Fault detection and diagnostic method of diesel engine by combining rule-based algorithm and BNs/BPNNs

•A fault diagnostic method of diesel engines by combining rule-based algorithm and BNs/BPNNs is proposed.•Faults are roughly identified using rule-based algorithm and finely identified using BNs or BPNNs.•The method can identify faults of diesel engines with different rotation speeds when the traini...

Full description

Saved in:
Bibliographic Details
Published in:Journal of manufacturing systems Vol. 57; pp. 148 - 157
Main Authors: Cai, Baoping, Sun, Xiutao, Wang, Jiaxing, Yang, Chao, Wang, Zhengda, Kong, Xiangdi, Liu, Zengkai, Liu, Yonghong
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.10.2020
Subjects:
ISSN:0278-6125, 1878-6642
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A fault diagnostic method of diesel engines by combining rule-based algorithm and BNs/BPNNs is proposed.•Faults are roughly identified using rule-based algorithm and finely identified using BNs or BPNNs.•The method can identify faults of diesel engines with different rotation speeds when the training speed is constant. The stable operation of diesel engine is critical to the normal production of the industry, and the prevention, monitoring, and identification of faults are of great significance. At present, the fault research on diesel engines still has some defects, such as only few types of faults diagnosis are identified, the accuracy of fault diagnosis is still low, and fault identification is located at a fixed speed. A novel fault detection and diagnostic method of diesel engine by combining rule-based algorithm and Bayesian networks (BNs) or Back Propagation neural networks (BPNNs) is proposed. The signals are processed by wavelet threshold denoising and ensemble empirical mode decomposition. The signal-sensitive feature values are extracted from the decomposed intrinsic mode function. Seven faults are roughly identified using rule-based algorithm and finely identified using BNs or BPNNs. Results show the proposed fault diagnosis method has a good diagnostic performance for a wide range of rotation speeds when the training data for BNs and BPNNs are from fixed speeds. In addition, the influences of the layers of decomposed signals, sensor noise and external excitation interference on the fault diagnostic performance are also researched.
AbstractList •A fault diagnostic method of diesel engines by combining rule-based algorithm and BNs/BPNNs is proposed.•Faults are roughly identified using rule-based algorithm and finely identified using BNs or BPNNs.•The method can identify faults of diesel engines with different rotation speeds when the training speed is constant. The stable operation of diesel engine is critical to the normal production of the industry, and the prevention, monitoring, and identification of faults are of great significance. At present, the fault research on diesel engines still has some defects, such as only few types of faults diagnosis are identified, the accuracy of fault diagnosis is still low, and fault identification is located at a fixed speed. A novel fault detection and diagnostic method of diesel engine by combining rule-based algorithm and Bayesian networks (BNs) or Back Propagation neural networks (BPNNs) is proposed. The signals are processed by wavelet threshold denoising and ensemble empirical mode decomposition. The signal-sensitive feature values are extracted from the decomposed intrinsic mode function. Seven faults are roughly identified using rule-based algorithm and finely identified using BNs or BPNNs. Results show the proposed fault diagnosis method has a good diagnostic performance for a wide range of rotation speeds when the training data for BNs and BPNNs are from fixed speeds. In addition, the influences of the layers of decomposed signals, sensor noise and external excitation interference on the fault diagnostic performance are also researched.
Author Kong, Xiangdi
Cai, Baoping
Liu, Yonghong
Yang, Chao
Wang, Zhengda
Sun, Xiutao
Wang, Jiaxing
Liu, Zengkai
Author_xml – sequence: 1
  givenname: Baoping
  orcidid: 0000-0002-4499-492X
  surname: Cai
  fullname: Cai, Baoping
  email: caibaoping@upc.edu.cn
  organization: National Engineering Laboratory of Offshore Geophysical and Exploration Equipment, China University of Petroleum, Qingdao, Shandong, 266580, China
– sequence: 2
  givenname: Xiutao
  surname: Sun
  fullname: Sun, Xiutao
  organization: College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
– sequence: 3
  givenname: Jiaxing
  surname: Wang
  fullname: Wang, Jiaxing
  organization: CRRC Qingdao Sifang Rolling Sock Research Institute CO., LTD., Qingdao, Shandong, 266033, China
– sequence: 4
  givenname: Chao
  surname: Yang
  fullname: Yang, Chao
  organization: National Engineering Laboratory of Offshore Geophysical and Exploration Equipment, China University of Petroleum, Qingdao, Shandong, 266580, China
– sequence: 5
  givenname: Zhengda
  surname: Wang
  fullname: Wang, Zhengda
  organization: National Engineering Laboratory of Offshore Geophysical and Exploration Equipment, China University of Petroleum, Qingdao, Shandong, 266580, China
– sequence: 6
  givenname: Xiangdi
  surname: Kong
  fullname: Kong, Xiangdi
  organization: National Engineering Laboratory of Offshore Geophysical and Exploration Equipment, China University of Petroleum, Qingdao, Shandong, 266580, China
– sequence: 7
  givenname: Zengkai
  surname: Liu
  fullname: Liu, Zengkai
  organization: National Engineering Laboratory of Offshore Geophysical and Exploration Equipment, China University of Petroleum, Qingdao, Shandong, 266580, China
– sequence: 8
  givenname: Yonghong
  surname: Liu
  fullname: Liu, Yonghong
  organization: National Engineering Laboratory of Offshore Geophysical and Exploration Equipment, China University of Petroleum, Qingdao, Shandong, 266580, China
BookMark eNp9kE1LxDAQhoMouKv-AU_5A62TtNttwYuKX7CsHvQc8jGtKW0iSVbYf2_revLgaYbhfV6YZ0mOnXdIyCWDnAGrrvq8H-M-58AhhyYHYEdkwep1nVVVyY_JAvi8M746JcsY-ynAS-AL0j7I3ZCowYQ6We-odIYaKzvnY7Kajpg-vKG-nY4YcaDoOuuQqj3VflTWWdfRsBswUzKioXLofLDpY_wput3Gq9vX7Taek5NWDhEvfucZeX-4f7t7yjYvj893N5tMFwApW61M04AqTcNlqQwwptpK8kJX6xqLUkkDCgujFBiJlS5Zu2ZMspZXjWoU6uKM8EOvDj7GgK34DHaUYS8YiNmU6MVsSsymBDRiEjFB9R9I2yRnGylIO_yPXh9QnJ76shhE1BadRmPDJFQYb__DvwEiDYip
CitedBy_id crossref_primary_10_1177_10775463211016125
crossref_primary_10_1016_j_measurement_2022_112162
crossref_primary_10_1016_j_jprocont_2023_103006
crossref_primary_10_1016_j_measurement_2023_112560
crossref_primary_10_1016_j_psep_2021_04_024
crossref_primary_10_1007_s13198_021_01386_3
crossref_primary_10_1016_j_psep_2023_08_080
crossref_primary_10_1016_j_inffus_2024_102875
crossref_primary_10_1080_17445302_2021_1920095
crossref_primary_10_1177_14680874251355236
crossref_primary_10_1016_j_rcim_2023_102684
crossref_primary_10_1177_09544100251340641
crossref_primary_10_1016_j_engappai_2024_107853
crossref_primary_10_1007_s10922_022_09643_x
crossref_primary_10_1007_s42243_022_00867_4
crossref_primary_10_1088_1742_6596_1828_1_012040
crossref_primary_10_3390_s21206841
crossref_primary_10_1007_s11069_022_05547_w
crossref_primary_10_1080_20464177_2024_2318844
crossref_primary_10_1016_j_jmsy_2021_04_005
crossref_primary_10_1109_TPEL_2021_3131293
crossref_primary_10_1155_2022_1809482
crossref_primary_10_1016_j_measurement_2021_110377
crossref_primary_10_4271_03_16_07_0051
crossref_primary_10_3390_app11167322
crossref_primary_10_1155_2021_9755094
crossref_primary_10_1155_vib_6278046
crossref_primary_10_1016_j_jmsy_2021_12_003
crossref_primary_10_1016_j_jmsy_2022_02_004
crossref_primary_10_1061_JPSEA2_PSENG_1558
crossref_primary_10_1016_j_isatra_2022_08_002
crossref_primary_10_1016_j_engappai_2025_112212
crossref_primary_10_3390_en14185893
crossref_primary_10_1109_TNNLS_2023_3274290
crossref_primary_10_1109_TNNLS_2021_3135877
crossref_primary_10_1016_j_jmsy_2021_06_003
crossref_primary_10_1016_j_asoc_2021_108293
crossref_primary_10_1016_j_jmsy_2024_05_021
crossref_primary_10_1016_j_jmsy_2022_01_007
crossref_primary_10_1016_j_jmsy_2023_10_002
crossref_primary_10_1016_j_jmsy_2021_03_012
crossref_primary_10_1016_j_tsep_2025_103509
crossref_primary_10_1016_j_ymssp_2024_111841
crossref_primary_10_1080_17445302_2025_2452066
crossref_primary_10_1016_j_apacoust_2023_109436
crossref_primary_10_1007_s12206_022_0404_3
crossref_primary_10_1631_jzus_A2300273
crossref_primary_10_1016_j_applthermaleng_2023_120578
crossref_primary_10_3390_s24227316
crossref_primary_10_3390_aerospace11090743
crossref_primary_10_1016_j_aei_2022_101609
crossref_primary_10_1016_j_enbuild_2024_114901
crossref_primary_10_3390_pr11071972
crossref_primary_10_1016_j_measurement_2022_111697
crossref_primary_10_1093_comjnl_bxaf107
crossref_primary_10_1109_TIM_2021_3075751
crossref_primary_10_1109_JSEN_2024_3405630
crossref_primary_10_1016_j_measurement_2021_109494
crossref_primary_10_1007_s10514_023_10144_2
crossref_primary_10_1177_14759217241232257
crossref_primary_10_1109_TIM_2024_3417592
crossref_primary_10_1016_j_energy_2025_138126
crossref_primary_10_3390_s22218346
crossref_primary_10_1109_TNNLS_2021_3132376
crossref_primary_10_1016_j_jmsy_2021_05_016
crossref_primary_10_1016_j_compchemeng_2024_108717
crossref_primary_10_1016_j_psep_2022_08_014
crossref_primary_10_3390_machines12120895
crossref_primary_10_1016_j_jmsy_2022_07_002
crossref_primary_10_1016_j_jenvman_2023_119900
crossref_primary_10_1016_j_measurement_2022_111564
crossref_primary_10_1016_j_engappai_2022_104959
crossref_primary_10_1109_ACCESS_2020_3046249
crossref_primary_10_1016_j_rineng_2025_106619
crossref_primary_10_1007_s40430_025_05880_8
crossref_primary_10_1109_ACCESS_2022_3218899
crossref_primary_10_1016_j_engappai_2023_106912
crossref_primary_10_1109_TNNLS_2022_3202234
crossref_primary_10_1016_j_jmsy_2022_06_002
crossref_primary_10_1109_TIM_2022_3217855
crossref_primary_10_1016_j_jwpe_2025_108482
crossref_primary_10_3390_s25165091
crossref_primary_10_1109_TMECH_2023_3278710
crossref_primary_10_1016_j_measurement_2025_117252
crossref_primary_10_1109_ACCESS_2022_3226512
Cites_doi 10.1016/j.cam.2020.112991
10.1016/j.jmsy.2019.01.004
10.1109/TASE.2016.2574875
10.3390/pr7120943
10.1109/TPEL.2016.2608842
10.3390/en12040661
10.1016/j.measurement.2018.08.040
10.1016/j.jmsy.2018.04.005
10.1016/j.ymssp.2016.04.019
10.1016/j.jmsy.2020.06.003
10.1016/j.jmsy.2020.04.007
10.2991/ijcis.11.1.86
10.1016/j.jmsy.2020.04.009
10.1016/j.jmsy.2019.01.002
10.1109/TIE.2017.2774777
10.3390/s19153280
10.1109/TIM.2018.2857018
10.1016/j.jmsy.2019.03.002
10.3390/s19245488
10.1016/j.ymssp.2018.02.009
10.1016/j.knosys.2019.105324
10.1007/s42835-020-00375-z
10.1016/j.isatra.2018.10.044
10.1080/17445302.2018.1500189
10.1016/j.renene.2018.10.031
10.1109/TSMC.2017.2759026
10.1016/j.jmsy.2020.04.016
10.1155/2020/9830162
10.1109/ACCESS.2018.2881890
ContentType Journal Article
Copyright 2020 The Society of Manufacturing Engineers
Copyright_xml – notice: 2020 The Society of Manufacturing Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.jmsy.2020.09.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-6642
EndPage 157
ExternalDocumentID 10_1016_j_jmsy_2020_09_001
S0278612520301618
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29K
3EH
3V.
4.4
457
4G.
5GY
5VS
7-5
71M
7WY
883
88I
8AO
8FE
8FG
8FL
8FW
8G5
8P~
8R4
8R5
9JN
9M8
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJCF
ABJNI
ABMAC
ABUWG
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKRA
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BEZIV
BGLVJ
BJAXD
BKOJK
BKOMP
BLXMC
BPHCQ
C1A
CCPQU
CS3
D-I
DU5
DWQXO
E3Z
EBS
EFJIC
EFLBG
EJD
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FRNLG
FYGXN
G-2
GBLVA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K60
K6V
K6~
K7-
KOM
L6V
LY7
M0C
M0F
M0N
M2O
M2P
M41
M7S
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PQBIZ
PQQKQ
PRG
PROAC
PTHSS
Q2X
Q38
R2-
RIG
ROL
RPZ
RWL
S0X
SDF
SES
SET
SPC
SPCBC
SST
SSZ
T5K
TAE
TN5
U5U
WH7
WUQ
ZHY
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFFHD
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
PHGZM
PHGZT
PQBZA
PQGLB
~HD
ID FETCH-LOGICAL-c300t-55d990b4d92a4bd011bf6a23c678e34bad0be3dbb0dae6c41f711a1f269b9bec3
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000596711000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-6125
IngestDate Sat Nov 29 07:20:01 EST 2025
Tue Nov 18 22:33:11 EST 2025
Fri Feb 23 02:42:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords diesel engine
fault diagnosis
rule-based algorithm
BP neural networks
Bayesian networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-55d990b4d92a4bd011bf6a23c678e34bad0be3dbb0dae6c41f711a1f269b9bec3
ORCID 0000-0002-4499-492X
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_jmsy_2020_09_001
crossref_citationtrail_10_1016_j_jmsy_2020_09_001
elsevier_sciencedirect_doi_10_1016_j_jmsy_2020_09_001
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle Journal of manufacturing systems
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References He, Yang, Pan (bib0075) 2019; 50
Cai, Xu, Li, Wang (bib0055) 2020
Cai, Zhao, Liu, Xie (bib0125) 2016; 32
Zhang, Chen, Zhang, Zhou (bib0090) 2020; 55
Xu, Zhao, Xu, Yang, Chang, Yan, Wang (bib0045) 2020; 190
Lei, Liu, Jiang (bib0145) 2019; 133
Choueiri, Sato, Scalabrin, Santos (bib0080) 2020; 56
Wen, Li, Gao, Zhang (bib0005) 2018; 65
Liu, Lü (bib0025) 2019; 7
Xu, Yan, Sheng, Yuan, Xu, Yang (bib0015) 2020; 50
Zhang, Liu, Bi, Bi, Yang (bib0035) 2018; 31
Zhang, Zi, Niu, Xi, Li (bib0030) 2019; 68
Wei, Liu, Chen, Ye (bib0050) 2020; 15
Cai, Liu, Xie (bib0105) 2017; 14
Cai, Liu, Xie (bib0100) 2016; 80
Xiong, Zhang, Wang, Liu, Gao (bib0130) 2020
Geng, Wang, Ye, Liu (bib0150) 2018; 6
Zhang, Li, Gao, Wang, Wen (bib0065) 2018; 48
Bi, Cao, Zhang (bib0020) 2019; 12
Wang, Fu, Gao (bib0070) 2019; 51
Gao, Su (bib0135) 2020; 380
Ma, Jiang, Li (bib0140) 2019; 131
Xie, Wang, MacIntyre, Sheikh, Elkady (bib0115) 2018; 11
Fu, Wang, Zhang, Zhang, Gao (bib0095) 2020; 55
Jiang, Lai, Zhang, Zhao, Mao (bib0120) 2019; 19
Tao, Qin, Li, Liu (bib0040) 2018; 9
Lazakis, Gkerekos, Theotokatos (bib0060) 2019; 14
Wang, Zhang, Wang, Wang, Lu (bib0085) 2019; 50
Wang, Wang, Stetsyuk, Ma, Gu (bib0110) 2019; 86
Zhong, Wong, Yang (bib0010) 2018; 108
Wen (10.1016/j.jmsy.2020.09.001_bib0005) 2018; 65
Zhang (10.1016/j.jmsy.2020.09.001_bib0030) 2019; 68
Gao (10.1016/j.jmsy.2020.09.001_bib0135) 2020; 380
Cai (10.1016/j.jmsy.2020.09.001_bib0100) 2016; 80
Cai (10.1016/j.jmsy.2020.09.001_bib0125) 2016; 32
Geng (10.1016/j.jmsy.2020.09.001_bib0150) 2018; 6
Lei (10.1016/j.jmsy.2020.09.001_bib0145) 2019; 133
Fu (10.1016/j.jmsy.2020.09.001_bib0095) 2020; 55
Lazakis (10.1016/j.jmsy.2020.09.001_bib0060) 2019; 14
Wang (10.1016/j.jmsy.2020.09.001_bib0070) 2019; 51
Zhang (10.1016/j.jmsy.2020.09.001_bib0090) 2020; 55
Wang (10.1016/j.jmsy.2020.09.001_bib0085) 2019; 50
Xie (10.1016/j.jmsy.2020.09.001_bib0115) 2018; 11
Choueiri (10.1016/j.jmsy.2020.09.001_bib0080) 2020; 56
Tao (10.1016/j.jmsy.2020.09.001_bib0040) 2018; 9
Wang (10.1016/j.jmsy.2020.09.001_bib0110) 2019; 86
Zhang (10.1016/j.jmsy.2020.09.001_bib0035) 2018; 31
Ma (10.1016/j.jmsy.2020.09.001_bib0140) 2019; 131
Bi (10.1016/j.jmsy.2020.09.001_bib0020) 2019; 12
Zhang (10.1016/j.jmsy.2020.09.001_bib0065) 2018; 48
Wei (10.1016/j.jmsy.2020.09.001_bib0050) 2020; 15
Xu (10.1016/j.jmsy.2020.09.001_bib0045) 2020; 190
Xiong (10.1016/j.jmsy.2020.09.001_bib0130) 2020
Liu (10.1016/j.jmsy.2020.09.001_bib0025) 2019; 7
Xu (10.1016/j.jmsy.2020.09.001_bib0015) 2020; 50
Jiang (10.1016/j.jmsy.2020.09.001_bib0120) 2019; 19
Zhong (10.1016/j.jmsy.2020.09.001_bib0010) 2018; 108
Cai (10.1016/j.jmsy.2020.09.001_bib0105) 2017; 14
Cai (10.1016/j.jmsy.2020.09.001_bib0055) 2020
He (10.1016/j.jmsy.2020.09.001_bib0075) 2019; 50
References_xml – volume: 55
  start-page: 273
  year: 2020
  end-page: 284
  ident: bib0090
  article-title: A Compact Convolutional Neural Network Augmented with Multiscale Feature Extraction of Acquired Monitoring Data for Mechanical Intelligent Fault Diagnosis
  publication-title: J Manuf Syst
– volume: 380
  start-page: 112991
  year: 2020
  ident: bib0135
  article-title: Analysis on block chain financial transaction under artificial neural network of deep learning
  publication-title: J Comput Appl Math
– volume: 190
  start-page: 105324
  year: 2020
  ident: bib0045
  article-title: Machine learning-based wear fault diagnosis for marine diesel engine by fusing multiple data-driven models
  publication-title: Knowl Based Syst
– volume: 9
  start-page: 3280
  year: 2018
  end-page: 3297
  ident: bib0040
  article-title: Intelligent Fault Diagnosis of Diesel Engines via Extreme Gradient Boosting and High-Accuracy Time–Frequency Information of Vibration Signals
  publication-title: Sensors
– volume: 6
  start-page: 74984
  year: 2018
  end-page: 74992
  ident: bib0150
  article-title: A fault prediction algorithm based on rough sets and back propagation neural network for vehicular networks
  publication-title: IEEE Access
– volume: 32
  start-page: 5590
  year: 2016
  end-page: 5600
  ident: bib0125
  article-title: A data-driven fault diagnosis methodology in three-phase inverters for PMSM drive systems
  publication-title: IEEE Trans Power Electron
– year: 2020
  ident: bib0130
  article-title: Transferable two-stream convolutional neural network for human action recognition
  publication-title: J Manuf Syst
– volume: 56
  start-page: 188
  year: 2020
  end-page: 201
  ident: bib0080
  article-title: An extended model for remaining time prediction in manufacturing systems using process mining
  publication-title: J Manuf Syst
– volume: 55
  start-page: 264
  year: 2020
  end-page: 272
  ident: bib0095
  article-title: Dynamic Routing-based Multimodal Neural Network for Multi-sensory Fault Diagnosis of Induction Motor
  publication-title: J Manuf Syst
– volume: 50
  start-page: 656
  year: 2020
  end-page: 672
  ident: bib0015
  article-title: A Belief Rule-Based Expert System for Fault Diagnosis of Marine Diesel Engines
  publication-title: IEEE Trans Syst Man Cybern -Syst
– volume: 50
  start-page: 236
  year: 2019
  end-page: 246
  ident: bib0075
  article-title: Machine learning for continuous liquid interface production: Printing speed modelling
  publication-title: J Manuf Syst
– volume: 31
  year: 2018
  ident: bib0035
  article-title: Fault Feature Extraction of Diesel Engine Based on Bispectrum Image Fractal Dimension
  publication-title: Chin J Mech Eng
– volume: 51
  start-page: 52
  year: 2019
  end-page: 60
  ident: bib0070
  article-title: Machine vision intelligence for product defect inspection based on deep learning and Hough transform
  publication-title: J Manuf Syst
– volume: 19
  start-page: 5488
  year: 2019
  end-page: 5505
  ident: bib0120
  article-title: Multi-Factor Operating Condition Recognition Using 1D Convolutional Long Short-Term Network
  publication-title: Sensors
– volume: 7
  start-page: 943
  year: 2019
  end-page: 954
  ident: bib0025
  article-title: Fault Diagnosis of the Blocking Diesel Particulate Filter Based on Spectral Analysis
  publication-title: Processes
– volume: 12
  start-page: 661
  year: 2019
  end-page: 677
  ident: bib0020
  article-title: Diesel Engine Valve Clearance Fault Diagnosis Based on Improved Variational Mode Decomposition and Bispectrum
  publication-title: Energies
– volume: 131
  start-page: 431
  year: 2019
  end-page: 442
  ident: bib0140
  article-title: Structural damage detection considering sensor performance degradation and measurement noise effect
  publication-title: Meas J Int Meas Confed
– volume: 108
  start-page: 99
  year: 2018
  end-page: 114
  ident: bib0010
  article-title: Fault diagnosis of rotating machinery based on multiple probabilistic classifiers
  publication-title: Mech Syst Signal Proc
– volume: 50
  start-page: 201
  year: 2019
  end-page: 211
  ident: bib0085
  article-title: Maintenance grouping optimization with system multi-level information Maintenance grouping optimization with system multi-level information
  publication-title: J Manuf Syst
– volume: 14
  start-page: 432
  year: 2019
  end-page: 441
  ident: bib0060
  article-title: Investigating an SVM-driven, one-class approach to estimating ship systems condition
  publication-title: Ships Offshore Struct
– volume: 48
  start-page: 34
  year: 2018
  end-page: 50
  ident: bib0065
  article-title: Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning
  publication-title: J Manuf Syst
– volume: 14
  start-page: 276
  year: 2017
  end-page: 285
  ident: bib0105
  article-title: A Dynamic-Bayesian-Network-Based Fault Diagnosis Methodology Considering Transient and Intermittent Faults
  publication-title: IEEE Trans Autom Sci Eng
– volume: 86
  start-page: 276
  year: 2019
  end-page: 286
  ident: bib0110
  article-title: Exploiting Bayesian networks for fault isolation: A diagnostic case study of diesel fuel injection system
  publication-title: ISA Trans
– volume: 15
  start-page: 1331
  year: 2020
  end-page: 1343
  ident: bib0050
  article-title: Fault Diagnosis of Marine Turbocharger System Based on an Unsupervised Algorithm
  publication-title: J Electr Eng Technol
– volume: 11
  start-page: 1142
  year: 2018
  end-page: 1152
  ident: bib0115
  article-title: Using Sensors Data and Emissions Information to Diagnose Engine’s Faults
  publication-title: Int J Comput Intell Syst
– volume: 133
  start-page: 422
  year: 2019
  end-page: 432
  ident: bib0145
  article-title: Fault diagnosis of wind turbine based on long short-term memory networks
  publication-title: Renew Energy
– volume: 65
  start-page: 5990
  year: 2018
  end-page: 5998
  ident: bib0005
  article-title: A new convolutional neural network-based data-driven fault diagnosis method
  publication-title: IEEE Trans Ind Electron.
– volume: 68
  start-page: 722
  year: 2019
  end-page: 740
  ident: bib0030
  article-title: Intelligent Diagnosis of V-Type Marine Diesel Engines Based on Multifeatures Extracted From Instantaneous Crankshaft Speed
  publication-title: IEEE Trans Instrum Meas
– volume: 80
  start-page: 31
  year: 2016
  end-page: 44
  ident: bib0100
  article-title: A real-time fault diagnosis methodology of complex systems using object-oriented Bayesian networks
  publication-title: Mech Syst Signal Process
– year: 2020
  ident: bib0055
  article-title: A Novel Improved Local Binary Pattern and Its Application to the Fault Diagnosis of Diesel Engine
  publication-title: Shock Vib
– volume: 380
  start-page: 112991
  year: 2020
  ident: 10.1016/j.jmsy.2020.09.001_bib0135
  article-title: Analysis on block chain financial transaction under artificial neural network of deep learning
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2020.112991
– volume: 50
  start-page: 236
  year: 2019
  ident: 10.1016/j.jmsy.2020.09.001_bib0075
  article-title: Machine learning for continuous liquid interface production: Printing speed modelling
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2019.01.004
– volume: 14
  start-page: 276
  issue: 1
  year: 2017
  ident: 10.1016/j.jmsy.2020.09.001_bib0105
  article-title: A Dynamic-Bayesian-Network-Based Fault Diagnosis Methodology Considering Transient and Intermittent Faults
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2016.2574875
– volume: 7
  start-page: 943
  issue: 12
  year: 2019
  ident: 10.1016/j.jmsy.2020.09.001_bib0025
  article-title: Fault Diagnosis of the Blocking Diesel Particulate Filter Based on Spectral Analysis
  publication-title: Processes
  doi: 10.3390/pr7120943
– volume: 32
  start-page: 5590
  issue: 7
  year: 2016
  ident: 10.1016/j.jmsy.2020.09.001_bib0125
  article-title: A data-driven fault diagnosis methodology in three-phase inverters for PMSM drive systems
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2016.2608842
– volume: 12
  start-page: 661
  issue: 4
  year: 2019
  ident: 10.1016/j.jmsy.2020.09.001_bib0020
  article-title: Diesel Engine Valve Clearance Fault Diagnosis Based on Improved Variational Mode Decomposition and Bispectrum
  publication-title: Energies
  doi: 10.3390/en12040661
– volume: 131
  start-page: 431
  year: 2019
  ident: 10.1016/j.jmsy.2020.09.001_bib0140
  article-title: Structural damage detection considering sensor performance degradation and measurement noise effect
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2018.08.040
– volume: 48
  start-page: 34
  year: 2018
  ident: 10.1016/j.jmsy.2020.09.001_bib0065
  article-title: Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2018.04.005
– volume: 80
  start-page: 31
  year: 2016
  ident: 10.1016/j.jmsy.2020.09.001_bib0100
  article-title: A real-time fault diagnosis methodology of complex systems using object-oriented Bayesian networks
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2016.04.019
– volume: 56
  start-page: 188
  year: 2020
  ident: 10.1016/j.jmsy.2020.09.001_bib0080
  article-title: An extended model for remaining time prediction in manufacturing systems using process mining
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2020.06.003
– year: 2020
  ident: 10.1016/j.jmsy.2020.09.001_bib0130
  article-title: Transferable two-stream convolutional neural network for human action recognition
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2020.04.007
– volume: 11
  start-page: 1142
  year: 2018
  ident: 10.1016/j.jmsy.2020.09.001_bib0115
  article-title: Using Sensors Data and Emissions Information to Diagnose Engine’s Faults
  publication-title: Int J Comput Intell Syst
  doi: 10.2991/ijcis.11.1.86
– volume: 55
  start-page: 264
  year: 2020
  ident: 10.1016/j.jmsy.2020.09.001_bib0095
  article-title: Dynamic Routing-based Multimodal Neural Network for Multi-sensory Fault Diagnosis of Induction Motor
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2020.04.009
– volume: 50
  start-page: 201
  year: 2019
  ident: 10.1016/j.jmsy.2020.09.001_bib0085
  article-title: Maintenance grouping optimization with system multi-level information Maintenance grouping optimization with system multi-level information
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2019.01.002
– volume: 65
  start-page: 5990
  issue: 7
  year: 2018
  ident: 10.1016/j.jmsy.2020.09.001_bib0005
  article-title: A new convolutional neural network-based data-driven fault diagnosis method
  publication-title: IEEE Trans Ind Electron.
  doi: 10.1109/TIE.2017.2774777
– volume: 31
  issue: 40
  year: 2018
  ident: 10.1016/j.jmsy.2020.09.001_bib0035
  article-title: Fault Feature Extraction of Diesel Engine Based on Bispectrum Image Fractal Dimension
  publication-title: Chin J Mech Eng
– volume: 9
  start-page: 3280
  issue: 15
  year: 2018
  ident: 10.1016/j.jmsy.2020.09.001_bib0040
  article-title: Intelligent Fault Diagnosis of Diesel Engines via Extreme Gradient Boosting and High-Accuracy Time–Frequency Information of Vibration Signals
  publication-title: Sensors
  doi: 10.3390/s19153280
– volume: 68
  start-page: 722
  issue: 3
  year: 2019
  ident: 10.1016/j.jmsy.2020.09.001_bib0030
  article-title: Intelligent Diagnosis of V-Type Marine Diesel Engines Based on Multifeatures Extracted From Instantaneous Crankshaft Speed
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2018.2857018
– volume: 51
  start-page: 52
  year: 2019
  ident: 10.1016/j.jmsy.2020.09.001_bib0070
  article-title: Machine vision intelligence for product defect inspection based on deep learning and Hough transform
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2019.03.002
– volume: 19
  start-page: 5488
  year: 2019
  ident: 10.1016/j.jmsy.2020.09.001_bib0120
  article-title: Multi-Factor Operating Condition Recognition Using 1D Convolutional Long Short-Term Network
  publication-title: Sensors
  doi: 10.3390/s19245488
– volume: 108
  start-page: 99
  year: 2018
  ident: 10.1016/j.jmsy.2020.09.001_bib0010
  article-title: Fault diagnosis of rotating machinery based on multiple probabilistic classifiers
  publication-title: Mech Syst Signal Proc
  doi: 10.1016/j.ymssp.2018.02.009
– volume: 190
  start-page: 105324
  year: 2020
  ident: 10.1016/j.jmsy.2020.09.001_bib0045
  article-title: Machine learning-based wear fault diagnosis for marine diesel engine by fusing multiple data-driven models
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2019.105324
– volume: 15
  start-page: 1331
  year: 2020
  ident: 10.1016/j.jmsy.2020.09.001_bib0050
  article-title: Fault Diagnosis of Marine Turbocharger System Based on an Unsupervised Algorithm
  publication-title: J Electr Eng Technol
  doi: 10.1007/s42835-020-00375-z
– volume: 86
  start-page: 276
  year: 2019
  ident: 10.1016/j.jmsy.2020.09.001_bib0110
  article-title: Exploiting Bayesian networks for fault isolation: A diagnostic case study of diesel fuel injection system
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2018.10.044
– volume: 14
  start-page: 432
  issue: 5
  year: 2019
  ident: 10.1016/j.jmsy.2020.09.001_bib0060
  article-title: Investigating an SVM-driven, one-class approach to estimating ship systems condition
  publication-title: Ships Offshore Struct
  doi: 10.1080/17445302.2018.1500189
– volume: 133
  start-page: 422
  year: 2019
  ident: 10.1016/j.jmsy.2020.09.001_bib0145
  article-title: Fault diagnosis of wind turbine based on long short-term memory networks
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.10.031
– volume: 50
  start-page: 656
  issue: 2
  year: 2020
  ident: 10.1016/j.jmsy.2020.09.001_bib0015
  article-title: A Belief Rule-Based Expert System for Fault Diagnosis of Marine Diesel Engines
  publication-title: IEEE Trans Syst Man Cybern -Syst
  doi: 10.1109/TSMC.2017.2759026
– volume: 55
  start-page: 273
  year: 2020
  ident: 10.1016/j.jmsy.2020.09.001_bib0090
  article-title: A Compact Convolutional Neural Network Augmented with Multiscale Feature Extraction of Acquired Monitoring Data for Mechanical Intelligent Fault Diagnosis
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2020.04.016
– year: 2020
  ident: 10.1016/j.jmsy.2020.09.001_bib0055
  article-title: A Novel Improved Local Binary Pattern and Its Application to the Fault Diagnosis of Diesel Engine
  publication-title: Shock Vib
  doi: 10.1155/2020/9830162
– volume: 6
  start-page: 74984
  year: 2018
  ident: 10.1016/j.jmsy.2020.09.001_bib0150
  article-title: A fault prediction algorithm based on rough sets and back propagation neural network for vehicular networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2881890
SSID ssj0012402
Score 2.5535421
Snippet •A fault diagnostic method of diesel engines by combining rule-based algorithm and BNs/BPNNs is proposed.•Faults are roughly identified using rule-based...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 148
SubjectTerms Bayesian networks
BP neural networks
diesel engine
fault diagnosis
rule-based algorithm
Title Fault detection and diagnostic method of diesel engine by combining rule-based algorithm and BNs/BPNNs
URI https://dx.doi.org/10.1016/j.jmsy.2020.09.001
Volume 57
WOSCitedRecordID wos000596711000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-6642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012402
  issn: 0278-6125
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc4IJ5qeckHblGWPJzXsVStAKGoEkVaTpEd2zSrNFttkmr7U_i3eGwnWV4VIHGJVl47O_J8OzMezwOhV0JKEsZ-7HIquUtoFLuUJMKNibL9lUJKKNOc_pDkebpcZqez2dchF-aqTpom3W6zy__KajWmmA2ps3_B7vGlakB9VkxXT8V29fwjxp_Qvu4cLjphu4A3HDysEFAHxVlNy2iwESF-UNSO0BUJwQxV1DDdL8LZ9LVwQcFxh9Zf1puqOzetNN7kLcRzn-Z5-xuz9oI2PWRLmPTHdqcgur7pqMwlh07Tmi6ktOhbVn1H15OH38YKV3S7M_ezHT46t1Otx0IdT4fYN-tGG1JpprglkHaBOs6CuWUUk5HGKYzF5DtxbepZW3nrmzKdVnX75ruftIJxUKwWq4v2egEULUyV0kkHjpGJH4EOICOAs2Lsp7fQXpBEWTpHe4fvjpfvxysquJbSDjxLt83IMsGDP_7Sr62eHUvm7D66Z3mFDw10HqCZaB6iuzuFKR8hqUGERxBhxXs8gQgbEOG1xAZE2IAIs2s8gghPIMIjiPSLFIheawg9Rp9Ojs-O3rq2I4dbhp7XuVHElfXCCM8CShhXuoHJmAZhqUweERJGucdEyBnzOBVxSXyZ-D71ZRBnLFPSInyC5s26EfsIe0GZesIjIpUpgQrxIfOkTEMiOaeEsAPkDztWlLZcPXRNqYshLnFVwC4XsMuFl0Fw5gFyxjWXpljLjbOjgRGFNTeNGVko3Nyw7uk_rnuG7kz_hudo3m168QLdLq-6qt28tPD6Bls0pxs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+detection+and+diagnostic+method+of+diesel+engine+by+combining+rule-based+algorithm+and+BNs%2FBPNNs&rft.jtitle=Journal+of+manufacturing+systems&rft.au=Cai%2C+Baoping&rft.au=Sun%2C+Xiutao&rft.au=Wang%2C+Jiaxing&rft.au=Yang%2C+Chao&rft.date=2020-10-01&rft.pub=Elsevier+Ltd&rft.issn=0278-6125&rft.eissn=1878-6642&rft.volume=57&rft.spage=148&rft.epage=157&rft_id=info:doi/10.1016%2Fj.jmsy.2020.09.001&rft.externalDocID=S0278612520301618
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-6125&client=summon