A multi-scale convolutional neural network with adaptive weight fusion strategy for assisting glaucoma screening

•Multi-scale inputs and hybrid down-sampling modules are used.•The attention mechanism is integrated into multi-scale convolution.•An adaptive weight fusion strategy is used to solve semantic gap. The diagnosis of glaucoma primarily relies on the accurate segmentation of the optic disc (OD) and opti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomedical signal processing and control Ročník 98; s. 106775
Hlavní autoři: Zhang, Xugang, Shen, Mo, Zhao, Lujiang, Gong, Qingshan, Yao, Junping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.12.2024
Témata:
ISSN:1746-8094
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Multi-scale inputs and hybrid down-sampling modules are used.•The attention mechanism is integrated into multi-scale convolution.•An adaptive weight fusion strategy is used to solve semantic gap. The diagnosis of glaucoma primarily relies on the accurate segmentation of the optic disc (OD) and optic cup (OC). However, OC segmentation remains challenging due to significant individual differences. This study proposes a threshold-based OD extraction method and multi-scale residual U-Net with context attention mechanism and adaptive weight fusion strategy (MRCAAU-Net) to segment OC and OD jointly. Firstly, based on the intensity difference between the OD and the background, an improved thresholding criterion combined with template matching technique is used to effectively detect the OD region, providing accurate input images for network training. Secondly, considering the semantic gap issue during the encoder-decoder feature fusion in the segmentation network, this paper develops an adaptive weight fusion module to guide the effective connections of encoder-decoder features. Additionally, the 1D convolution-based attention mechanism has stronger local perceptiveness. This paper integrate it into various modules, combining multi-scale methods to enhance the segmentation performance of OC by incorporating both global and local features. Finally, the network is guided to learn image segmentation through a hybrid loss function that ignores the background. We conducted extensive experiments on three public datasets, and obtained more accurate segmentation outputs compared to other state-of-the-art methods, particularly in the OC segmentation, where the segmentation accuracy is very close to that of the OD. The proposed joint segmentation network effectively improves and balances the segmentation performance of two objectives, which can greatly assist in large-scale screening for glaucoma.
AbstractList •Multi-scale inputs and hybrid down-sampling modules are used.•The attention mechanism is integrated into multi-scale convolution.•An adaptive weight fusion strategy is used to solve semantic gap. The diagnosis of glaucoma primarily relies on the accurate segmentation of the optic disc (OD) and optic cup (OC). However, OC segmentation remains challenging due to significant individual differences. This study proposes a threshold-based OD extraction method and multi-scale residual U-Net with context attention mechanism and adaptive weight fusion strategy (MRCAAU-Net) to segment OC and OD jointly. Firstly, based on the intensity difference between the OD and the background, an improved thresholding criterion combined with template matching technique is used to effectively detect the OD region, providing accurate input images for network training. Secondly, considering the semantic gap issue during the encoder-decoder feature fusion in the segmentation network, this paper develops an adaptive weight fusion module to guide the effective connections of encoder-decoder features. Additionally, the 1D convolution-based attention mechanism has stronger local perceptiveness. This paper integrate it into various modules, combining multi-scale methods to enhance the segmentation performance of OC by incorporating both global and local features. Finally, the network is guided to learn image segmentation through a hybrid loss function that ignores the background. We conducted extensive experiments on three public datasets, and obtained more accurate segmentation outputs compared to other state-of-the-art methods, particularly in the OC segmentation, where the segmentation accuracy is very close to that of the OD. The proposed joint segmentation network effectively improves and balances the segmentation performance of two objectives, which can greatly assist in large-scale screening for glaucoma.
ArticleNumber 106775
Author Zhang, Xugang
Shen, Mo
Zhao, Lujiang
Yao, Junping
Gong, Qingshan
Author_xml – sequence: 1
  givenname: Xugang
  surname: Zhang
  fullname: Zhang, Xugang
  organization: Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
– sequence: 2
  givenname: Mo
  surname: Shen
  fullname: Shen, Mo
  organization: Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
– sequence: 3
  givenname: Lujiang
  surname: Zhao
  fullname: Zhao, Lujiang
  organization: Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
– sequence: 4
  givenname: Qingshan
  surname: Gong
  fullname: Gong, Qingshan
  email: gongqs_jx@huat.edu.cn
  organization: College of Mechanical Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
– sequence: 5
  givenname: Junping
  surname: Yao
  fullname: Yao, Junping
  organization: Department of Ophthalmology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430036, China
BookMark eNp9kMtqwzAURLVIoUnaH-hKP-BU8ks2dBNCXxDopl0LWbpylDqSkeSE_H3tpqsushoY7rnMzALNrLOA0AMlK0po-bhfNaGXq5Sk-WiUjBUzNKcsL5OK1PktWoSwJySvGM3nqF_jw9BFkwQpOsDS2aPrhmicFR22MPhfiSfnv_HJxB0WSvTRHAGfwLS7iPUQxmMcohcR2jPWzmMRggnR2Ba3nRikOwgcpAewo3WHbrToAtz_6RJ9vTx_bt6S7cfr-2a9TWRGSEyKKlVKNkVZ1oVKaUPymmREFqphDasyCioTqkklqFIxYAKEJHXWaJFSzTTobImqy1_pXQgeNJcmiqnYmNR0nBI-rcX3fFqLT2vxy1ojmv5De28Owp-vQ08XCMZSRwOeB2nAjgGNBxm5cuYa_gO_LYxp
CitedBy_id crossref_primary_10_1016_j_eswa_2025_129265
Cites_doi 10.1080/17469899.2016.1229599
10.3390/ijms24032814
10.1109/TPAMI.2019.2913372
10.1109/TMI.2018.2791488
10.1016/j.neucom.2023.03.044
10.1016/j.ijleo.2023.170861
10.1016/j.compmedimag.2019.101643
10.12688/f1000research.122288.1
10.1109/CBMS.2011.5999143
10.1016/j.bbe.2022.05.003
10.3390/healthcare10122497
10.1016/j.bbe.2021.05.011
10.1109/JBHI.2015.2473159
10.1016/j.ajo.2023.01.008
10.1016/j.bspc.2023.104906
10.1016/j.media.2019.101570
10.1016/j.asoc.2021.108347
10.1109/TBME.2019.2913211
10.1109/ICAIMAT51101.2020.9308006
10.1097/APO.0000000000000596
10.3390/jcm12020507
10.1016/j.ajo.2022.10.010
10.1016/j.neucom.2015.09.116
10.1109/CVPR.2017.660
10.1016/j.irbm.2022.03.001
10.1109/CVPR.2017.106
10.1007/978-3-319-24574-4_28
10.1016/j.bbe.2022.12.005
10.1007/s10278-019-00227-x
10.1016/j.asoc.2019.105890
10.1016/j.bbe.2018.02.003
10.1016/j.media.2021.102253
10.1016/j.xops.2022.100233
10.1109/ACCESS.2021.3116265
10.3390/math11020257
10.1016/j.survophthal.2022.08.005
10.1016/j.ibmed.2021.100038
10.1016/j.patcog.2006.10.015
10.1016/j.bbe.2023.02.003
10.1016/j.bbe.2017.05.008
10.1007/s42979-022-01592-1
10.1016/j.bspc.2023.104879
10.1016/j.cmpb.2015.10.010
10.1016/j.patcog.2020.107810
10.1038/s41598-022-16262-8
10.1016/j.cmpb.2020.105341
10.1016/j.eswa.2022.117968
10.1016/j.xops.2022.100255
10.1109/TPAMI.2016.2644615
10.1109/TMI.2019.2903562
10.1016/j.maturitas.2022.05.002
10.3233/THC-161206
10.1109/ISBI.2014.6867807
10.1016/j.asoc.2022.109918
10.1016/j.artmed.2021.102035
10.1016/j.bspc.2018.01.014
10.1016/j.eswa.2021.116399
10.1016/j.bspc.2023.104895
10.1016/j.bspc.2021.103192
10.1016/j.cmpb.2021.106530
10.1109/CVPR42600.2020.01155
10.3390/s22020434
10.1016/j.advengsoft.2022.103328
10.1109/LSP.2022.3151549
10.1016/j.bbe.2017.11.002
10.1016/j.eswa.2019.03.009
10.1109/ACCESS.2020.2998635
10.1016/j.bspc.2015.10.012
10.1016/j.compbiomed.2022.106094
10.1109/JBHI.2015.2392712
10.1016/j.compeleceng.2022.108009
10.1016/j.compmedimag.2019.02.005
10.1016/j.bbe.2023.02.002
10.1016/j.compmedimag.2019.101657
10.1016/j.bspc.2022.104347
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2024.106775
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2024_106775
S1746809424008334
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-582ddcb56695d21b049030c5db7b7831ed3adb2ced6d7e7aeac093bfa21f7fef3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001297767900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Tue Nov 18 21:51:11 EST 2025
Sat Nov 29 02:51:27 EST 2025
Sat Sep 14 18:08:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Segment OC and OD jointly
Attention mechanism
Large-scale screening for glaucoma
OD extraction
Adaptive weight fusion strategy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-582ddcb56695d21b049030c5db7b7831ed3adb2ced6d7e7aeac093bfa21f7fef3
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2024_106775
crossref_primary_10_1016_j_bspc_2024_106775
elsevier_sciencedirect_doi_10_1016_j_bspc_2024_106775
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Roychowdhury, Koozekanani, Kuchinka (b0205) 2016; 20
Sarhan, Rokne, Alhajj (b0010) 2019; 78
Guo, Liu, Oerlemans (b0075) 2016; 187
Arias-Serrano, Velásquez-López, Avila-Briones (b0315) 2023; 12
Sun, Yao, Liu (b0150) 2022; 29
Bhattacharya, Hussain, Chatterjee (b0160) 2023; 85
Thakur, Juneja (b0045) 2018; 42
Raza, Adnan, Ishaq (b0135) 2023; 11
Coan, Williams, Krishna Adithya (b0060) 2023; 68
Han, Wang, Gong (b0365) 2022; 43
Haider, Arsalan, Park (b0140) 2023; 133
Hoorali, Khosravi, Moradi (b0375) 2022; 191
Z. Gu, J. Cheng, H. Fu et al. CE-Net: Context Encoder Network for 2D Medical Image Segmentation. In: IEEE Trans Med Imaging. IEEE; 2019. p. 2281-2292. DOI: 10.1109/TMI.2019.2903562.
Xavier (b0305) 2023; 3
Ren, Li, Yang (b0225) 2016; 24
Singh, Singh, Dev (b0230) 2023; 175
Wang, Gu, Chen (b0270) 2021; 112
Jiang, Duan, Cheng (b0335) 2020; 67
J. Sivaswamy, S.R. Krishnadas, G.D. Joshi et al. Drishti-GS: Retinal image dataset for optic nerve head(ONH) segmentation. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). IEEE; 2014. p. 53-56. DOI: 10.1109/ISBI.2014.6867807.
Pachade, Porwal, Kokare (b0330) 2021; 74
H. Zhao, J. Shi, X. Qi et al. Pyramid scene parsing network. In: IEEE conference on computer vision and pattern recognition (CVPR). p. 2881-2890. DOI: 10.1109/CVPR.2017.660.
M. Tabassum, T.M. Khan, M. Arsalan et al. CDED-Net: Joint segmentation of optic disc and optic cup for glaucoma screening. In: IEEE Access. IEEE;2020. p. 102733-102747. DOI: 10.1109/ACCESS.2020.2998635.
Braeu, Thiéry, Tun (b0355) 2023; 250
Lucy, Wollstein (b0030) 2016; 11
Sangeethaa (b0275) 2023; 81
C. De Vente, K.A. Vermeer, N. Jaccard et al. AIROGS: artificial intelligence for RObust glaucoma screening challenge. arXiv preprint arXiv: 2023;2302.01738. DOI: 10.48550/arXiv.2302.01738.
Singh, Dutta, ParthaSarathi (b0240) 2016; 124
Kausu, Gopi, Wahid (b0220) 2018; 38
T.Y. Lin, P. Dollar, R. Girshick et al. Feature pyramid networks for object detection. In: IEEE conference on computer vision and pattern recognition (CVPR). p. 2117-2125. DOI: 10.1109/CVPR.2017.106.
Huang, Chen, Chen (b0090) 2023; 43
Yu, Xiao, Frost, Kanagasingam (b0290) 2019; 74
Soares, Castelo-Branco, Pinheiro (b0405) 2016; 20
El-Nimri, Moghimi, Nishida (b0035) 2023; 246
Sarathi, Dutta, Singh (b0260) 2016; 25
Liu, Pan, Shuai, Song (b0325) 2022; 213
Xu, Chutatape, Sung (b0410) 2007; 40
Orlando, Fu, Barbosa Breda (b0400) 2020; 59
Fea, Ricardi, Novarese (b0025) 2023; 24
Pavithra, Kumar, Geetha (b0005) 2023; 43
Juneja, Thakur, Uniyal (b0050) 2022; 101
Lee, Mackey (b0015) 2022; 163
Chen, Anran, Tan (b0020) 2023; 12
Lu, Zhao, Liu (b0165) 2023; 538
F. Fumero, S. Alayon, J.L. Sanchez et al. RIM-ONE: An open retinal image database for optic nerve evaluation. In: 2011 24th international symposium on computer-based medical systems (CBMS). IEEE; 2011. p. 1-6. DOI: 10.1109/CBMS.2011.5999143.
Shanmugam, Raja, Pitchai (b0265) 2021; 109
Yuan, Zhou, Yu (b0105) 2021; 113
Q. Wang, B. Wu, P. Zhu et al. ECA-Net: Efficient channel attention for deep convolutional neural networks. In: IEEE conference on computer vision and pattern recognition (CVPR). p. 11534-11542. DOI: 10.1109/CVPR42600.2020.01155.
Haider, Arsalan, Lee (b0155) 2022; 207
Pascal, Perdomo, Bost (b0300) 2022; 12
Martins, Cardoso, Soares (b0040) 2020; 192
Zhang, Ma, Gong (b0065) 2023; 85
Raghavendra, Bhandary, Gudigar (b0200) 2018; 38
Hesamian, Jia, He, Kennedy (b0070) 2019; 32
Thakur, Juneja (b0235) 2019; 127
Nawaz, Nazir, Javed (b0280) 2022; 22
Hervella, Rouco, Novo (b0145) 2022; 116
Verma, Shrinivasan, Hiremath (b0245) 2023; 12
Mvoulana, Kachouri, Akil (b0250) 2019; 77
Guru Prasad, Naveen Kumar, Raju (b0255) 2023; 4
Bunod, Lubrano, Pirovano (b0320) 2023; 12
O. Ronneberger, P. Fischer, T. Brox. U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference; 2015. p. 234-241. DOI: 10.1007/978-3-319-24574-4_28.
J. Chen, Y. Lu, Q. Yu et al. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv: 2021;2102.04306. DOI: 10.48550/arXiv.2102.04306.
Jumanto, Nugraha, Harjoko (b0195) 2023; 4
Sunija, Gopi, Palanisamy (b0180) 2022; 71
Panda, Puhan, Panda (b0210) 2017; 37
J. Hu, L. Shen, S. Albanie et al. Squeeze-and-Excitation Networks. In: IEEE Trans Pattern Anal Mach Intell 2020;42(8):2011-2023. DOI: 10.1109/TPAMI.2019.2913372.
Blanco, Penedo, Barreira (b0215) 2006
Guo, Li, Lin (b0340) 2022; 150
V. Badrinarayanan, A. Kendall, R. Cipolla. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. In: IEEE Trans. Pattern Anal. Mach. Intell. IEEE; 2017. p. 2481-2495. DOI: 10.1109/TPAMI.2016.2644615.
M. Aljazaeri, Y. Bazi, H. AlMubarak et al. Deep Segmentation Architecture with Self Attention for Glaucoma Detection. In:2020 International Conference on Artificial Intelligence & Modern Assistive Technology (ICAIMAT). IEEE;2020. p. 1-4. DOI: 10.1109/ICAIMAT51101.2020.9308006.
Xu, Fan (b0080) 2022; 42
Tulsani, Kumar, Pathan (b0130) 2021; 41
Fu, Cheng, Xu (b0100) 2018; 37
Wang, Li, Cheng (b0175) 2023; 85
Rasheed, Davis, Morales (b0310) 2023; 3
Chandra, Verma, Raghuvanshi (b0085) 2023; 43
Lim, Cheng, Hsu, Lee (b0055) 2015
Chai, Liu, Xu (b0185) 2020; 86
Kashyap, Nair, Gangadharan (b0295) 2022; 10
Fan, Alipour, Bowd (b0350) 2023; 3
Shinde (b0190) 2021; 5
Bencevic, Galic, Habijan (b0360) 2021; 9
Sonti, Dhuli (b0415) 2023; 283
Tulsani (10.1016/j.bspc.2024.106775_b0130) 2021; 41
Braeu (10.1016/j.bspc.2024.106775_b0355) 2023; 250
10.1016/j.bspc.2024.106775_b0115
Chandra (10.1016/j.bspc.2024.106775_b0085) 2023; 43
10.1016/j.bspc.2024.106775_b0110
10.1016/j.bspc.2024.106775_b0395
Guo (10.1016/j.bspc.2024.106775_b0340) 2022; 150
Martins (10.1016/j.bspc.2024.106775_b0040) 2020; 192
Singh (10.1016/j.bspc.2024.106775_b0230) 2023; 175
Sarathi (10.1016/j.bspc.2024.106775_b0260) 2016; 25
Lu (10.1016/j.bspc.2024.106775_b0165) 2023; 538
Raghavendra (10.1016/j.bspc.2024.106775_b0200) 2018; 38
10.1016/j.bspc.2024.106775_b0345
Han (10.1016/j.bspc.2024.106775_b0365) 2022; 43
Sonti (10.1016/j.bspc.2024.106775_b0415) 2023; 283
10.1016/j.bspc.2024.106775_b0385
Roychowdhury (10.1016/j.bspc.2024.106775_b0205) 2016; 20
Rasheed (10.1016/j.bspc.2024.106775_b0310) 2023; 3
10.1016/j.bspc.2024.106775_b0380
Pascal (10.1016/j.bspc.2024.106775_b0300) 2022; 12
10.1016/j.bspc.2024.106775_b0390
Sarhan (10.1016/j.bspc.2024.106775_b0010) 2019; 78
Coan (10.1016/j.bspc.2024.106775_b0060) 2023; 68
Yuan (10.1016/j.bspc.2024.106775_b0105) 2021; 113
Hervella (10.1016/j.bspc.2024.106775_b0145) 2022; 116
Lucy (10.1016/j.bspc.2024.106775_b0030) 2016; 11
Kashyap (10.1016/j.bspc.2024.106775_b0295) 2022; 10
Soares (10.1016/j.bspc.2024.106775_b0405) 2016; 20
Jumanto (10.1016/j.bspc.2024.106775_b0195) 2023; 4
Hesamian (10.1016/j.bspc.2024.106775_b0070) 2019; 32
Xavier (10.1016/j.bspc.2024.106775_b0305) 2023; 3
Guo (10.1016/j.bspc.2024.106775_b0075) 2016; 187
Fu (10.1016/j.bspc.2024.106775_b0100) 2018; 37
Thakur (10.1016/j.bspc.2024.106775_b0235) 2019; 127
Wang (10.1016/j.bspc.2024.106775_b0270) 2021; 112
El-Nimri (10.1016/j.bspc.2024.106775_b0035) 2023; 246
Xu (10.1016/j.bspc.2024.106775_b0080) 2022; 42
Bhattacharya (10.1016/j.bspc.2024.106775_b0160) 2023; 85
Arias-Serrano (10.1016/j.bspc.2024.106775_b0315) 2023; 12
Fan (10.1016/j.bspc.2024.106775_b0350) 2023; 3
Bencevic (10.1016/j.bspc.2024.106775_b0360) 2021; 9
Guru Prasad (10.1016/j.bspc.2024.106775_b0255) 2023; 4
10.1016/j.bspc.2024.106775_b0095
10.1016/j.bspc.2024.106775_b0370
Wang (10.1016/j.bspc.2024.106775_b0175) 2023; 85
Huang (10.1016/j.bspc.2024.106775_b0090) 2023; 43
Yu (10.1016/j.bspc.2024.106775_b0290) 2019; 74
Sangeethaa (10.1016/j.bspc.2024.106775_b0275) 2023; 81
Nawaz (10.1016/j.bspc.2024.106775_b0280) 2022; 22
Hoorali (10.1016/j.bspc.2024.106775_b0375) 2022; 191
Sun (10.1016/j.bspc.2024.106775_b0150) 2022; 29
Juneja (10.1016/j.bspc.2024.106775_b0050) 2022; 101
Ren (10.1016/j.bspc.2024.106775_b0225) 2016; 24
Pachade (10.1016/j.bspc.2024.106775_b0330) 2021; 74
Chen (10.1016/j.bspc.2024.106775_b0020) 2023; 12
Kausu (10.1016/j.bspc.2024.106775_b0220) 2018; 38
Jiang (10.1016/j.bspc.2024.106775_b0335) 2020; 67
10.1016/j.bspc.2024.106775_b0125
Raza (10.1016/j.bspc.2024.106775_b0135) 2023; 11
Verma (10.1016/j.bspc.2024.106775_b0245) 2023; 12
Blanco (10.1016/j.bspc.2024.106775_b0215) 2006
Mvoulana (10.1016/j.bspc.2024.106775_b0250) 2019; 77
Shanmugam (10.1016/j.bspc.2024.106775_b0265) 2021; 109
Liu (10.1016/j.bspc.2024.106775_b0325) 2022; 213
Pavithra (10.1016/j.bspc.2024.106775_b0005) 2023; 43
10.1016/j.bspc.2024.106775_b0120
10.1016/j.bspc.2024.106775_b0285
Xu (10.1016/j.bspc.2024.106775_b0410) 2007; 40
Singh (10.1016/j.bspc.2024.106775_b0240) 2016; 124
Chai (10.1016/j.bspc.2024.106775_b0185) 2020; 86
Lim (10.1016/j.bspc.2024.106775_b0055) 2015
Haider (10.1016/j.bspc.2024.106775_b0155) 2022; 207
Sunija (10.1016/j.bspc.2024.106775_b0180) 2022; 71
Haider (10.1016/j.bspc.2024.106775_b0140) 2023; 133
10.1016/j.bspc.2024.106775_b0170
Panda (10.1016/j.bspc.2024.106775_b0210) 2017; 37
Shinde (10.1016/j.bspc.2024.106775_b0190) 2021; 5
Fea (10.1016/j.bspc.2024.106775_b0025) 2023; 24
Orlando (10.1016/j.bspc.2024.106775_b0400) 2020; 59
Bunod (10.1016/j.bspc.2024.106775_b0320) 2023; 12
Thakur (10.1016/j.bspc.2024.106775_b0045) 2018; 42
Lee (10.1016/j.bspc.2024.106775_b0015) 2022; 163
Zhang (10.1016/j.bspc.2024.106775_b0065) 2023; 85
References_xml – volume: 67
  start-page: 335
  year: 2020
  end-page: 343
  ident: b0335
  article-title: JointRCNN: a region-based convolutional neural network for optic disc and cup segmentation
  publication-title: IEEE. Trans. Biomed. Eng.
– volume: 40
  start-page: 2063
  year: 2007
  end-page: 2076
  ident: b0410
  article-title: Optic disk feature extraction via modified deformable model technique for glaucoma analysis
  publication-title: Pattern Recogn.
– volume: 37
  start-page: 1597
  year: 2018
  end-page: 1605
  ident: b0100
  article-title: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation
  publication-title: IEEE Trans. Med. Imag.
– volume: 43
  start-page: 628
  year: 2022
  end-page: 639
  ident: b0365
  article-title: Fundus retinal vessels image segmentation method based on improved U-Net
  publication-title: IRBM
– volume: 12
  start-page: 80
  year: 2023
  end-page: 93
  ident: b0020
  article-title: Applications of artificial intelligence and deep learning in glaucoma
  publication-title: APJO
– volume: 4
  start-page: 192
  year: 2023
  ident: b0255
  article-title: Glaucoma detection using clustering and segmentation of the optic disc region from retinal fundus images
  publication-title: SN Comput Sci
– volume: 12
  start-page: 806
  year: 2023
  end-page: 814
  ident: b0245
  article-title: Machine learning classifiers for detection of glaucoma
  publication-title: IJ-AI
– volume: 187
  start-page: 27
  year: 2016
  end-page: 48
  ident: b0075
  article-title: Deep learning for visual understanding: a review
  publication-title: Neurocomputing
– reference: H. Zhao, J. Shi, X. Qi et al. Pyramid scene parsing network. In: IEEE conference on computer vision and pattern recognition (CVPR). p. 2881-2890. DOI: 10.1109/CVPR.2017.660.
– reference: C. De Vente, K.A. Vermeer, N. Jaccard et al. AIROGS: artificial intelligence for RObust glaucoma screening challenge. arXiv preprint arXiv: 2023;2302.01738. DOI: 10.48550/arXiv.2302.01738.
– volume: 109
  year: 2021
  ident: b0265
  article-title: An automatic recognition of glaucoma in fundus images using deep learning and random forest classifier
  publication-title: Appl. Soft Comput.
– volume: 101
  year: 2022
  ident: b0050
  article-title: Deep learning-based classification network for glaucoma in retinal images
  publication-title: Comput. Electr. Eng.
– start-page: 162
  year: 2015
  end-page: 169
  ident: b0055
  article-title: Integrated Optic Disc and Cup Segmentation with Deep Learning
  publication-title: In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI)
– volume: 175
  year: 2023
  ident: b0230
  article-title: Optimized convolutional neural network for glaucoma detection with improved optic-cup segmentation
  publication-title: Adv. Eng. Softw.
– reference: T.Y. Lin, P. Dollar, R. Girshick et al. Feature pyramid networks for object detection. In: IEEE conference on computer vision and pattern recognition (CVPR). p. 2117-2125. DOI: 10.1109/CVPR.2017.106.
– volume: 38
  start-page: 329
  year: 2018
  end-page: 341
  ident: b0220
  article-title: Combination of clinical and multiresolution features for glaucoma detection and its classification using fundus images
  publication-title: Biocybern Biomed Eng
– reference: V. Badrinarayanan, A. Kendall, R. Cipolla. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. In: IEEE Trans. Pattern Anal. Mach. Intell. IEEE; 2017. p. 2481-2495. DOI: 10.1109/TPAMI.2016.2644615.
– reference: J. Sivaswamy, S.R. Krishnadas, G.D. Joshi et al. Drishti-GS: Retinal image dataset for optic nerve head(ONH) segmentation. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). IEEE; 2014. p. 53-56. DOI: 10.1109/ISBI.2014.6867807.
– volume: 10
  start-page: 2497
  year: 2022
  ident: b0295
  article-title: Glaucoma detection and classification using improved U-Net deep learning model
  publication-title: Healthcare
– volume: 3
  start-page: 1
  year: 2023
  end-page: 33
  ident: b0305
  article-title: ODMNet: automated glaucoma detection and classification model using heuristically-aided optimized densenet and mobilenet transfer learning
  publication-title: Cybern. Syst.
– volume: 112
  year: 2021
  ident: b0270
  article-title: Automated segmentation of the optic disc from fundus images using an asymmetric deep learning network
  publication-title: Pattern Recogn.
– volume: 5
  year: 2021
  ident: b0190
  article-title: Glaucoma detection in retinal fundus images using U-Net and supervised machine learning algorithms
  publication-title: Intell. Based Med.
– volume: 81
  year: 2023
  ident: b0275
  article-title: Presumptive discerning of the severity level of glaucoma through clinical fundus images using hybrid PolyNet
  publication-title: Biomed. Signal Process. Control
– reference: Q. Wang, B. Wu, P. Zhu et al. ECA-Net: Efficient channel attention for deep convolutional neural networks. In: IEEE conference on computer vision and pattern recognition (CVPR). p. 11534-11542. DOI: 10.1109/CVPR42600.2020.01155.
– volume: 32
  start-page: 582
  year: 2019
  end-page: 596
  ident: b0070
  article-title: Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges
  publication-title: J. Digit. Imaging
– volume: 25
  start-page: 108
  year: 2016
  end-page: 117
  ident: b0260
  article-title: Blood vessel inpainting based technique for efficient localization and segmentation of optic disc in digital fundus images
  publication-title: Biomed. Signal Process. Control
– volume: 113
  year: 2021
  ident: b0105
  article-title: A multi-scale convolutional neural network with context for joint segmentation of optic disc and cup
  publication-title: Artif. Intell. Med.
– volume: 127
  start-page: 308
  year: 2019
  end-page: 322
  ident: b0235
  article-title: Optic disc and optic cup segmentation from retinal images using hybrid approach
  publication-title: Expert Syst. Appl.
– volume: 283
  year: 2023
  ident: b0415
  article-title: A new convolution neural network model “KR-NET” for retinal fundus glaucoma classification
  publication-title: Optik
– volume: 41
  start-page: 819
  year: 2021
  end-page: 832
  ident: b0130
  article-title: Automated segmentation of optic disc and optic cup for glaucoma assessment using improved UNET++ architecture
  publication-title: Biocybern Biomed Eng
– volume: 24
  start-page: S767
  year: 2016
  end-page: S776
  ident: b0225
  article-title: Automatic optic disc localization and segmentation in retinal images by a line operator and level sets
  publication-title: Technol. Health Care
– volume: 42
  start-page: 695
  year: 2022
  end-page: 706
  ident: b0080
  article-title: Dual-channel asymmetric convolutional neural network for an efficient retinal blood vessel segmentation in eye fundus images
  publication-title: Biocybern. Biomed. Eng.
– volume: 74
  start-page: 61
  year: 2019
  end-page: 71
  ident: b0290
  article-title: Robust optic disc and cup segmentation with deep learning for glaucoma detection
  publication-title: Comput. Med. Imaging Graph.
– volume: 192
  year: 2020
  ident: b0040
  article-title: Offline computer-aided diagnosis for Glaucoma detection using fundus images targeted at mobile devices
  publication-title: Comput. Methods Programs Biomed.
– volume: 22
  start-page: 434
  year: 2022
  ident: b0280
  article-title: An efficient deep learning approach to automatic glaucoma detection using optic disc and optic cup localization
  publication-title: Sensors
– volume: 37
  start-page: 466
  year: 2017
  end-page: 476
  ident: b0210
  article-title: Robust and accurate optic disk localization using vessel symmetry line measure in fundus images
  publication-title: Biocybern Biomed Eng
– volume: 85
  year: 2023
  ident: b0175
  article-title: Towards an extended EfficientNet-based U-Net framework for joint optic disc and cup segmentation in the fundus image
  publication-title: Biomed. Signal Process. Control
– reference: J. Hu, L. Shen, S. Albanie et al. Squeeze-and-Excitation Networks. In: IEEE Trans Pattern Anal Mach Intell 2020;42(8):2011-2023. DOI: 10.1109/TPAMI.2019.2913372.
– reference: Z. Gu, J. Cheng, H. Fu et al. CE-Net: Context Encoder Network for 2D Medical Image Segmentation. In: IEEE Trans Med Imaging. IEEE; 2019. p. 2281-2292. DOI: 10.1109/TMI.2019.2903562.
– volume: 3
  year: 2023
  ident: b0350
  article-title: Detecting glaucoma from fundus photographs using deep learning without convolutions: transformer for improved generalization
  publication-title: Ophthalmol. Sci.
– volume: 74
  year: 2021
  ident: b0330
  article-title: NENet: Nested EfficientNet and adversarial learning for joint optic disc and cup segmentation
  publication-title: Med. Image Anal.
– volume: 29
  start-page: 697
  year: 2022
  end-page: 701
  ident: b0150
  article-title: GNAS-U
  publication-title: IEEE Signal Process Lett.
– volume: 71
  year: 2022
  ident: b0180
  article-title: Redundancy reduced depthwise separable convolution for glaucoma classification using OCT images
  publication-title: Biomed. Signal Process. Control
– volume: 133
  year: 2023
  ident: b0140
  article-title: Exploring deep feature-blending capabilities to assist glaucoma screening
  publication-title: Appl. Soft Comput.
– volume: 4
  year: 2023
  ident: b0195
  article-title: Mix histogram and gray level co-occurrence matrix to improve glaucoma prediction machine learning
  publication-title: J. Soft Comput. Explor.
– volume: 12
  start-page: 12361
  year: 2022
  ident: b0300
  article-title: Multi-task deep learning for glaucoma detection from color fundus images
  publication-title: Sci. Rep.
– volume: 12
  start-page: 507
  year: 2023
  ident: b0320
  article-title: A deep learning system using optical coherence tomography angiography to detect glaucoma and anterior ischemic optic neuropathy
  publication-title: J. Clin. Med.
– volume: 59
  year: 2020
  ident: b0400
  article-title: REFUGE Challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs
  publication-title: Med. Image Anal.
– volume: 43
  start-page: 386
  year: 2023
  end-page: 401
  ident: b0090
  article-title: FRE-Net: Full-region enhanced network for nuclei segmentation in histopathology images
  publication-title: Biocybern. Biomed. Eng.
– volume: 124
  start-page: 108
  year: 2016
  end-page: 120
  ident: b0240
  article-title: Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image
  publication-title: Comput. Methods Programs Biomed.
– volume: 85
  year: 2023
  ident: b0160
  article-title: PY-Net: Rethinking segmentation frameworks with dense pyramidal operations for optic disc and cup segmentation from retinal fundus images
  publication-title: Biomed. Signal Process. Control
– volume: 38
  start-page: 170
  year: 2018
  end-page: 180
  ident: b0200
  article-title: Novel expert system for glaucoma identification using non-parametric spatial envelope energy spectrum with fundus images
  publication-title: Biocybern. Biomed. Eng.
– volume: 86
  year: 2020
  ident: b0185
  article-title: A new convolutional neural network model for peripapillary atrophy area segmentation from retinal fundus images
  publication-title: Appl. Soft Comput.
– volume: 3
  year: 2023
  ident: b0310
  article-title: DDLSNet: a novel deep learning-based system for grading funduscopic images for glaucomatous damage
  publication-title: Ophthalmol. Sci.
– volume: 43
  start-page: 157
  year: 2023
  end-page: 188
  ident: b0005
  article-title: Computer aided diagnosis of diabetic macular edema in retinal fundus and OCT images: A review
  publication-title: Biocybern Biomed Eng
– volume: 12
  start-page: 14
  year: 2023
  ident: b0315
  article-title: Artificial intelligence based glaucoma and diabetic retinopathy detection using MATLAB—retrained AlexNet convolutional neural network
  publication-title: F1000Research
– volume: 150
  year: 2022
  ident: b0340
  article-title: Joint optic disc and cup segmentation using feature fusion and attention
  publication-title: Comput. Biol. Med.
– volume: 213
  year: 2022
  ident: b0325
  article-title: ECSD-Net: A joint optic disc and cup segmentation and glaucoma classification network based on unsupervised domain adaptation
  publication-title: Comput. Methods Programs Biomed.
– volume: 538
  year: 2023
  ident: b0165
  article-title: PKRT-Net: Prior knowledge-based relation transformer network for optic cup and disc segmentation
  publication-title: Neurocomputing
– reference: F. Fumero, S. Alayon, J.L. Sanchez et al. RIM-ONE: An open retinal image database for optic nerve evaluation. In: 2011 24th international symposium on computer-based medical systems (CBMS). IEEE; 2011. p. 1-6. DOI: 10.1109/CBMS.2011.5999143.
– volume: 77
  year: 2019
  ident: b0250
  article-title: Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images
  publication-title: Comput. Med. Imag. Graph.
– volume: 20
  start-page: 1562
  year: 2016
  end-page: 1574
  ident: b0205
  article-title: Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 116
  year: 2022
  ident: b0145
  article-title: End-to-end multi-task learning for simultaneous optic disc and cup segmentation and glaucoma classification in eye fundus images
  publication-title: Appl. Soft Comput.
– volume: 191
  year: 2022
  ident: b0375
  article-title: IRUNet for medical image segmentation
  publication-title: Expert Syst. Appl.
– volume: 24
  start-page: 2814
  year: 2023
  ident: b0025
  article-title: Precision medicine in glaucoma: artificial intelligence, biomarkers, genetics and redox state
  publication-title: Int. J. Mol. Sci.
– volume: 9
  start-page: 133365
  year: 2021
  end-page: 133375
  ident: b0360
  article-title: Training on polar image transformations improves biomedical image segmentation
  publication-title: IEEE Access
– volume: 250
  start-page: 38
  year: 2023
  end-page: 48
  ident: b0355
  article-title: Geometric deep learning to identify the critical 3D structural features of the optic nerve head for glaucoma diagnosis
  publication-title: Am. J. Ophthalmol.
– start-page: 712
  year: 2006
  end-page: 721
  ident: b0215
  article-title: Localization and extraction of the optic disc using the fuzzy circular hough transform
  publication-title: In: Artificial Intelligence and Soft Computing–ICAISC 2006: 8th International Conference
– volume: 85
  year: 2023
  ident: b0065
  article-title: Automatic detection of microaneurysms in fundus images based on multiple preprocessing fusion to extract features
  publication-title: Biomed. Signal Process. Control
– reference: M. Tabassum, T.M. Khan, M. Arsalan et al. CDED-Net: Joint segmentation of optic disc and optic cup for glaucoma screening. In: IEEE Access. IEEE;2020. p. 102733-102747. DOI: 10.1109/ACCESS.2020.2998635.
– reference: J. Chen, Y. Lu, Q. Yu et al. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv: 2021;2102.04306. DOI: 10.48550/arXiv.2102.04306.
– volume: 207
  year: 2022
  ident: b0155
  article-title: Artificial Intelligence-based computer-aided diagnosis of glaucoma using retinal fundus images
  publication-title: Expert Syst. Appl.
– volume: 20
  start-page: 574
  year: 2016
  end-page: 585
  ident: b0405
  article-title: Optic disc localization in retinal images based on cumulative sum fields
  publication-title: IEEE J. Biomed Health Inform
– volume: 11
  start-page: 367
  year: 2016
  end-page: 376
  ident: b0030
  article-title: Structural and functional evaluations for the early detection of glaucoma
  publication-title: Expert Rev Ophthalmol
– volume: 246
  start-page: 223
  year: 2023
  end-page: 235
  ident: b0035
  article-title: Racial differences in detection of glaucoma using retinal nerve fiber layer thickness and bruch membrane opening minimum rim width
  publication-title: Am. J. Ophthalmol.
– reference: M. Aljazaeri, Y. Bazi, H. AlMubarak et al. Deep Segmentation Architecture with Self Attention for Glaucoma Detection. In:2020 International Conference on Artificial Intelligence & Modern Assistive Technology (ICAIMAT). IEEE;2020. p. 1-4. DOI: 10.1109/ICAIMAT51101.2020.9308006.
– volume: 78
  year: 2019
  ident: b0010
  article-title: Glaucoma detection using image processing techniques: a literature review
  publication-title: Comput. Med. Imag. Graph.
– volume: 163
  start-page: 15
  year: 2022
  end-page: 22
  ident: b0015
  article-title: Glaucoma - risk factors and current challenges in the diagnosis of a leading cause of visual impairment
  publication-title: Maturitas
– reference: O. Ronneberger, P. Fischer, T. Brox. U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference; 2015. p. 234-241. DOI: 10.1007/978-3-319-24574-4_28.
– volume: 11
  start-page: 257
  year: 2023
  ident: b0135
  article-title: Assisting glaucoma screening process using feature excitation and information aggregation techniques in retinal fundus images
  publication-title: Mathematics
– volume: 42
  start-page: 162
  year: 2018
  end-page: 189
  ident: b0045
  article-title: Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma
  publication-title: Biomed. Signal Process. Control
– volume: 68
  start-page: 17
  year: 2023
  end-page: 41
  ident: b0060
  article-title: Automatic detection of glaucoma via fundus imaging and artificial intelligence: a review
  publication-title: Surv. Ophthalmol.
– volume: 43
  start-page: 403
  year: 2023
  end-page: 427
  ident: b0085
  article-title: PCcS-RAU-Net: Automated parcellated Corpus callosum segmentation from brain MRI images using modified residual attention U-Net
  publication-title: Biocybern. Biomed. Eng.
– volume: 11
  start-page: 367
  issue: 5
  year: 2016
  ident: 10.1016/j.bspc.2024.106775_b0030
  article-title: Structural and functional evaluations for the early detection of glaucoma
  publication-title: Expert Rev Ophthalmol
  doi: 10.1080/17469899.2016.1229599
– volume: 24
  start-page: 2814
  issue: 3
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0025
  article-title: Precision medicine in glaucoma: artificial intelligence, biomarkers, genetics and redox state
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms24032814
– ident: 10.1016/j.bspc.2024.106775_b0380
  doi: 10.1109/TPAMI.2019.2913372
– volume: 37
  start-page: 1597
  issue: 7
  year: 2018
  ident: 10.1016/j.bspc.2024.106775_b0100
  article-title: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2018.2791488
– volume: 538
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0165
  article-title: PKRT-Net: Prior knowledge-based relation transformer network for optic cup and disc segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.03.044
– volume: 283
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0415
  article-title: A new convolution neural network model “KR-NET” for retinal fundus glaucoma classification
  publication-title: Optik
  doi: 10.1016/j.ijleo.2023.170861
– volume: 77
  year: 2019
  ident: 10.1016/j.bspc.2024.106775_b0250
  article-title: Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images
  publication-title: Comput. Med. Imag. Graph.
  doi: 10.1016/j.compmedimag.2019.101643
– volume: 12
  start-page: 14
  issue: 14
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0315
  article-title: Artificial intelligence based glaucoma and diabetic retinopathy detection using MATLAB—retrained AlexNet convolutional neural network
  publication-title: F1000Research
  doi: 10.12688/f1000research.122288.1
– ident: 10.1016/j.bspc.2024.106775_b0395
  doi: 10.1109/CBMS.2011.5999143
– volume: 42
  start-page: 695
  issue: 2
  year: 2022
  ident: 10.1016/j.bspc.2024.106775_b0080
  article-title: Dual-channel asymmetric convolutional neural network for an efficient retinal blood vessel segmentation in eye fundus images
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2022.05.003
– volume: 10
  start-page: 2497
  issue: 12
  year: 2022
  ident: 10.1016/j.bspc.2024.106775_b0295
  article-title: Glaucoma detection and classification using improved U-Net deep learning model
  publication-title: Healthcare
  doi: 10.3390/healthcare10122497
– volume: 109
  year: 2021
  ident: 10.1016/j.bspc.2024.106775_b0265
  article-title: An automatic recognition of glaucoma in fundus images using deep learning and random forest classifier
  publication-title: Appl. Soft Comput.
– volume: 41
  start-page: 819
  issue: 2
  year: 2021
  ident: 10.1016/j.bspc.2024.106775_b0130
  article-title: Automated segmentation of optic disc and optic cup for glaucoma assessment using improved UNET++ architecture
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2021.05.011
– volume: 20
  start-page: 1562
  issue: 6
  year: 2016
  ident: 10.1016/j.bspc.2024.106775_b0205
  article-title: Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2015.2473159
– volume: 250
  start-page: 38
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0355
  article-title: Geometric deep learning to identify the critical 3D structural features of the optic nerve head for glaucoma diagnosis
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2023.01.008
– volume: 85
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0175
  article-title: Towards an extended EfficientNet-based U-Net framework for joint optic disc and cup segmentation in the fundus image
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.104906
– volume: 59
  year: 2020
  ident: 10.1016/j.bspc.2024.106775_b0400
  article-title: REFUGE Challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101570
– volume: 116
  year: 2022
  ident: 10.1016/j.bspc.2024.106775_b0145
  article-title: End-to-end multi-task learning for simultaneous optic disc and cup segmentation and glaucoma classification in eye fundus images
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108347
– volume: 67
  start-page: 335
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2024.106775_b0335
  article-title: JointRCNN: a region-based convolutional neural network for optic disc and cup segmentation
  publication-title: IEEE. Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2913211
– start-page: 712
  year: 2006
  ident: 10.1016/j.bspc.2024.106775_b0215
  article-title: Localization and extraction of the optic disc using the fuzzy circular hough transform
– ident: 10.1016/j.bspc.2024.106775_b0345
  doi: 10.1109/ICAIMAT51101.2020.9308006
– volume: 4
  issue: 1
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0195
  article-title: Mix histogram and gray level co-occurrence matrix to improve glaucoma prediction machine learning
  publication-title: J. Soft Comput. Explor.
– volume: 12
  start-page: 80
  issue: 1
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0020
  article-title: Applications of artificial intelligence and deep learning in glaucoma
  publication-title: APJO
  doi: 10.1097/APO.0000000000000596
– volume: 12
  start-page: 507
  issue: 2
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0320
  article-title: A deep learning system using optical coherence tomography angiography to detect glaucoma and anterior ischemic optic neuropathy
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm12020507
– volume: 246
  start-page: 223
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0035
  article-title: Racial differences in detection of glaucoma using retinal nerve fiber layer thickness and bruch membrane opening minimum rim width
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2022.10.010
– volume: 187
  start-page: 27
  year: 2016
  ident: 10.1016/j.bspc.2024.106775_b0075
  article-title: Deep learning for visual understanding: a review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.116
– ident: 10.1016/j.bspc.2024.106775_b0115
  doi: 10.1109/CVPR.2017.660
– volume: 43
  start-page: 628
  issue: 6
  year: 2022
  ident: 10.1016/j.bspc.2024.106775_b0365
  article-title: Fundus retinal vessels image segmentation method based on improved U-Net
  publication-title: IRBM
  doi: 10.1016/j.irbm.2022.03.001
– ident: 10.1016/j.bspc.2024.106775_b0370
  doi: 10.1109/CVPR.2017.106
– ident: 10.1016/j.bspc.2024.106775_b0095
  doi: 10.1007/978-3-319-24574-4_28
– volume: 43
  start-page: 157
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0005
  article-title: Computer aided diagnosis of diabetic macular edema in retinal fundus and OCT images: A review
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2022.12.005
– volume: 32
  start-page: 582
  issue: 4
  year: 2019
  ident: 10.1016/j.bspc.2024.106775_b0070
  article-title: Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-019-00227-x
– ident: 10.1016/j.bspc.2024.106775_b0285
– volume: 86
  year: 2020
  ident: 10.1016/j.bspc.2024.106775_b0185
  article-title: A new convolutional neural network model for peripapillary atrophy area segmentation from retinal fundus images
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105890
– volume: 38
  start-page: 329
  issue: 2
  year: 2018
  ident: 10.1016/j.bspc.2024.106775_b0220
  article-title: Combination of clinical and multiresolution features for glaucoma detection and its classification using fundus images
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2018.02.003
– start-page: 162
  year: 2015
  ident: 10.1016/j.bspc.2024.106775_b0055
  article-title: Integrated Optic Disc and Cup Segmentation with Deep Learning
– volume: 74
  year: 2021
  ident: 10.1016/j.bspc.2024.106775_b0330
  article-title: NENet: Nested EfficientNet and adversarial learning for joint optic disc and cup segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102253
– volume: 3
  issue: 1
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0350
  article-title: Detecting glaucoma from fundus photographs using deep learning without convolutions: transformer for improved generalization
  publication-title: Ophthalmol. Sci.
  doi: 10.1016/j.xops.2022.100233
– volume: 9
  start-page: 133365
  year: 2021
  ident: 10.1016/j.bspc.2024.106775_b0360
  article-title: Training on polar image transformations improves biomedical image segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3116265
– volume: 11
  start-page: 257
  issue: 2
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0135
  article-title: Assisting glaucoma screening process using feature excitation and information aggregation techniques in retinal fundus images
  publication-title: Mathematics
  doi: 10.3390/math11020257
– volume: 68
  start-page: 17
  issue: 1
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0060
  article-title: Automatic detection of glaucoma via fundus imaging and artificial intelligence: a review
  publication-title: Surv. Ophthalmol.
  doi: 10.1016/j.survophthal.2022.08.005
– volume: 5
  year: 2021
  ident: 10.1016/j.bspc.2024.106775_b0190
  article-title: Glaucoma detection in retinal fundus images using U-Net and supervised machine learning algorithms
  publication-title: Intell. Based Med.
  doi: 10.1016/j.ibmed.2021.100038
– volume: 40
  start-page: 2063
  issue: 7
  year: 2007
  ident: 10.1016/j.bspc.2024.106775_b0410
  article-title: Optic disk feature extraction via modified deformable model technique for glaucoma analysis
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2006.10.015
– volume: 43
  start-page: 403
  issue: 2
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0085
  article-title: PCcS-RAU-Net: Automated parcellated Corpus callosum segmentation from brain MRI images using modified residual attention U-Net
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2023.02.003
– volume: 37
  start-page: 466
  issue: 3
  year: 2017
  ident: 10.1016/j.bspc.2024.106775_b0210
  article-title: Robust and accurate optic disk localization using vessel symmetry line measure in fundus images
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2017.05.008
– volume: 4
  start-page: 192
  issue: 2
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0255
  article-title: Glaucoma detection using clustering and segmentation of the optic disc region from retinal fundus images
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-022-01592-1
– volume: 85
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0065
  article-title: Automatic detection of microaneurysms in fundus images based on multiple preprocessing fusion to extract features
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.104879
– volume: 124
  start-page: 108
  year: 2016
  ident: 10.1016/j.bspc.2024.106775_b0240
  article-title: Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2015.10.010
– volume: 112
  year: 2021
  ident: 10.1016/j.bspc.2024.106775_b0270
  article-title: Automated segmentation of the optic disc from fundus images using an asymmetric deep learning network
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2020.107810
– volume: 12
  start-page: 12361
  issue: 1
  year: 2022
  ident: 10.1016/j.bspc.2024.106775_b0300
  article-title: Multi-task deep learning for glaucoma detection from color fundus images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-16262-8
– volume: 192
  year: 2020
  ident: 10.1016/j.bspc.2024.106775_b0040
  article-title: Offline computer-aided diagnosis for Glaucoma detection using fundus images targeted at mobile devices
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105341
– volume: 207
  year: 2022
  ident: 10.1016/j.bspc.2024.106775_b0155
  article-title: Artificial Intelligence-based computer-aided diagnosis of glaucoma using retinal fundus images
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117968
– volume: 3
  issue: 2
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0310
  article-title: DDLSNet: a novel deep learning-based system for grading funduscopic images for glaucomatous damage
  publication-title: Ophthalmol. Sci.
  doi: 10.1016/j.xops.2022.100255
– ident: 10.1016/j.bspc.2024.106775_b0110
  doi: 10.1109/TPAMI.2016.2644615
– ident: 10.1016/j.bspc.2024.106775_b0120
  doi: 10.1109/TMI.2019.2903562
– volume: 163
  start-page: 15
  year: 2022
  ident: 10.1016/j.bspc.2024.106775_b0015
  article-title: Glaucoma - risk factors and current challenges in the diagnosis of a leading cause of visual impairment
  publication-title: Maturitas
  doi: 10.1016/j.maturitas.2022.05.002
– volume: 24
  start-page: S767
  issue: s2
  year: 2016
  ident: 10.1016/j.bspc.2024.106775_b0225
  article-title: Automatic optic disc localization and segmentation in retinal images by a line operator and level sets
  publication-title: Technol. Health Care
  doi: 10.3233/THC-161206
– ident: 10.1016/j.bspc.2024.106775_b0390
  doi: 10.1109/ISBI.2014.6867807
– volume: 133
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0140
  article-title: Exploring deep feature-blending capabilities to assist glaucoma screening
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109918
– volume: 113
  year: 2021
  ident: 10.1016/j.bspc.2024.106775_b0105
  article-title: A multi-scale convolutional neural network with context for joint segmentation of optic disc and cup
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2021.102035
– volume: 42
  start-page: 162
  year: 2018
  ident: 10.1016/j.bspc.2024.106775_b0045
  article-title: Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.01.014
– volume: 191
  year: 2022
  ident: 10.1016/j.bspc.2024.106775_b0375
  article-title: IRUNet for medical image segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116399
– volume: 85
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0160
  article-title: PY-Net: Rethinking segmentation frameworks with dense pyramidal operations for optic disc and cup segmentation from retinal fundus images
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.104895
– volume: 71
  year: 2022
  ident: 10.1016/j.bspc.2024.106775_b0180
  article-title: Redundancy reduced depthwise separable convolution for glaucoma classification using OCT images
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103192
– volume: 213
  year: 2022
  ident: 10.1016/j.bspc.2024.106775_b0325
  article-title: ECSD-Net: A joint optic disc and cup segmentation and glaucoma classification network based on unsupervised domain adaptation
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.106530
– ident: 10.1016/j.bspc.2024.106775_b0385
  doi: 10.1109/CVPR42600.2020.01155
– volume: 22
  start-page: 434
  issue: 2
  year: 2022
  ident: 10.1016/j.bspc.2024.106775_b0280
  article-title: An efficient deep learning approach to automatic glaucoma detection using optic disc and optic cup localization
  publication-title: Sensors
  doi: 10.3390/s22020434
– volume: 175
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0230
  article-title: Optimized convolutional neural network for glaucoma detection with improved optic-cup segmentation
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2022.103328
– volume: 29
  start-page: 697
  year: 2022
  ident: 10.1016/j.bspc.2024.106775_b0150
  article-title: GNAS-U2Net: a new optic cup and optic disc segmentation architecture with genetic neural architecture search
  publication-title: IEEE Signal Process Lett.
  doi: 10.1109/LSP.2022.3151549
– volume: 38
  start-page: 170
  issue: 1
  year: 2018
  ident: 10.1016/j.bspc.2024.106775_b0200
  article-title: Novel expert system for glaucoma identification using non-parametric spatial envelope energy spectrum with fundus images
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2017.11.002
– volume: 127
  start-page: 308
  year: 2019
  ident: 10.1016/j.bspc.2024.106775_b0235
  article-title: Optic disc and optic cup segmentation from retinal images using hybrid approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.03.009
– ident: 10.1016/j.bspc.2024.106775_b0125
  doi: 10.1109/ACCESS.2020.2998635
– volume: 25
  start-page: 108
  year: 2016
  ident: 10.1016/j.bspc.2024.106775_b0260
  article-title: Blood vessel inpainting based technique for efficient localization and segmentation of optic disc in digital fundus images
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2015.10.012
– volume: 150
  year: 2022
  ident: 10.1016/j.bspc.2024.106775_b0340
  article-title: Joint optic disc and cup segmentation using feature fusion and attention
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106094
– volume: 20
  start-page: 574
  issue: 2
  year: 2016
  ident: 10.1016/j.bspc.2024.106775_b0405
  article-title: Optic disc localization in retinal images based on cumulative sum fields
  publication-title: IEEE J. Biomed Health Inform
  doi: 10.1109/JBHI.2015.2392712
– volume: 101
  year: 2022
  ident: 10.1016/j.bspc.2024.106775_b0050
  article-title: Deep learning-based classification network for glaucoma in retinal images
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2022.108009
– volume: 74
  start-page: 61
  year: 2019
  ident: 10.1016/j.bspc.2024.106775_b0290
  article-title: Robust optic disc and cup segmentation with deep learning for glaucoma detection
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.02.005
– volume: 43
  start-page: 386
  issue: 1
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0090
  article-title: FRE-Net: Full-region enhanced network for nuclei segmentation in histopathology images
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2023.02.002
– ident: 10.1016/j.bspc.2024.106775_b0170
– volume: 3
  start-page: 1
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0305
  article-title: ODMNet: automated glaucoma detection and classification model using heuristically-aided optimized densenet and mobilenet transfer learning
  publication-title: Cybern. Syst.
– volume: 12
  start-page: 806
  issue: 2
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0245
  article-title: Machine learning classifiers for detection of glaucoma
  publication-title: IJ-AI
– volume: 78
  year: 2019
  ident: 10.1016/j.bspc.2024.106775_b0010
  article-title: Glaucoma detection using image processing techniques: a literature review
  publication-title: Comput. Med. Imag. Graph.
  doi: 10.1016/j.compmedimag.2019.101657
– volume: 81
  year: 2023
  ident: 10.1016/j.bspc.2024.106775_b0275
  article-title: Presumptive discerning of the severity level of glaucoma through clinical fundus images using hybrid PolyNet
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104347
SSID ssj0048714
Score 2.3533108
Snippet •Multi-scale inputs and hybrid down-sampling modules are used.•The attention mechanism is integrated into multi-scale convolution.•An adaptive weight fusion...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106775
SubjectTerms Adaptive weight fusion strategy
Attention mechanism
Large-scale screening for glaucoma
OD extraction
Segment OC and OD jointly
Title A multi-scale convolutional neural network with adaptive weight fusion strategy for assisting glaucoma screening
URI https://dx.doi.org/10.1016/j.bspc.2024.106775
Volume 98
WOSCitedRecordID wos001297767900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0048714
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELW20EN7qOiXgJbKh96ioI2T4OS4QvRLCLUSlfYW2bG93RUKEbvZ8k_4u4w9dgiUonLoJbuKHDvKvIzHkzfPhHw8kFqYrC7jMh-bOANvAO-ckXEGczs3qQ1SnM7sMT85KabT8vtodBVqYdZnvGmKy8uy_a-mhnNgbFs6-whz953CCfgPRocjmB2O_2T4CZIE4yU8fUdFX_vhwBhWvdL9OO63L2xTonX8od8uSxqZzibQoiXK1iKfEyJs6wuaWQTRdgd3LSJwN7AEDhNf-Czsivmx0nI-syO2WIgQSiE9M_6PdPW0mwnfFepFIsX4fNDQ5XSPu8V80PCzJxT_sPn-Xx7oPofBsgEfBN0uz6wsMm53HPwy7k7tHatTusvv9fmYfljsy2VrNSlZtn_T-LbA9p2Jr6cjBqbborJ9VLaPCvt4QjYZz0vw-JuTr0fTb2GSh2Wek43vb9zXYyF18O6d3B_zDOKY0y3ywi9A6ASB85KMdPOKPB_IUr4m7YQOIERvQYgihKiHELUQogFCFCFEEUI0QIgChGgPIRogRHsIvSE_Px2dHn6J_c4ccQ2v7yrOC6ZULWEpUOaKJdJ-Pk7Hda4kl7xIE61SoSSrtTpQXHMBs_u4TKURLDHcaJO-JRvNeaO3Cc2SUmqZ60IUaWYkKyRMKYlIlEqMVIztkCQ8u6r2svV295Sz6u9W2yFRf02Loi0Pts6DSSofdmI4WQHCHrhu91GjvCPPbpD_nmysLjq9R57W69V8efHBw-saCjWrgQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-scale+convolutional+neural+network+with+adaptive+weight+fusion+strategy+for+assisting+glaucoma+screening&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Zhang%2C+Xugang&rft.au=Shen%2C+Mo&rft.au=Zhao%2C+Lujiang&rft.au=Gong%2C+Qingshan&rft.date=2024-12-01&rft.issn=1746-8094&rft.volume=98&rft.spage=106775&rft_id=info:doi/10.1016%2Fj.bspc.2024.106775&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2024_106775
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon