A multi-scale convolutional neural network with adaptive weight fusion strategy for assisting glaucoma screening
•Multi-scale inputs and hybrid down-sampling modules are used.•The attention mechanism is integrated into multi-scale convolution.•An adaptive weight fusion strategy is used to solve semantic gap. The diagnosis of glaucoma primarily relies on the accurate segmentation of the optic disc (OD) and opti...
Uloženo v:
| Vydáno v: | Biomedical signal processing and control Ročník 98; s. 106775 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.12.2024
|
| Témata: | |
| ISSN: | 1746-8094 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Multi-scale inputs and hybrid down-sampling modules are used.•The attention mechanism is integrated into multi-scale convolution.•An adaptive weight fusion strategy is used to solve semantic gap.
The diagnosis of glaucoma primarily relies on the accurate segmentation of the optic disc (OD) and optic cup (OC). However, OC segmentation remains challenging due to significant individual differences. This study proposes a threshold-based OD extraction method and multi-scale residual U-Net with context attention mechanism and adaptive weight fusion strategy (MRCAAU-Net) to segment OC and OD jointly. Firstly, based on the intensity difference between the OD and the background, an improved thresholding criterion combined with template matching technique is used to effectively detect the OD region, providing accurate input images for network training. Secondly, considering the semantic gap issue during the encoder-decoder feature fusion in the segmentation network, this paper develops an adaptive weight fusion module to guide the effective connections of encoder-decoder features. Additionally, the 1D convolution-based attention mechanism has stronger local perceptiveness. This paper integrate it into various modules, combining multi-scale methods to enhance the segmentation performance of OC by incorporating both global and local features. Finally, the network is guided to learn image segmentation through a hybrid loss function that ignores the background. We conducted extensive experiments on three public datasets, and obtained more accurate segmentation outputs compared to other state-of-the-art methods, particularly in the OC segmentation, where the segmentation accuracy is very close to that of the OD. The proposed joint segmentation network effectively improves and balances the segmentation performance of two objectives, which can greatly assist in large-scale screening for glaucoma. |
|---|---|
| AbstractList | •Multi-scale inputs and hybrid down-sampling modules are used.•The attention mechanism is integrated into multi-scale convolution.•An adaptive weight fusion strategy is used to solve semantic gap.
The diagnosis of glaucoma primarily relies on the accurate segmentation of the optic disc (OD) and optic cup (OC). However, OC segmentation remains challenging due to significant individual differences. This study proposes a threshold-based OD extraction method and multi-scale residual U-Net with context attention mechanism and adaptive weight fusion strategy (MRCAAU-Net) to segment OC and OD jointly. Firstly, based on the intensity difference between the OD and the background, an improved thresholding criterion combined with template matching technique is used to effectively detect the OD region, providing accurate input images for network training. Secondly, considering the semantic gap issue during the encoder-decoder feature fusion in the segmentation network, this paper develops an adaptive weight fusion module to guide the effective connections of encoder-decoder features. Additionally, the 1D convolution-based attention mechanism has stronger local perceptiveness. This paper integrate it into various modules, combining multi-scale methods to enhance the segmentation performance of OC by incorporating both global and local features. Finally, the network is guided to learn image segmentation through a hybrid loss function that ignores the background. We conducted extensive experiments on three public datasets, and obtained more accurate segmentation outputs compared to other state-of-the-art methods, particularly in the OC segmentation, where the segmentation accuracy is very close to that of the OD. The proposed joint segmentation network effectively improves and balances the segmentation performance of two objectives, which can greatly assist in large-scale screening for glaucoma. |
| ArticleNumber | 106775 |
| Author | Zhang, Xugang Shen, Mo Zhao, Lujiang Yao, Junping Gong, Qingshan |
| Author_xml | – sequence: 1 givenname: Xugang surname: Zhang fullname: Zhang, Xugang organization: Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China – sequence: 2 givenname: Mo surname: Shen fullname: Shen, Mo organization: Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China – sequence: 3 givenname: Lujiang surname: Zhao fullname: Zhao, Lujiang organization: Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China – sequence: 4 givenname: Qingshan surname: Gong fullname: Gong, Qingshan email: gongqs_jx@huat.edu.cn organization: College of Mechanical Engineering, Hubei University of Automotive Technology, Shiyan 442002, China – sequence: 5 givenname: Junping surname: Yao fullname: Yao, Junping organization: Department of Ophthalmology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430036, China |
| BookMark | eNp9kMtqwzAURLVIoUnaH-hKP-BU8ks2dBNCXxDopl0LWbpylDqSkeSE_H3tpqsushoY7rnMzALNrLOA0AMlK0po-bhfNaGXq5Sk-WiUjBUzNKcsL5OK1PktWoSwJySvGM3nqF_jw9BFkwQpOsDS2aPrhmicFR22MPhfiSfnv_HJxB0WSvTRHAGfwLS7iPUQxmMcohcR2jPWzmMRggnR2Ba3nRikOwgcpAewo3WHbrToAtz_6RJ9vTx_bt6S7cfr-2a9TWRGSEyKKlVKNkVZ1oVKaUPymmREFqphDasyCioTqkklqFIxYAKEJHXWaJFSzTTobImqy1_pXQgeNJcmiqnYmNR0nBI-rcX3fFqLT2vxy1ojmv5De28Owp-vQ08XCMZSRwOeB2nAjgGNBxm5cuYa_gO_LYxp |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_129265 |
| Cites_doi | 10.1080/17469899.2016.1229599 10.3390/ijms24032814 10.1109/TPAMI.2019.2913372 10.1109/TMI.2018.2791488 10.1016/j.neucom.2023.03.044 10.1016/j.ijleo.2023.170861 10.1016/j.compmedimag.2019.101643 10.12688/f1000research.122288.1 10.1109/CBMS.2011.5999143 10.1016/j.bbe.2022.05.003 10.3390/healthcare10122497 10.1016/j.bbe.2021.05.011 10.1109/JBHI.2015.2473159 10.1016/j.ajo.2023.01.008 10.1016/j.bspc.2023.104906 10.1016/j.media.2019.101570 10.1016/j.asoc.2021.108347 10.1109/TBME.2019.2913211 10.1109/ICAIMAT51101.2020.9308006 10.1097/APO.0000000000000596 10.3390/jcm12020507 10.1016/j.ajo.2022.10.010 10.1016/j.neucom.2015.09.116 10.1109/CVPR.2017.660 10.1016/j.irbm.2022.03.001 10.1109/CVPR.2017.106 10.1007/978-3-319-24574-4_28 10.1016/j.bbe.2022.12.005 10.1007/s10278-019-00227-x 10.1016/j.asoc.2019.105890 10.1016/j.bbe.2018.02.003 10.1016/j.media.2021.102253 10.1016/j.xops.2022.100233 10.1109/ACCESS.2021.3116265 10.3390/math11020257 10.1016/j.survophthal.2022.08.005 10.1016/j.ibmed.2021.100038 10.1016/j.patcog.2006.10.015 10.1016/j.bbe.2023.02.003 10.1016/j.bbe.2017.05.008 10.1007/s42979-022-01592-1 10.1016/j.bspc.2023.104879 10.1016/j.cmpb.2015.10.010 10.1016/j.patcog.2020.107810 10.1038/s41598-022-16262-8 10.1016/j.cmpb.2020.105341 10.1016/j.eswa.2022.117968 10.1016/j.xops.2022.100255 10.1109/TPAMI.2016.2644615 10.1109/TMI.2019.2903562 10.1016/j.maturitas.2022.05.002 10.3233/THC-161206 10.1109/ISBI.2014.6867807 10.1016/j.asoc.2022.109918 10.1016/j.artmed.2021.102035 10.1016/j.bspc.2018.01.014 10.1016/j.eswa.2021.116399 10.1016/j.bspc.2023.104895 10.1016/j.bspc.2021.103192 10.1016/j.cmpb.2021.106530 10.1109/CVPR42600.2020.01155 10.3390/s22020434 10.1016/j.advengsoft.2022.103328 10.1109/LSP.2022.3151549 10.1016/j.bbe.2017.11.002 10.1016/j.eswa.2019.03.009 10.1109/ACCESS.2020.2998635 10.1016/j.bspc.2015.10.012 10.1016/j.compbiomed.2022.106094 10.1109/JBHI.2015.2392712 10.1016/j.compeleceng.2022.108009 10.1016/j.compmedimag.2019.02.005 10.1016/j.bbe.2023.02.002 10.1016/j.compmedimag.2019.101657 10.1016/j.bspc.2022.104347 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2024.106775 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_bspc_2024_106775 S1746809424008334 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-582ddcb56695d21b049030c5db7b7831ed3adb2ced6d7e7aeac093bfa21f7fef3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001297767900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1746-8094 |
| IngestDate | Tue Nov 18 21:51:11 EST 2025 Sat Nov 29 02:51:27 EST 2025 Sat Sep 14 18:08:18 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Segment OC and OD jointly Attention mechanism Large-scale screening for glaucoma OD extraction Adaptive weight fusion strategy |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c300t-582ddcb56695d21b049030c5db7b7831ed3adb2ced6d7e7aeac093bfa21f7fef3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2024_106775 crossref_primary_10_1016_j_bspc_2024_106775 elsevier_sciencedirect_doi_10_1016_j_bspc_2024_106775 |
| PublicationCentury | 2000 |
| PublicationDate | December 2024 2024-12-00 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Roychowdhury, Koozekanani, Kuchinka (b0205) 2016; 20 Sarhan, Rokne, Alhajj (b0010) 2019; 78 Guo, Liu, Oerlemans (b0075) 2016; 187 Arias-Serrano, Velásquez-López, Avila-Briones (b0315) 2023; 12 Sun, Yao, Liu (b0150) 2022; 29 Bhattacharya, Hussain, Chatterjee (b0160) 2023; 85 Thakur, Juneja (b0045) 2018; 42 Raza, Adnan, Ishaq (b0135) 2023; 11 Coan, Williams, Krishna Adithya (b0060) 2023; 68 Han, Wang, Gong (b0365) 2022; 43 Haider, Arsalan, Park (b0140) 2023; 133 Hoorali, Khosravi, Moradi (b0375) 2022; 191 Z. Gu, J. Cheng, H. Fu et al. CE-Net: Context Encoder Network for 2D Medical Image Segmentation. In: IEEE Trans Med Imaging. IEEE; 2019. p. 2281-2292. DOI: 10.1109/TMI.2019.2903562. Xavier (b0305) 2023; 3 Ren, Li, Yang (b0225) 2016; 24 Singh, Singh, Dev (b0230) 2023; 175 Wang, Gu, Chen (b0270) 2021; 112 Jiang, Duan, Cheng (b0335) 2020; 67 J. Sivaswamy, S.R. Krishnadas, G.D. Joshi et al. Drishti-GS: Retinal image dataset for optic nerve head(ONH) segmentation. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). IEEE; 2014. p. 53-56. DOI: 10.1109/ISBI.2014.6867807. Pachade, Porwal, Kokare (b0330) 2021; 74 H. Zhao, J. Shi, X. Qi et al. Pyramid scene parsing network. In: IEEE conference on computer vision and pattern recognition (CVPR). p. 2881-2890. DOI: 10.1109/CVPR.2017.660. M. Tabassum, T.M. Khan, M. Arsalan et al. CDED-Net: Joint segmentation of optic disc and optic cup for glaucoma screening. In: IEEE Access. IEEE;2020. p. 102733-102747. DOI: 10.1109/ACCESS.2020.2998635. Braeu, Thiéry, Tun (b0355) 2023; 250 Lucy, Wollstein (b0030) 2016; 11 Sangeethaa (b0275) 2023; 81 C. De Vente, K.A. Vermeer, N. Jaccard et al. AIROGS: artificial intelligence for RObust glaucoma screening challenge. arXiv preprint arXiv: 2023;2302.01738. DOI: 10.48550/arXiv.2302.01738. Singh, Dutta, ParthaSarathi (b0240) 2016; 124 Kausu, Gopi, Wahid (b0220) 2018; 38 T.Y. Lin, P. Dollar, R. Girshick et al. Feature pyramid networks for object detection. In: IEEE conference on computer vision and pattern recognition (CVPR). p. 2117-2125. DOI: 10.1109/CVPR.2017.106. Huang, Chen, Chen (b0090) 2023; 43 Yu, Xiao, Frost, Kanagasingam (b0290) 2019; 74 Soares, Castelo-Branco, Pinheiro (b0405) 2016; 20 El-Nimri, Moghimi, Nishida (b0035) 2023; 246 Sarathi, Dutta, Singh (b0260) 2016; 25 Liu, Pan, Shuai, Song (b0325) 2022; 213 Xu, Chutatape, Sung (b0410) 2007; 40 Orlando, Fu, Barbosa Breda (b0400) 2020; 59 Fea, Ricardi, Novarese (b0025) 2023; 24 Pavithra, Kumar, Geetha (b0005) 2023; 43 Juneja, Thakur, Uniyal (b0050) 2022; 101 Lee, Mackey (b0015) 2022; 163 Chen, Anran, Tan (b0020) 2023; 12 Lu, Zhao, Liu (b0165) 2023; 538 F. Fumero, S. Alayon, J.L. Sanchez et al. RIM-ONE: An open retinal image database for optic nerve evaluation. In: 2011 24th international symposium on computer-based medical systems (CBMS). IEEE; 2011. p. 1-6. DOI: 10.1109/CBMS.2011.5999143. Shanmugam, Raja, Pitchai (b0265) 2021; 109 Yuan, Zhou, Yu (b0105) 2021; 113 Q. Wang, B. Wu, P. Zhu et al. ECA-Net: Efficient channel attention for deep convolutional neural networks. In: IEEE conference on computer vision and pattern recognition (CVPR). p. 11534-11542. DOI: 10.1109/CVPR42600.2020.01155. Haider, Arsalan, Lee (b0155) 2022; 207 Pascal, Perdomo, Bost (b0300) 2022; 12 Martins, Cardoso, Soares (b0040) 2020; 192 Zhang, Ma, Gong (b0065) 2023; 85 Raghavendra, Bhandary, Gudigar (b0200) 2018; 38 Hesamian, Jia, He, Kennedy (b0070) 2019; 32 Thakur, Juneja (b0235) 2019; 127 Nawaz, Nazir, Javed (b0280) 2022; 22 Hervella, Rouco, Novo (b0145) 2022; 116 Verma, Shrinivasan, Hiremath (b0245) 2023; 12 Mvoulana, Kachouri, Akil (b0250) 2019; 77 Guru Prasad, Naveen Kumar, Raju (b0255) 2023; 4 Bunod, Lubrano, Pirovano (b0320) 2023; 12 O. Ronneberger, P. Fischer, T. Brox. U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference; 2015. p. 234-241. DOI: 10.1007/978-3-319-24574-4_28. J. Chen, Y. Lu, Q. Yu et al. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv: 2021;2102.04306. DOI: 10.48550/arXiv.2102.04306. Jumanto, Nugraha, Harjoko (b0195) 2023; 4 Sunija, Gopi, Palanisamy (b0180) 2022; 71 Panda, Puhan, Panda (b0210) 2017; 37 J. Hu, L. Shen, S. Albanie et al. Squeeze-and-Excitation Networks. In: IEEE Trans Pattern Anal Mach Intell 2020;42(8):2011-2023. DOI: 10.1109/TPAMI.2019.2913372. Blanco, Penedo, Barreira (b0215) 2006 Guo, Li, Lin (b0340) 2022; 150 V. Badrinarayanan, A. Kendall, R. Cipolla. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. In: IEEE Trans. Pattern Anal. Mach. Intell. IEEE; 2017. p. 2481-2495. DOI: 10.1109/TPAMI.2016.2644615. M. Aljazaeri, Y. Bazi, H. AlMubarak et al. Deep Segmentation Architecture with Self Attention for Glaucoma Detection. In:2020 International Conference on Artificial Intelligence & Modern Assistive Technology (ICAIMAT). IEEE;2020. p. 1-4. DOI: 10.1109/ICAIMAT51101.2020.9308006. Xu, Fan (b0080) 2022; 42 Tulsani, Kumar, Pathan (b0130) 2021; 41 Fu, Cheng, Xu (b0100) 2018; 37 Wang, Li, Cheng (b0175) 2023; 85 Rasheed, Davis, Morales (b0310) 2023; 3 Chandra, Verma, Raghuvanshi (b0085) 2023; 43 Lim, Cheng, Hsu, Lee (b0055) 2015 Chai, Liu, Xu (b0185) 2020; 86 Kashyap, Nair, Gangadharan (b0295) 2022; 10 Fan, Alipour, Bowd (b0350) 2023; 3 Shinde (b0190) 2021; 5 Bencevic, Galic, Habijan (b0360) 2021; 9 Sonti, Dhuli (b0415) 2023; 283 Tulsani (10.1016/j.bspc.2024.106775_b0130) 2021; 41 Braeu (10.1016/j.bspc.2024.106775_b0355) 2023; 250 10.1016/j.bspc.2024.106775_b0115 Chandra (10.1016/j.bspc.2024.106775_b0085) 2023; 43 10.1016/j.bspc.2024.106775_b0110 10.1016/j.bspc.2024.106775_b0395 Guo (10.1016/j.bspc.2024.106775_b0340) 2022; 150 Martins (10.1016/j.bspc.2024.106775_b0040) 2020; 192 Singh (10.1016/j.bspc.2024.106775_b0230) 2023; 175 Sarathi (10.1016/j.bspc.2024.106775_b0260) 2016; 25 Lu (10.1016/j.bspc.2024.106775_b0165) 2023; 538 Raghavendra (10.1016/j.bspc.2024.106775_b0200) 2018; 38 10.1016/j.bspc.2024.106775_b0345 Han (10.1016/j.bspc.2024.106775_b0365) 2022; 43 Sonti (10.1016/j.bspc.2024.106775_b0415) 2023; 283 10.1016/j.bspc.2024.106775_b0385 Roychowdhury (10.1016/j.bspc.2024.106775_b0205) 2016; 20 Rasheed (10.1016/j.bspc.2024.106775_b0310) 2023; 3 10.1016/j.bspc.2024.106775_b0380 Pascal (10.1016/j.bspc.2024.106775_b0300) 2022; 12 10.1016/j.bspc.2024.106775_b0390 Sarhan (10.1016/j.bspc.2024.106775_b0010) 2019; 78 Coan (10.1016/j.bspc.2024.106775_b0060) 2023; 68 Yuan (10.1016/j.bspc.2024.106775_b0105) 2021; 113 Hervella (10.1016/j.bspc.2024.106775_b0145) 2022; 116 Lucy (10.1016/j.bspc.2024.106775_b0030) 2016; 11 Kashyap (10.1016/j.bspc.2024.106775_b0295) 2022; 10 Soares (10.1016/j.bspc.2024.106775_b0405) 2016; 20 Jumanto (10.1016/j.bspc.2024.106775_b0195) 2023; 4 Hesamian (10.1016/j.bspc.2024.106775_b0070) 2019; 32 Xavier (10.1016/j.bspc.2024.106775_b0305) 2023; 3 Guo (10.1016/j.bspc.2024.106775_b0075) 2016; 187 Fu (10.1016/j.bspc.2024.106775_b0100) 2018; 37 Thakur (10.1016/j.bspc.2024.106775_b0235) 2019; 127 Wang (10.1016/j.bspc.2024.106775_b0270) 2021; 112 El-Nimri (10.1016/j.bspc.2024.106775_b0035) 2023; 246 Xu (10.1016/j.bspc.2024.106775_b0080) 2022; 42 Bhattacharya (10.1016/j.bspc.2024.106775_b0160) 2023; 85 Arias-Serrano (10.1016/j.bspc.2024.106775_b0315) 2023; 12 Fan (10.1016/j.bspc.2024.106775_b0350) 2023; 3 Bencevic (10.1016/j.bspc.2024.106775_b0360) 2021; 9 Guru Prasad (10.1016/j.bspc.2024.106775_b0255) 2023; 4 10.1016/j.bspc.2024.106775_b0095 10.1016/j.bspc.2024.106775_b0370 Wang (10.1016/j.bspc.2024.106775_b0175) 2023; 85 Huang (10.1016/j.bspc.2024.106775_b0090) 2023; 43 Yu (10.1016/j.bspc.2024.106775_b0290) 2019; 74 Sangeethaa (10.1016/j.bspc.2024.106775_b0275) 2023; 81 Nawaz (10.1016/j.bspc.2024.106775_b0280) 2022; 22 Hoorali (10.1016/j.bspc.2024.106775_b0375) 2022; 191 Sun (10.1016/j.bspc.2024.106775_b0150) 2022; 29 Juneja (10.1016/j.bspc.2024.106775_b0050) 2022; 101 Ren (10.1016/j.bspc.2024.106775_b0225) 2016; 24 Pachade (10.1016/j.bspc.2024.106775_b0330) 2021; 74 Chen (10.1016/j.bspc.2024.106775_b0020) 2023; 12 Kausu (10.1016/j.bspc.2024.106775_b0220) 2018; 38 Jiang (10.1016/j.bspc.2024.106775_b0335) 2020; 67 10.1016/j.bspc.2024.106775_b0125 Raza (10.1016/j.bspc.2024.106775_b0135) 2023; 11 Verma (10.1016/j.bspc.2024.106775_b0245) 2023; 12 Blanco (10.1016/j.bspc.2024.106775_b0215) 2006 Mvoulana (10.1016/j.bspc.2024.106775_b0250) 2019; 77 Shanmugam (10.1016/j.bspc.2024.106775_b0265) 2021; 109 Liu (10.1016/j.bspc.2024.106775_b0325) 2022; 213 Pavithra (10.1016/j.bspc.2024.106775_b0005) 2023; 43 10.1016/j.bspc.2024.106775_b0120 10.1016/j.bspc.2024.106775_b0285 Xu (10.1016/j.bspc.2024.106775_b0410) 2007; 40 Singh (10.1016/j.bspc.2024.106775_b0240) 2016; 124 Chai (10.1016/j.bspc.2024.106775_b0185) 2020; 86 Lim (10.1016/j.bspc.2024.106775_b0055) 2015 Haider (10.1016/j.bspc.2024.106775_b0155) 2022; 207 Sunija (10.1016/j.bspc.2024.106775_b0180) 2022; 71 Haider (10.1016/j.bspc.2024.106775_b0140) 2023; 133 10.1016/j.bspc.2024.106775_b0170 Panda (10.1016/j.bspc.2024.106775_b0210) 2017; 37 Shinde (10.1016/j.bspc.2024.106775_b0190) 2021; 5 Fea (10.1016/j.bspc.2024.106775_b0025) 2023; 24 Orlando (10.1016/j.bspc.2024.106775_b0400) 2020; 59 Bunod (10.1016/j.bspc.2024.106775_b0320) 2023; 12 Thakur (10.1016/j.bspc.2024.106775_b0045) 2018; 42 Lee (10.1016/j.bspc.2024.106775_b0015) 2022; 163 Zhang (10.1016/j.bspc.2024.106775_b0065) 2023; 85 |
| References_xml | – volume: 67 start-page: 335 year: 2020 end-page: 343 ident: b0335 article-title: JointRCNN: a region-based convolutional neural network for optic disc and cup segmentation publication-title: IEEE. Trans. Biomed. Eng. – volume: 40 start-page: 2063 year: 2007 end-page: 2076 ident: b0410 article-title: Optic disk feature extraction via modified deformable model technique for glaucoma analysis publication-title: Pattern Recogn. – volume: 37 start-page: 1597 year: 2018 end-page: 1605 ident: b0100 article-title: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation publication-title: IEEE Trans. Med. Imag. – volume: 43 start-page: 628 year: 2022 end-page: 639 ident: b0365 article-title: Fundus retinal vessels image segmentation method based on improved U-Net publication-title: IRBM – volume: 12 start-page: 80 year: 2023 end-page: 93 ident: b0020 article-title: Applications of artificial intelligence and deep learning in glaucoma publication-title: APJO – volume: 4 start-page: 192 year: 2023 ident: b0255 article-title: Glaucoma detection using clustering and segmentation of the optic disc region from retinal fundus images publication-title: SN Comput Sci – volume: 12 start-page: 806 year: 2023 end-page: 814 ident: b0245 article-title: Machine learning classifiers for detection of glaucoma publication-title: IJ-AI – volume: 187 start-page: 27 year: 2016 end-page: 48 ident: b0075 article-title: Deep learning for visual understanding: a review publication-title: Neurocomputing – reference: H. Zhao, J. Shi, X. Qi et al. Pyramid scene parsing network. In: IEEE conference on computer vision and pattern recognition (CVPR). p. 2881-2890. DOI: 10.1109/CVPR.2017.660. – reference: C. De Vente, K.A. Vermeer, N. Jaccard et al. AIROGS: artificial intelligence for RObust glaucoma screening challenge. arXiv preprint arXiv: 2023;2302.01738. DOI: 10.48550/arXiv.2302.01738. – volume: 109 year: 2021 ident: b0265 article-title: An automatic recognition of glaucoma in fundus images using deep learning and random forest classifier publication-title: Appl. Soft Comput. – volume: 101 year: 2022 ident: b0050 article-title: Deep learning-based classification network for glaucoma in retinal images publication-title: Comput. Electr. Eng. – start-page: 162 year: 2015 end-page: 169 ident: b0055 article-title: Integrated Optic Disc and Cup Segmentation with Deep Learning publication-title: In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI) – volume: 175 year: 2023 ident: b0230 article-title: Optimized convolutional neural network for glaucoma detection with improved optic-cup segmentation publication-title: Adv. Eng. Softw. – reference: T.Y. Lin, P. Dollar, R. Girshick et al. Feature pyramid networks for object detection. In: IEEE conference on computer vision and pattern recognition (CVPR). p. 2117-2125. DOI: 10.1109/CVPR.2017.106. – volume: 38 start-page: 329 year: 2018 end-page: 341 ident: b0220 article-title: Combination of clinical and multiresolution features for glaucoma detection and its classification using fundus images publication-title: Biocybern Biomed Eng – reference: V. Badrinarayanan, A. Kendall, R. Cipolla. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. In: IEEE Trans. Pattern Anal. Mach. Intell. IEEE; 2017. p. 2481-2495. DOI: 10.1109/TPAMI.2016.2644615. – reference: J. Sivaswamy, S.R. Krishnadas, G.D. Joshi et al. Drishti-GS: Retinal image dataset for optic nerve head(ONH) segmentation. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). IEEE; 2014. p. 53-56. DOI: 10.1109/ISBI.2014.6867807. – volume: 10 start-page: 2497 year: 2022 ident: b0295 article-title: Glaucoma detection and classification using improved U-Net deep learning model publication-title: Healthcare – volume: 3 start-page: 1 year: 2023 end-page: 33 ident: b0305 article-title: ODMNet: automated glaucoma detection and classification model using heuristically-aided optimized densenet and mobilenet transfer learning publication-title: Cybern. Syst. – volume: 112 year: 2021 ident: b0270 article-title: Automated segmentation of the optic disc from fundus images using an asymmetric deep learning network publication-title: Pattern Recogn. – volume: 5 year: 2021 ident: b0190 article-title: Glaucoma detection in retinal fundus images using U-Net and supervised machine learning algorithms publication-title: Intell. Based Med. – volume: 81 year: 2023 ident: b0275 article-title: Presumptive discerning of the severity level of glaucoma through clinical fundus images using hybrid PolyNet publication-title: Biomed. Signal Process. Control – reference: Q. Wang, B. Wu, P. Zhu et al. ECA-Net: Efficient channel attention for deep convolutional neural networks. In: IEEE conference on computer vision and pattern recognition (CVPR). p. 11534-11542. DOI: 10.1109/CVPR42600.2020.01155. – volume: 32 start-page: 582 year: 2019 end-page: 596 ident: b0070 article-title: Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges publication-title: J. Digit. Imaging – volume: 25 start-page: 108 year: 2016 end-page: 117 ident: b0260 article-title: Blood vessel inpainting based technique for efficient localization and segmentation of optic disc in digital fundus images publication-title: Biomed. Signal Process. Control – volume: 113 year: 2021 ident: b0105 article-title: A multi-scale convolutional neural network with context for joint segmentation of optic disc and cup publication-title: Artif. Intell. Med. – volume: 127 start-page: 308 year: 2019 end-page: 322 ident: b0235 article-title: Optic disc and optic cup segmentation from retinal images using hybrid approach publication-title: Expert Syst. Appl. – volume: 283 year: 2023 ident: b0415 article-title: A new convolution neural network model “KR-NET” for retinal fundus glaucoma classification publication-title: Optik – volume: 41 start-page: 819 year: 2021 end-page: 832 ident: b0130 article-title: Automated segmentation of optic disc and optic cup for glaucoma assessment using improved UNET++ architecture publication-title: Biocybern Biomed Eng – volume: 24 start-page: S767 year: 2016 end-page: S776 ident: b0225 article-title: Automatic optic disc localization and segmentation in retinal images by a line operator and level sets publication-title: Technol. Health Care – volume: 42 start-page: 695 year: 2022 end-page: 706 ident: b0080 article-title: Dual-channel asymmetric convolutional neural network for an efficient retinal blood vessel segmentation in eye fundus images publication-title: Biocybern. Biomed. Eng. – volume: 74 start-page: 61 year: 2019 end-page: 71 ident: b0290 article-title: Robust optic disc and cup segmentation with deep learning for glaucoma detection publication-title: Comput. Med. Imaging Graph. – volume: 192 year: 2020 ident: b0040 article-title: Offline computer-aided diagnosis for Glaucoma detection using fundus images targeted at mobile devices publication-title: Comput. Methods Programs Biomed. – volume: 22 start-page: 434 year: 2022 ident: b0280 article-title: An efficient deep learning approach to automatic glaucoma detection using optic disc and optic cup localization publication-title: Sensors – volume: 37 start-page: 466 year: 2017 end-page: 476 ident: b0210 article-title: Robust and accurate optic disk localization using vessel symmetry line measure in fundus images publication-title: Biocybern Biomed Eng – volume: 85 year: 2023 ident: b0175 article-title: Towards an extended EfficientNet-based U-Net framework for joint optic disc and cup segmentation in the fundus image publication-title: Biomed. Signal Process. Control – reference: J. Hu, L. Shen, S. Albanie et al. Squeeze-and-Excitation Networks. In: IEEE Trans Pattern Anal Mach Intell 2020;42(8):2011-2023. DOI: 10.1109/TPAMI.2019.2913372. – reference: Z. Gu, J. Cheng, H. Fu et al. CE-Net: Context Encoder Network for 2D Medical Image Segmentation. In: IEEE Trans Med Imaging. IEEE; 2019. p. 2281-2292. DOI: 10.1109/TMI.2019.2903562. – volume: 3 year: 2023 ident: b0350 article-title: Detecting glaucoma from fundus photographs using deep learning without convolutions: transformer for improved generalization publication-title: Ophthalmol. Sci. – volume: 74 year: 2021 ident: b0330 article-title: NENet: Nested EfficientNet and adversarial learning for joint optic disc and cup segmentation publication-title: Med. Image Anal. – volume: 29 start-page: 697 year: 2022 end-page: 701 ident: b0150 article-title: GNAS-U publication-title: IEEE Signal Process Lett. – volume: 71 year: 2022 ident: b0180 article-title: Redundancy reduced depthwise separable convolution for glaucoma classification using OCT images publication-title: Biomed. Signal Process. Control – volume: 133 year: 2023 ident: b0140 article-title: Exploring deep feature-blending capabilities to assist glaucoma screening publication-title: Appl. Soft Comput. – volume: 4 year: 2023 ident: b0195 article-title: Mix histogram and gray level co-occurrence matrix to improve glaucoma prediction machine learning publication-title: J. Soft Comput. Explor. – volume: 12 start-page: 12361 year: 2022 ident: b0300 article-title: Multi-task deep learning for glaucoma detection from color fundus images publication-title: Sci. Rep. – volume: 12 start-page: 507 year: 2023 ident: b0320 article-title: A deep learning system using optical coherence tomography angiography to detect glaucoma and anterior ischemic optic neuropathy publication-title: J. Clin. Med. – volume: 59 year: 2020 ident: b0400 article-title: REFUGE Challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs publication-title: Med. Image Anal. – volume: 43 start-page: 386 year: 2023 end-page: 401 ident: b0090 article-title: FRE-Net: Full-region enhanced network for nuclei segmentation in histopathology images publication-title: Biocybern. Biomed. Eng. – volume: 124 start-page: 108 year: 2016 end-page: 120 ident: b0240 article-title: Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image publication-title: Comput. Methods Programs Biomed. – volume: 85 year: 2023 ident: b0160 article-title: PY-Net: Rethinking segmentation frameworks with dense pyramidal operations for optic disc and cup segmentation from retinal fundus images publication-title: Biomed. Signal Process. Control – volume: 38 start-page: 170 year: 2018 end-page: 180 ident: b0200 article-title: Novel expert system for glaucoma identification using non-parametric spatial envelope energy spectrum with fundus images publication-title: Biocybern. Biomed. Eng. – volume: 86 year: 2020 ident: b0185 article-title: A new convolutional neural network model for peripapillary atrophy area segmentation from retinal fundus images publication-title: Appl. Soft Comput. – volume: 3 year: 2023 ident: b0310 article-title: DDLSNet: a novel deep learning-based system for grading funduscopic images for glaucomatous damage publication-title: Ophthalmol. Sci. – volume: 43 start-page: 157 year: 2023 end-page: 188 ident: b0005 article-title: Computer aided diagnosis of diabetic macular edema in retinal fundus and OCT images: A review publication-title: Biocybern Biomed Eng – volume: 12 start-page: 14 year: 2023 ident: b0315 article-title: Artificial intelligence based glaucoma and diabetic retinopathy detection using MATLAB—retrained AlexNet convolutional neural network publication-title: F1000Research – volume: 150 year: 2022 ident: b0340 article-title: Joint optic disc and cup segmentation using feature fusion and attention publication-title: Comput. Biol. Med. – volume: 213 year: 2022 ident: b0325 article-title: ECSD-Net: A joint optic disc and cup segmentation and glaucoma classification network based on unsupervised domain adaptation publication-title: Comput. Methods Programs Biomed. – volume: 538 year: 2023 ident: b0165 article-title: PKRT-Net: Prior knowledge-based relation transformer network for optic cup and disc segmentation publication-title: Neurocomputing – reference: F. Fumero, S. Alayon, J.L. Sanchez et al. RIM-ONE: An open retinal image database for optic nerve evaluation. In: 2011 24th international symposium on computer-based medical systems (CBMS). IEEE; 2011. p. 1-6. DOI: 10.1109/CBMS.2011.5999143. – volume: 77 year: 2019 ident: b0250 article-title: Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images publication-title: Comput. Med. Imag. Graph. – volume: 20 start-page: 1562 year: 2016 end-page: 1574 ident: b0205 article-title: Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images publication-title: IEEE J. Biomed. Health Inform. – volume: 116 year: 2022 ident: b0145 article-title: End-to-end multi-task learning for simultaneous optic disc and cup segmentation and glaucoma classification in eye fundus images publication-title: Appl. Soft Comput. – volume: 191 year: 2022 ident: b0375 article-title: IRUNet for medical image segmentation publication-title: Expert Syst. Appl. – volume: 24 start-page: 2814 year: 2023 ident: b0025 article-title: Precision medicine in glaucoma: artificial intelligence, biomarkers, genetics and redox state publication-title: Int. J. Mol. Sci. – volume: 9 start-page: 133365 year: 2021 end-page: 133375 ident: b0360 article-title: Training on polar image transformations improves biomedical image segmentation publication-title: IEEE Access – volume: 250 start-page: 38 year: 2023 end-page: 48 ident: b0355 article-title: Geometric deep learning to identify the critical 3D structural features of the optic nerve head for glaucoma diagnosis publication-title: Am. J. Ophthalmol. – start-page: 712 year: 2006 end-page: 721 ident: b0215 article-title: Localization and extraction of the optic disc using the fuzzy circular hough transform publication-title: In: Artificial Intelligence and Soft Computing–ICAISC 2006: 8th International Conference – volume: 85 year: 2023 ident: b0065 article-title: Automatic detection of microaneurysms in fundus images based on multiple preprocessing fusion to extract features publication-title: Biomed. Signal Process. Control – reference: M. Tabassum, T.M. Khan, M. Arsalan et al. CDED-Net: Joint segmentation of optic disc and optic cup for glaucoma screening. In: IEEE Access. IEEE;2020. p. 102733-102747. DOI: 10.1109/ACCESS.2020.2998635. – reference: J. Chen, Y. Lu, Q. Yu et al. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv: 2021;2102.04306. DOI: 10.48550/arXiv.2102.04306. – volume: 207 year: 2022 ident: b0155 article-title: Artificial Intelligence-based computer-aided diagnosis of glaucoma using retinal fundus images publication-title: Expert Syst. Appl. – volume: 20 start-page: 574 year: 2016 end-page: 585 ident: b0405 article-title: Optic disc localization in retinal images based on cumulative sum fields publication-title: IEEE J. Biomed Health Inform – volume: 11 start-page: 367 year: 2016 end-page: 376 ident: b0030 article-title: Structural and functional evaluations for the early detection of glaucoma publication-title: Expert Rev Ophthalmol – volume: 246 start-page: 223 year: 2023 end-page: 235 ident: b0035 article-title: Racial differences in detection of glaucoma using retinal nerve fiber layer thickness and bruch membrane opening minimum rim width publication-title: Am. J. Ophthalmol. – reference: M. Aljazaeri, Y. Bazi, H. AlMubarak et al. Deep Segmentation Architecture with Self Attention for Glaucoma Detection. In:2020 International Conference on Artificial Intelligence & Modern Assistive Technology (ICAIMAT). IEEE;2020. p. 1-4. DOI: 10.1109/ICAIMAT51101.2020.9308006. – volume: 78 year: 2019 ident: b0010 article-title: Glaucoma detection using image processing techniques: a literature review publication-title: Comput. Med. Imag. Graph. – volume: 163 start-page: 15 year: 2022 end-page: 22 ident: b0015 article-title: Glaucoma - risk factors and current challenges in the diagnosis of a leading cause of visual impairment publication-title: Maturitas – reference: O. Ronneberger, P. Fischer, T. Brox. U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference; 2015. p. 234-241. DOI: 10.1007/978-3-319-24574-4_28. – volume: 11 start-page: 257 year: 2023 ident: b0135 article-title: Assisting glaucoma screening process using feature excitation and information aggregation techniques in retinal fundus images publication-title: Mathematics – volume: 42 start-page: 162 year: 2018 end-page: 189 ident: b0045 article-title: Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma publication-title: Biomed. Signal Process. Control – volume: 68 start-page: 17 year: 2023 end-page: 41 ident: b0060 article-title: Automatic detection of glaucoma via fundus imaging and artificial intelligence: a review publication-title: Surv. Ophthalmol. – volume: 43 start-page: 403 year: 2023 end-page: 427 ident: b0085 article-title: PCcS-RAU-Net: Automated parcellated Corpus callosum segmentation from brain MRI images using modified residual attention U-Net publication-title: Biocybern. Biomed. Eng. – volume: 11 start-page: 367 issue: 5 year: 2016 ident: 10.1016/j.bspc.2024.106775_b0030 article-title: Structural and functional evaluations for the early detection of glaucoma publication-title: Expert Rev Ophthalmol doi: 10.1080/17469899.2016.1229599 – volume: 24 start-page: 2814 issue: 3 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0025 article-title: Precision medicine in glaucoma: artificial intelligence, biomarkers, genetics and redox state publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms24032814 – ident: 10.1016/j.bspc.2024.106775_b0380 doi: 10.1109/TPAMI.2019.2913372 – volume: 37 start-page: 1597 issue: 7 year: 2018 ident: 10.1016/j.bspc.2024.106775_b0100 article-title: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2018.2791488 – volume: 538 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0165 article-title: PKRT-Net: Prior knowledge-based relation transformer network for optic cup and disc segmentation publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.03.044 – volume: 283 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0415 article-title: A new convolution neural network model “KR-NET” for retinal fundus glaucoma classification publication-title: Optik doi: 10.1016/j.ijleo.2023.170861 – volume: 77 year: 2019 ident: 10.1016/j.bspc.2024.106775_b0250 article-title: Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images publication-title: Comput. Med. Imag. Graph. doi: 10.1016/j.compmedimag.2019.101643 – volume: 12 start-page: 14 issue: 14 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0315 article-title: Artificial intelligence based glaucoma and diabetic retinopathy detection using MATLAB—retrained AlexNet convolutional neural network publication-title: F1000Research doi: 10.12688/f1000research.122288.1 – ident: 10.1016/j.bspc.2024.106775_b0395 doi: 10.1109/CBMS.2011.5999143 – volume: 42 start-page: 695 issue: 2 year: 2022 ident: 10.1016/j.bspc.2024.106775_b0080 article-title: Dual-channel asymmetric convolutional neural network for an efficient retinal blood vessel segmentation in eye fundus images publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2022.05.003 – volume: 10 start-page: 2497 issue: 12 year: 2022 ident: 10.1016/j.bspc.2024.106775_b0295 article-title: Glaucoma detection and classification using improved U-Net deep learning model publication-title: Healthcare doi: 10.3390/healthcare10122497 – volume: 109 year: 2021 ident: 10.1016/j.bspc.2024.106775_b0265 article-title: An automatic recognition of glaucoma in fundus images using deep learning and random forest classifier publication-title: Appl. Soft Comput. – volume: 41 start-page: 819 issue: 2 year: 2021 ident: 10.1016/j.bspc.2024.106775_b0130 article-title: Automated segmentation of optic disc and optic cup for glaucoma assessment using improved UNET++ architecture publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2021.05.011 – volume: 20 start-page: 1562 issue: 6 year: 2016 ident: 10.1016/j.bspc.2024.106775_b0205 article-title: Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2015.2473159 – volume: 250 start-page: 38 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0355 article-title: Geometric deep learning to identify the critical 3D structural features of the optic nerve head for glaucoma diagnosis publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2023.01.008 – volume: 85 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0175 article-title: Towards an extended EfficientNet-based U-Net framework for joint optic disc and cup segmentation in the fundus image publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.104906 – volume: 59 year: 2020 ident: 10.1016/j.bspc.2024.106775_b0400 article-title: REFUGE Challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101570 – volume: 116 year: 2022 ident: 10.1016/j.bspc.2024.106775_b0145 article-title: End-to-end multi-task learning for simultaneous optic disc and cup segmentation and glaucoma classification in eye fundus images publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.108347 – volume: 67 start-page: 335 issue: 2 year: 2020 ident: 10.1016/j.bspc.2024.106775_b0335 article-title: JointRCNN: a region-based convolutional neural network for optic disc and cup segmentation publication-title: IEEE. Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2913211 – start-page: 712 year: 2006 ident: 10.1016/j.bspc.2024.106775_b0215 article-title: Localization and extraction of the optic disc using the fuzzy circular hough transform – ident: 10.1016/j.bspc.2024.106775_b0345 doi: 10.1109/ICAIMAT51101.2020.9308006 – volume: 4 issue: 1 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0195 article-title: Mix histogram and gray level co-occurrence matrix to improve glaucoma prediction machine learning publication-title: J. Soft Comput. Explor. – volume: 12 start-page: 80 issue: 1 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0020 article-title: Applications of artificial intelligence and deep learning in glaucoma publication-title: APJO doi: 10.1097/APO.0000000000000596 – volume: 12 start-page: 507 issue: 2 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0320 article-title: A deep learning system using optical coherence tomography angiography to detect glaucoma and anterior ischemic optic neuropathy publication-title: J. Clin. Med. doi: 10.3390/jcm12020507 – volume: 246 start-page: 223 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0035 article-title: Racial differences in detection of glaucoma using retinal nerve fiber layer thickness and bruch membrane opening minimum rim width publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2022.10.010 – volume: 187 start-page: 27 year: 2016 ident: 10.1016/j.bspc.2024.106775_b0075 article-title: Deep learning for visual understanding: a review publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.116 – ident: 10.1016/j.bspc.2024.106775_b0115 doi: 10.1109/CVPR.2017.660 – volume: 43 start-page: 628 issue: 6 year: 2022 ident: 10.1016/j.bspc.2024.106775_b0365 article-title: Fundus retinal vessels image segmentation method based on improved U-Net publication-title: IRBM doi: 10.1016/j.irbm.2022.03.001 – ident: 10.1016/j.bspc.2024.106775_b0370 doi: 10.1109/CVPR.2017.106 – ident: 10.1016/j.bspc.2024.106775_b0095 doi: 10.1007/978-3-319-24574-4_28 – volume: 43 start-page: 157 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0005 article-title: Computer aided diagnosis of diabetic macular edema in retinal fundus and OCT images: A review publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2022.12.005 – volume: 32 start-page: 582 issue: 4 year: 2019 ident: 10.1016/j.bspc.2024.106775_b0070 article-title: Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges publication-title: J. Digit. Imaging doi: 10.1007/s10278-019-00227-x – ident: 10.1016/j.bspc.2024.106775_b0285 – volume: 86 year: 2020 ident: 10.1016/j.bspc.2024.106775_b0185 article-title: A new convolutional neural network model for peripapillary atrophy area segmentation from retinal fundus images publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105890 – volume: 38 start-page: 329 issue: 2 year: 2018 ident: 10.1016/j.bspc.2024.106775_b0220 article-title: Combination of clinical and multiresolution features for glaucoma detection and its classification using fundus images publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2018.02.003 – start-page: 162 year: 2015 ident: 10.1016/j.bspc.2024.106775_b0055 article-title: Integrated Optic Disc and Cup Segmentation with Deep Learning – volume: 74 year: 2021 ident: 10.1016/j.bspc.2024.106775_b0330 article-title: NENet: Nested EfficientNet and adversarial learning for joint optic disc and cup segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102253 – volume: 3 issue: 1 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0350 article-title: Detecting glaucoma from fundus photographs using deep learning without convolutions: transformer for improved generalization publication-title: Ophthalmol. Sci. doi: 10.1016/j.xops.2022.100233 – volume: 9 start-page: 133365 year: 2021 ident: 10.1016/j.bspc.2024.106775_b0360 article-title: Training on polar image transformations improves biomedical image segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3116265 – volume: 11 start-page: 257 issue: 2 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0135 article-title: Assisting glaucoma screening process using feature excitation and information aggregation techniques in retinal fundus images publication-title: Mathematics doi: 10.3390/math11020257 – volume: 68 start-page: 17 issue: 1 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0060 article-title: Automatic detection of glaucoma via fundus imaging and artificial intelligence: a review publication-title: Surv. Ophthalmol. doi: 10.1016/j.survophthal.2022.08.005 – volume: 5 year: 2021 ident: 10.1016/j.bspc.2024.106775_b0190 article-title: Glaucoma detection in retinal fundus images using U-Net and supervised machine learning algorithms publication-title: Intell. Based Med. doi: 10.1016/j.ibmed.2021.100038 – volume: 40 start-page: 2063 issue: 7 year: 2007 ident: 10.1016/j.bspc.2024.106775_b0410 article-title: Optic disk feature extraction via modified deformable model technique for glaucoma analysis publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2006.10.015 – volume: 43 start-page: 403 issue: 2 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0085 article-title: PCcS-RAU-Net: Automated parcellated Corpus callosum segmentation from brain MRI images using modified residual attention U-Net publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2023.02.003 – volume: 37 start-page: 466 issue: 3 year: 2017 ident: 10.1016/j.bspc.2024.106775_b0210 article-title: Robust and accurate optic disk localization using vessel symmetry line measure in fundus images publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2017.05.008 – volume: 4 start-page: 192 issue: 2 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0255 article-title: Glaucoma detection using clustering and segmentation of the optic disc region from retinal fundus images publication-title: SN Comput Sci doi: 10.1007/s42979-022-01592-1 – volume: 85 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0065 article-title: Automatic detection of microaneurysms in fundus images based on multiple preprocessing fusion to extract features publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.104879 – volume: 124 start-page: 108 year: 2016 ident: 10.1016/j.bspc.2024.106775_b0240 article-title: Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2015.10.010 – volume: 112 year: 2021 ident: 10.1016/j.bspc.2024.106775_b0270 article-title: Automated segmentation of the optic disc from fundus images using an asymmetric deep learning network publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2020.107810 – volume: 12 start-page: 12361 issue: 1 year: 2022 ident: 10.1016/j.bspc.2024.106775_b0300 article-title: Multi-task deep learning for glaucoma detection from color fundus images publication-title: Sci. Rep. doi: 10.1038/s41598-022-16262-8 – volume: 192 year: 2020 ident: 10.1016/j.bspc.2024.106775_b0040 article-title: Offline computer-aided diagnosis for Glaucoma detection using fundus images targeted at mobile devices publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105341 – volume: 207 year: 2022 ident: 10.1016/j.bspc.2024.106775_b0155 article-title: Artificial Intelligence-based computer-aided diagnosis of glaucoma using retinal fundus images publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117968 – volume: 3 issue: 2 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0310 article-title: DDLSNet: a novel deep learning-based system for grading funduscopic images for glaucomatous damage publication-title: Ophthalmol. Sci. doi: 10.1016/j.xops.2022.100255 – ident: 10.1016/j.bspc.2024.106775_b0110 doi: 10.1109/TPAMI.2016.2644615 – ident: 10.1016/j.bspc.2024.106775_b0120 doi: 10.1109/TMI.2019.2903562 – volume: 163 start-page: 15 year: 2022 ident: 10.1016/j.bspc.2024.106775_b0015 article-title: Glaucoma - risk factors and current challenges in the diagnosis of a leading cause of visual impairment publication-title: Maturitas doi: 10.1016/j.maturitas.2022.05.002 – volume: 24 start-page: S767 issue: s2 year: 2016 ident: 10.1016/j.bspc.2024.106775_b0225 article-title: Automatic optic disc localization and segmentation in retinal images by a line operator and level sets publication-title: Technol. Health Care doi: 10.3233/THC-161206 – ident: 10.1016/j.bspc.2024.106775_b0390 doi: 10.1109/ISBI.2014.6867807 – volume: 133 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0140 article-title: Exploring deep feature-blending capabilities to assist glaucoma screening publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109918 – volume: 113 year: 2021 ident: 10.1016/j.bspc.2024.106775_b0105 article-title: A multi-scale convolutional neural network with context for joint segmentation of optic disc and cup publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2021.102035 – volume: 42 start-page: 162 year: 2018 ident: 10.1016/j.bspc.2024.106775_b0045 article-title: Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.01.014 – volume: 191 year: 2022 ident: 10.1016/j.bspc.2024.106775_b0375 article-title: IRUNet for medical image segmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116399 – volume: 85 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0160 article-title: PY-Net: Rethinking segmentation frameworks with dense pyramidal operations for optic disc and cup segmentation from retinal fundus images publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.104895 – volume: 71 year: 2022 ident: 10.1016/j.bspc.2024.106775_b0180 article-title: Redundancy reduced depthwise separable convolution for glaucoma classification using OCT images publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103192 – volume: 213 year: 2022 ident: 10.1016/j.bspc.2024.106775_b0325 article-title: ECSD-Net: A joint optic disc and cup segmentation and glaucoma classification network based on unsupervised domain adaptation publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2021.106530 – ident: 10.1016/j.bspc.2024.106775_b0385 doi: 10.1109/CVPR42600.2020.01155 – volume: 22 start-page: 434 issue: 2 year: 2022 ident: 10.1016/j.bspc.2024.106775_b0280 article-title: An efficient deep learning approach to automatic glaucoma detection using optic disc and optic cup localization publication-title: Sensors doi: 10.3390/s22020434 – volume: 175 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0230 article-title: Optimized convolutional neural network for glaucoma detection with improved optic-cup segmentation publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2022.103328 – volume: 29 start-page: 697 year: 2022 ident: 10.1016/j.bspc.2024.106775_b0150 article-title: GNAS-U2Net: a new optic cup and optic disc segmentation architecture with genetic neural architecture search publication-title: IEEE Signal Process Lett. doi: 10.1109/LSP.2022.3151549 – volume: 38 start-page: 170 issue: 1 year: 2018 ident: 10.1016/j.bspc.2024.106775_b0200 article-title: Novel expert system for glaucoma identification using non-parametric spatial envelope energy spectrum with fundus images publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2017.11.002 – volume: 127 start-page: 308 year: 2019 ident: 10.1016/j.bspc.2024.106775_b0235 article-title: Optic disc and optic cup segmentation from retinal images using hybrid approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.03.009 – ident: 10.1016/j.bspc.2024.106775_b0125 doi: 10.1109/ACCESS.2020.2998635 – volume: 25 start-page: 108 year: 2016 ident: 10.1016/j.bspc.2024.106775_b0260 article-title: Blood vessel inpainting based technique for efficient localization and segmentation of optic disc in digital fundus images publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2015.10.012 – volume: 150 year: 2022 ident: 10.1016/j.bspc.2024.106775_b0340 article-title: Joint optic disc and cup segmentation using feature fusion and attention publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106094 – volume: 20 start-page: 574 issue: 2 year: 2016 ident: 10.1016/j.bspc.2024.106775_b0405 article-title: Optic disc localization in retinal images based on cumulative sum fields publication-title: IEEE J. Biomed Health Inform doi: 10.1109/JBHI.2015.2392712 – volume: 101 year: 2022 ident: 10.1016/j.bspc.2024.106775_b0050 article-title: Deep learning-based classification network for glaucoma in retinal images publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2022.108009 – volume: 74 start-page: 61 year: 2019 ident: 10.1016/j.bspc.2024.106775_b0290 article-title: Robust optic disc and cup segmentation with deep learning for glaucoma detection publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2019.02.005 – volume: 43 start-page: 386 issue: 1 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0090 article-title: FRE-Net: Full-region enhanced network for nuclei segmentation in histopathology images publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2023.02.002 – ident: 10.1016/j.bspc.2024.106775_b0170 – volume: 3 start-page: 1 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0305 article-title: ODMNet: automated glaucoma detection and classification model using heuristically-aided optimized densenet and mobilenet transfer learning publication-title: Cybern. Syst. – volume: 12 start-page: 806 issue: 2 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0245 article-title: Machine learning classifiers for detection of glaucoma publication-title: IJ-AI – volume: 78 year: 2019 ident: 10.1016/j.bspc.2024.106775_b0010 article-title: Glaucoma detection using image processing techniques: a literature review publication-title: Comput. Med. Imag. Graph. doi: 10.1016/j.compmedimag.2019.101657 – volume: 81 year: 2023 ident: 10.1016/j.bspc.2024.106775_b0275 article-title: Presumptive discerning of the severity level of glaucoma through clinical fundus images using hybrid PolyNet publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104347 |
| SSID | ssj0048714 |
| Score | 2.3533108 |
| Snippet | •Multi-scale inputs and hybrid down-sampling modules are used.•The attention mechanism is integrated into multi-scale convolution.•An adaptive weight fusion... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106775 |
| SubjectTerms | Adaptive weight fusion strategy Attention mechanism Large-scale screening for glaucoma OD extraction Segment OC and OD jointly |
| Title | A multi-scale convolutional neural network with adaptive weight fusion strategy for assisting glaucoma screening |
| URI | https://dx.doi.org/10.1016/j.bspc.2024.106775 |
| Volume | 98 |
| WOSCitedRecordID | wos001297767900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1746-8094 databaseCode: AIEXJ dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0048714 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELW20EN7qOiXgJbKh96ioI2T4OS4QvRLCLUSlfYW2bG93RUKEbvZ8k_4u4w9dgiUonLoJbuKHDvKvIzHkzfPhHw8kFqYrC7jMh-bOANvAO-ckXEGczs3qQ1SnM7sMT85KabT8vtodBVqYdZnvGmKy8uy_a-mhnNgbFs6-whz953CCfgPRocjmB2O_2T4CZIE4yU8fUdFX_vhwBhWvdL9OO63L2xTonX8od8uSxqZzibQoiXK1iKfEyJs6wuaWQTRdgd3LSJwN7AEDhNf-Czsivmx0nI-syO2WIgQSiE9M_6PdPW0mwnfFepFIsX4fNDQ5XSPu8V80PCzJxT_sPn-Xx7oPofBsgEfBN0uz6wsMm53HPwy7k7tHatTusvv9fmYfljsy2VrNSlZtn_T-LbA9p2Jr6cjBqbborJ9VLaPCvt4QjYZz0vw-JuTr0fTb2GSh2Wek43vb9zXYyF18O6d3B_zDOKY0y3ywi9A6ASB85KMdPOKPB_IUr4m7YQOIERvQYgihKiHELUQogFCFCFEEUI0QIgChGgPIRogRHsIvSE_Px2dHn6J_c4ccQ2v7yrOC6ZULWEpUOaKJdJ-Pk7Hda4kl7xIE61SoSSrtTpQXHMBs_u4TKURLDHcaJO-JRvNeaO3Cc2SUmqZ60IUaWYkKyRMKYlIlEqMVIztkCQ8u6r2svV295Sz6u9W2yFRf02Loi0Pts6DSSofdmI4WQHCHrhu91GjvCPPbpD_nmysLjq9R57W69V8efHBw-saCjWrgQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-scale+convolutional+neural+network+with+adaptive+weight+fusion+strategy+for+assisting+glaucoma+screening&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Zhang%2C+Xugang&rft.au=Shen%2C+Mo&rft.au=Zhao%2C+Lujiang&rft.au=Gong%2C+Qingshan&rft.date=2024-12-01&rft.issn=1746-8094&rft.volume=98&rft.spage=106775&rft_id=info:doi/10.1016%2Fj.bspc.2024.106775&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2024_106775 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |