306_b2
  doi: 10.1007/978-3-030-01234-2_49
– volume: 24
  year: 2017
  ident: 10.1016/j.eswa.2023.121306_b18
  article-title: Completely contactless structural health monitoring of real-life structures using cameras and computer vision
  publication-title: Structural Control and Health Monitoring
  doi: 10.1002/stc.1852
– volume: 183
  year: 2021
  ident: 10.1016/j.eswa.2023.121306_b44
  article-title: A multi-resolution deep feature framework for dynamic displacement measurement of bridges using vision-based tracking system
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109847
– year: 1981
  ident: 10.1016/j.eswa.2023.121306_b25
– volume: 17
  start-page: 185
  year: 1981
  ident: 10.1016/j.eswa.2023.121306_b12
  article-title: Determining optical flow
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(81)90024-2
– volume: 17
  start-page: 1305
  year: 2017
  ident: 10.1016/j.eswa.2023.121306_b14
  article-title: A high-speed target-free vision-based sensor for bus rapid transit viaduct vibration measurements using CMT and ORB algorithms
  publication-title: Sensors
  doi: 10.3390/s17061305
– ident: 10.1016/j.eswa.2023.121306_b15
  doi: 10.1109/CVPR.2017.179
– volume: 13
  start-page: 505
  year: 2017
  ident: 10.1016/j.eswa.2023.121306_b19
  article-title: Computer vision-based displacement and vibration monitoring without using physical target on structures
  publication-title: Structure and Infrastructure Engineering
  doi: 10.1080/15732479.2016.1164729
– start-page: 2564
  year: 2011
  ident: 10.1016/j.eswa.2023.121306_b31
  article-title: ORB: An efficient alternative to SIFT or SURF
– volume: 171
  year: 2021
  ident: 10.1016/j.eswa.2023.121306_b16
  article-title: An end-to-end framework combining time–frequency expert knowledge and modified transformer networks for vibration signal classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.114570
– volume: 35
  start-page: 283
  year: 1970
  ident: 10.1016/j.eswa.2023.121306_b1
  article-title: Analysis of individual differences in multidimensional scaling via an N-way generalization of “eckart-Young” decomposition
  publication-title: Psychometrika
  doi: 10.1007/BF02310791
– ident: 10.1016/j.eswa.2023.121306_b38
  doi: 10.1109/CVPR46437.2021.00382
– volume: 23
  start-page: 1405
  year: 2016
  ident: 10.1016/j.eswa.2023.121306_b41
  article-title: Target-free approach for vision-based structural system identification using consumer-grade cameras
  publication-title: Structural Control and Health Monitoring
  doi: 10.1002/stc.1850
– ident: 10.1016/j.eswa.2023.121306_b36
  doi: 10.1109/CVPR42600.2020.01079
– ident: 10.1016/j.eswa.2023.121306_b13
  doi: 10.1109/ICCV.2019.00140
– volume: 37
  start-page: 688
  year: 2022
  ident: 10.1016/j.eswa.2023.121306_b26
  article-title: Real-time structural displacement estimation by fusing asynchronous acceleration and computer vision measurements
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12767
– start-page: 10
  year: 2019
  ident: 10.1016/j.eswa.2023.121306_b28
– start-page: 234
  year: 2015
  ident: 10.1016/j.eswa.2023.121306_b30
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 28
  year: 2015
  ident: 10.1016/j.eswa.2023.121306_b29
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 191
  year: 2022
  ident: 10.1016/j.eswa.2023.121306_b20
  article-title: Dilated convolutional neural network based model for bearing faults and broken rotor bar detection in squirrel cage induction motors
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.116290
– volume: 99
  start-page: 44
  year: 2017
  ident: 10.1016/j.eswa.2023.121306_b7
  article-title: Cable tension force estimate using novel noncontact vision-based sensor
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.12.020
– year: 2021
  ident: 10.1016/j.eswa.2023.121306_b9
– ident: 10.1016/j.eswa.2023.121306_b11
  doi: 10.1109/CVPR.2016.90
– volume: 15
  start-page: 16557
  year: 2015
  ident: 10.1016/j.eswa.2023.121306_b6
  article-title: A vision-based sensor for noncontact structural displacement measurement
  publication-title: Sensors
  doi: 10.3390/s150716557
– ident: 10.1016/j.eswa.2023.121306_b43
  doi: 10.1109/CVPR.2017.660
– ident: 10.1016/j.eswa.2023.121306_b4
  doi: 10.1109/ICCV.2019.00667
– volume: 267
  year: 2021
  ident: 10.1016/j.eswa.2023.121306_b42
  article-title: Structural displacement monitoring based on mask regions with convolutional neural network
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2020.120923
SSID ssj0017007
Score 2.567894
Snippet Compared with the traditional vibration displacement measurement methods, visual vibration measurement offers several advantages such as long-distance...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121306
SubjectTerms Deep learning
Rotating body
Semantic segmentation
Vibration displacement measurement
Title A visual measurement algorithm for vibration displacement of rotating body using semantic segmentation network
URI https://dx.doi.org/10.1016/j.eswa.2023.121306
Volume 237
WOSCitedRecordID wos001237073000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWlgMXyqdoKcgHblGqfNib5LhCrQpCFRJF2lvkOPaSatcpm-zS_gb-NOPYTtICFT1wsSIr8UaZt-Px85sxQu-mjMC0WAhfZon0CYUmozHxy4CylBZ0SiTrDptIzs7S-Tz7PJn8dLkw22WiVHp1lV3-V1NDHxhbp87ew9z9oNAB12B0aMHs0P6T4WfetmpMUkhP_3lsuajXVftt1ckKt3qN3Bm-rJpOleUkAetab82rhVfU5bW36YiERqzg81ccLhYrm6qkPGX04zeYfV02ubXFoV3a3GiDfCQl6DQEXzRZvRTVQOpb7npIT_tUbawowM6wQ9-8YvV3Wzfc0hYRGXRbPf-Y-IATMnbFkSkAY52prjbXlSP43c8byuHiSDQ_dPGoKD4abr5ZVPvWZNdLEJ267SLXY-R6jNyM8QDtRgnNwEXuzj4czz_2m1JJYLLv3ZvbHCwjF7z9Jn-Oc0axy_kT9NguOvDMgOUpmgj1DO25Az2w9e_PkZphgx08wg7usYMBO7jHDh5jB9cSO-xgjR3cYQc77OAxdrDFzgv09eT4_P2pbw_k8HkcBK1P0zKTWSymiZiKgIHvZlKHO0UShFyGUnIRc_grMk1Tl2HMSpKVPE2ZSAPCBY1foh1VK_EKYXAIPI5FEpKQEc5JQVnBBCxfBElJRIp9FLrPl3NbrV4fmrLM_264feT1z1yaWi133k2dVXIbbZooMgeQ3fHcwb1-5TV6NKD_EO206414gx7ybVs167cWYb8AM1imag
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+visual+measurement+algorithm+for+vibration+displacement+of+rotating+body+using+semantic+segmentation+network&rft.jtitle=Expert+systems+with+applications&rft.au=Chai%2C+Shanglei&rft.au=Wang%2C+Sen&rft.au=Liu%2C+Chang&rft.au=Liu%2C+Xiaoqin&rft.date=2024-03-01&rft.issn=0957-4174&rft.volume=237&rft.spage=121306&rft_id=info:doi/10.1016%2Fj.eswa.2023.121306&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_121306
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon